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1 Introduction

Economies of scope arise from synergies in the production of heterogeneous goods.
The classical Marshallian notion of joint production (Marshall [4]) explains instances
of such synergies by the fact that some factors of production are pure public inputs.
That is, once the inputs have been used for producing one good, they become costlessly
available for use in the production of others. We refer to this as the joint public
input interpretation of economies of scope. In this paper, we demarcate the domain of
applicability of the joint public input explanation to economies of scope by studying
the entailed structure of synergies, i.e. the pattern of marginal cost reductions due
to the production of related goods. It is straightforward to see that the economies
of scope due to joint production entail cost complementarities. Indeed, the marginal
cost of producing a given good decreases with the set of goods already produced since
the larger the set of goods produced the more public inputs are already used, and
are thus available for free in further production. Cost complementarity (technically:
submodularity of the cost function) is clearly a stronger requirement than the presence
of economies of scope in the sense of subadditivity (see Panzar and Willig [12], Baumol,
Panzar and Willig [1] and Panzar [11]), but an economically very natural one. The
bottom line of this paper is that assuming the existence of joint public inputs is only
slightly more restrictive than assuming cost complementarity.

To focus on the combinatorial questions posed by the multi-dimensionality of the
good space, we work in a discrete setting in which both inputs and outputs are formal-
ized as sets of goods rather than vectors of continuous quantities. One interpretation
of the good space is as a set of heterogeneous goods that can either be produced in unit
quantity, or not produced. Alternatively, our analysis can also be applied to a setting
with a finite number of types of goods that can be produced in arbitrary quantities,
provided that the scope effects across types can be completely separated from any scale
effects within types; clearly, that assumption is restrictive (see Section 2 for details).

The key to our analysis is the notion of synergy describing the local extent of cost
complementarities. Specifically, the synergy between x and y is the reduction in the
marginal cost of producing good x by the additional production of good y. Note that
the synergy between x and y typically depends on the set of goods otherwise produced;
submodularity can be paraphrased as the requirement that the synergy between two
goods is always non-negative, no matter what other goods are being produced.

Under a joint public input interpretation, the synergy between two goods is simply
the total cost of all inputs that are jointly required by both goods. Thus, cost functions
derived from joint public inputs are always submodular; conversely, we show that any
cost function satisfying a stronger condition of “total submodularity” can be represented
mathematically as arising from the use of joint public inputs. The economic content of
total submodularity is that the synergy between any pair of goods is decreasing as the
scope of production increases; such decreasing (self-dampening) synergies are referred
to as “substitutive” synergies. We show that the case of substitutive synergies is more
fundamental than and presumably far more prevalent than the formally symmetric case
of increasing (self-reinforcing) synergies, which turns out to be remarkably restrictive.
Thus, we arrive at the main conclusion of the paper that the step from the general
notion of cost complementarities to the more structured joint public input interpretation
is small, being largely a matter of assuming sufficient regularity.

The key technical tool is conjugate Moebius inversion. The use of (non-conjugate)
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Moebius inversion is standard in the related literature on cost sharing since Shapley’s
seminal contribution [14]; occasionally, one also finds references to its conjugate form
(see Moulin [5] and Young [15]). As our main mathematical contribution, we sharpen
this tool by providing a novel characterization of the conjugate Moebius inverse in
terms of the higher-order derivatives1 of a cost function (Theorem 2 below). This is
economically relevant since the first derivative describes marginal costs and the second
derivative the local synergies; moreover, positivity of the third derivative corresponds
to decreasing (“substitutive”) synergies.

The public input interpretation is fruitful especially because it opens the possibility
to model economies of scope in a flexible way through appropriate assumptions on the
pattern of inputs. For an analysis of how such patterns of inputs are reflected in the
functional form of the cost function, we refer to the methods developed in Nehring [6]
and Nehring and Puppe [8, 9].2

2 Two Interpretations of Discrete Cost Functions

Let X be a finite set of goods that can be potentially produced by a firm. For any
subset S ⊆ X denote by c(S) the cost of producing exactly the goods in S; these
costs are summarized in a cost function c : 2X → R. Throughout, c is assumed to be
monotone in the sense that c(W ) ≤ c(S) whenever W ⊆ S, and normalized so that
c(∅) = 0.3 By mx(S) := c(S ∪ {x}) − c(S) we denote the marginal cost of producing
good x given that the set S of goods is already produced. Note that monotonicity is
equivalent to non-negativity of mx(S) for all x and S.

The elements of X are sometimes interpreted as heterogeneous individual objects,
e.g. cars, or as types of goods (“product lines”) distinguished by specific know-how,
e.g. different car models sharing a basic common design. Under the latter interpreta-
tion, there are two distinct sources of costs: “fixed costs” of acquiring the capability
of producing goods of a certain type, and “variable costs” of producing goods of a
particular type in various quantities. For instance, fixed costs may correspond to R&D
costs of developing a range of product lines. In the following, we describe the con-
ditions under which the fixed costs of being able to produce different types of goods
can be completely separated from the variable costs within each type. In this case,
our methodology applies to the (then well-defined) fixed cost component of the cost
function.

Let X = ∪k∈Y Xk with the Xk pairwise disjoint. The distinction between fixed
and variable costs is formally captured by the following additively separable functional
form of the cost function. For all S,

c̃(S) = c({k ∈ Y : S ∩ Xk 6= ∅}) +
∑

k∈Y

fk(#(S ∩ Xk)),

where c : 2Y → R represents fixed costs, and the fk : {0, ..., #Xk} → R represent
the variable cost functions for goods of type k. A cost function that admits such a
separable representation will be referred to as decomposable.

1strictly speaking: higher-order differences.
2Although the interpretation is different in these papers, the underlying mathematical structure is

the same.
3Formally, there are thus no fixed costs. Whenever we nevertheless refer to “fixed costs” in the

following, strictly speaking we mean “quasi-fixed costs.”
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Proposition 1 A cost function c̃ : 2X → R is decomposable if and only if it satisfies
the following two conditions.
(i) For all k ∈ Y , x, y ∈ Xk, and z 6∈ Xk, m̃z(S) = m̃z(S ∪ {x}) whenever S 3 y, and
(ii) For all S, W , [#(S ∩ Xk) = #(W ∩ Xk) for all k] ⇒ c̃(S) = c̃(W ).

Moreover, the functions fk and c are uniquely determined up to a normalization of
fk(1) for all k ∈ Y .

Condition (i) states that once a single unit of some type k is produced, increasing the
output of this type entails no further reduction of the marginal cost of producing goods
of any other type j. Condition (ii) states that costs only depend on the number of units
produced of each type.

Proof For each k ∈ Y , fix fk(1) arbitrarily such that 0 ≤ fk(1) ≤ c̃({xk}), where
xk ∈ Xk. For any k choose xk ∈ Xk, and define c : 2Y → R as follows. For all Y ′ ⊆ Y ,
c(Y ′) := c̃({xk : k ∈ Y ′}) −

∑

k∈Y ′ fk(1). By condition (ii), this does not depend on
the choice of the xk. The functions fk are inductively defined as follows. Choose any
set S that contains exactly i ≥ 2 elements of Xk, and let xk ∈ S ∩ Xk. Then, set
fk(i) := fk(i− 1) + [c̃(S)− c̃(S \ {xk})]. By conditions (i) and (ii), this definition does
not depend on the choice of S and xk. It is easily verified that the functions c and fk

yield the desired decomposition. q.e.d.

The function c captures potential economies of scope, while the fk capture poten-
tial economies of scale. This clear-cut dichotomy, which is due to condition (i), seems
appropriate in certain contexts such as that of R&D expenditure; it may not be ac-
ceptable in others where the cost reductions within one type depend on the quantity
produced of other types. Summarizing then, our analysis applies to standard multi-
product cost functions provided that the scope effects can be separated from any scale
effects in the sense of condition (i) above.

3 Cost Complementarities as Synergies

Cost complementarities describe the reduction of marginal costs due to the production
of other goods. Such synergies between goods can be described by second-order deriva-
tives of the cost function. We define the (first) derivative4 of the set function c at S

with respect to x by

∇xc(S) := mx(S) = c(S ∪ {x}) − c(S).

Thus, ∇xc(S) is the marginal cost of producing x given that S is already produced.
Clearly, for each x ∈ X , ∇x(·) is again a real-valued function on 2X . A crucial role
in the following analysis will be played by its derivative with respect y which we also
refer to as the cross-partial derivative of c with respect to {x, y}:

∇{x,y}c(S) := ∇y(mx(S)) = ∇y(∇xc(S))

= [c(S ∪ {x, y}) − c(S ∪ {y})] − [c(S ∪ {x}) − c(S)]

A cost function is said to be characterized by cost complementarities, i.e. decreasing
marginal costs, if the cross-partials are always non-positive. Equivalently, the synergy

4strictly speaking: first-order difference.
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between any x and y,
syn{x,y}(S) := −∇{x,y}c(S), (1)

i.e. the reduction of the marginal cost of producing x due to the production of y, is
always non-negative. It is easily verified that non-negativity of synergies is equivalent
to submodularity of the cost function, i.e. to the condition that, for all S, W ⊆ X ,

c(S ∪ W ) + c(S ∩ W ) ≤ c(S) + c(W ).

The object under study is thus the class of all submodular cost functions on 2X .
In writing down equation (1) one notes at once that the synergy between x and

y depends on the set S of goods already produced. This dependence is significant.
Independence of S would require that

∇{x,y}c(S) = ∇{x,y}c(S
′)

for all S, S′ that do not contain x or y. Such independence holds if and only if all third
derivatives are zero, in which case the cost function will be referred to as quadratic.
Despite its attractiveness from a computational point of view, a quadratic model turns
out to be inappropriate in most cases. Typically, synergies depend on S in a significant
and economically meaningful way.

To illustrate the role of the third derivative, consider a simple example of a seller
delivering to a finite number of stores in a linear city. Suppose that there are n

equidistant stores, so that X = {1, ..., n}. A seller located at the edge of town (at 0)
wants to serve these stores. For simplicity, assume that the cost incurred by supplying
store x ∈ X consists in the transportation cost of driving from the starting point 0 to
store x plus some constant cost a > 0 per store for unloading. With transportation
costs proportional to the distance, the cost of serving store x is simply c({x}) = a + x.

r0 r
1

r
2

r
3

· · · r
max S

· · · r
y

· · · r
x

· · · r
n − 1

r
n

syn{x,y}(S)� -

mx(S)� �
?

Figure 1: Serving stores in a linear city

Since in serving store x the seller has to drive beyond all stores y < x, the marginal
cost of serving one of these is a once store x is served. The cost of supplying any set
S ⊆ X of stores is given by c(S) = a · (#S) + max S, i.e. the costs of unloading plus
the transportation cost of serving the farthest store in S. If x 6∈ S, marginal costs are
thus mx(S) = a + [x−maxS]+, where [z]+ is short for max{z, 0}. Synergies are given
by

syn{x,y}(S) = [min{x, y} − maxS]+,

(see Figure 1). In particular, the synergy between x and y is always non-negative,
confirming the presence of cost complementarities. To illustrate, suppose that store
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z = maxS is already being served. The marginal cost a + (x − z) of supplying any
farther store x > z is reduced by y−z whenever an intermediate store y with z < y < x

is also served. The dependence of syn{x,y}(S) on S is transparent: the reduction in
the marginal cost mx(S) due to serving an intermediate store y with maxS < y < x is
smaller whenever max S is larger. In other words, syn{x,y}(S) is decreasing in S: for
all x, y and all S, S′,

S ⊆ S′ ⇒ syn{x,y}(S) ≥ syn{x,y}(S
′). (2)

The case of decreasing synergies in the sense of (2) will be referred to as the case of
substitutive synergies: synergies become weaker the more synergies are already being
exploited. Since syn{x,y}(S) = −∇{x,y}c(S), (2) is equivalent to monotonicity of the
cross-partials ∇{x,y}c(·), and hence to non-negativity of the third derivative of the cost
function,5

∇{x,y,z}c(·) := ∇z [∇{x,y}c(·)].

This simple example demonstrates that the structure of synergies is in general com-
plex. In particular, it shows that the qualitative behavior of synergies is closely related
to the qualitative behavior of the third derivative of the cost function. A fundamental
distinction concerns the sign of the third derivative. As outlined above, non-negativity
of the third derivative everywhere corresponds to substitutive (decreasing) synergies.
The polar case of complementary (increasing) synergies is also conceivable. However,
we shall argue that these cases are not symmetric (see Section 6 below): substitutive
synergies will turn out to be much more natural than complementary ones.

How can we understand the presence of substitutive synergies?

4 Substitutive Synergies due to Joint Public Inputs

The following example is meant to illustrate the notion of joint public inputs central to
the further development of the theory. Consider the following very stylized description
of the cost structure of producing BMWs (a well-known German car make).6 First, to
be able to produce any BMW x at all a certain amount Foh of firm-wide overhead has
to be incurred. Developing a specific product line, say the 5-series of BMW, requires
large expenditures Fpl(x). Similarly, designing a particular model, such as the 525td,
involves additional costs Fmo(x). Finally, the actual production of the individual car
has unit costs Kmo(x). Thus, producing a single BMW x (think of x ∈ X as one car
of a particular model) has total cost c({x}) = Foh + Fpl(x) + Fmo(x) + Kmo(x). For
instance, suppose one 525td is being produced. Then, the marginal cost of producing a
second 525td is K525td. By contrast, the marginal cost of, say a 528i, is F528i + K528i.
More generally, the total cost of producing a set S of cars c(S) is given by the sum
of overhead costs, the (quasi-)fixed costs of any product category in S (line or model)
plus the marginal costs of each individual car.

In this example, the presence of economies of scope is due to joint public inputs,
i.e. inputs required by several goods (cars) that become freely available once used for
one single good (car). For instance, the cost of producing a 525td and a 528i jointly

5Observe that the value of ∇{x,y,z}c(S) is independent of the order of taking derivatives.
6While some readers may be less fond of BMWs than we are, they may nevertheless appreciate the

pedagogical value of the example, especially of the crispness with which BMW’s nomenclature conveys
the qualitative structure of its product space.
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is smaller than the sum of the cost of producing each of the two cars separately since
both cars share common inputs, namely those required for developing the 5-series.

In general, the cost structure of production with joint public inputs can be described
as follows. Let Ω be a set of public inputs with given prices pω, ω ∈ Ω. For any ω ∈ Ω
let h(ω) ⊆ X denote the set of those goods which require input ω. The total cost of
producing the subset S of goods is thus given by

c(S) =
∑

ω:h(ω)∩S 6=∅

pω.

Note that each public input occurs only once in the sum on the right-hand side, since it
becomes freely available for all outputs once it has been used by one. In the following,
it will be convenient to identify inputs ω with their “extensions” h(ω) ⊆ X , i.e. with
the corresponding sets of goods that require these inputs. In particular, we will refer
to a set A of goods as a “public input” whenever there is an ω ∈ Ω such that A =
h(ω), i.e. whenever there is some ω-input that is required exactly by all goods in A.
Henceforth, a public input is thus simply a certain subset of goods, and the set of all
public inputs is a collection of such subsets. The price of the “input” A ⊆ X is then
given by the aggregate cost of all ω-inputs required exactly by the goods in A:

λA :=
∑

ω:h(ω)=A

pω,

with
∑

∅ := 0 by convention. Expressing costs in terms of the λA one thus obtains for
all S,

c(S) =
∑

A⊆X:A∩S 6=∅

λA. (3)

We can view λ as a measure on 2X and write λ(A) :=
∑

A∈A λA for any family A ⊆ 2X .
Note that, in general, there will be many subsets A for which λA = 0, and observe that
the family of all public inputs is given by the support Λ := {A ⊆ X : λA 6= 0} of λ.

By (3), one obtains

mx(S) = c(S ∪ {x}) − c(S) = λ({A : x ∈ A ⊆ Sc}) (4)

and
syn{x,y}(S) = λ({A : {x, y} ⊆ A ⊆ Sc}), (5)

where Sc denotes the complement of S in X . The marginal cost of x at S is thus given
by the aggregate cost of all inputs that are required by x but not already used by some
good in S. Similarly, the synergy between x and y at S equals aggregate cost of all
inputs common to x and y that are not required by any element of S. In particular,
it is clear from (4) and (5) that any cost function of the form (3) is monotone and
submodular, due to the non-negativity of λ. Moreover, it is also evident from the
right-hand side of (5) that the extent of cost reductions is decreasing in S, i.e. that
the synergies are substitutive. More generally, the higher-order derivatives of any cost
function of the form (3) have alternating sign, beginning with a positive sign for the
first derivative (see Theorem 2 below). Such cost functions will be called monotone and
totally submodular. Equivalently, the class of totally submodular cost functions can be
characterized by the property that the absolute value of any higher-order derivative is
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decreasing. Formally, for any W = {x1, ..., xm} ⊆ X , define the derivative of c with
respect to W at S recursively by ∇W c(S) := ∇xm

(∇W\{xm}c(S)). A monotone cost
function is totally submodular if and only if, for all non-empty W , and all S, S′,

S ⊆ S′ ⇒ |∇W c(S)| ≥ |∇W c(S′)|. (6)

Observe that submodularity corresponds to the case #W = 1, and substitutivity of
synergies to the case #W = 2. We will refer to monotone and totally submodular cost
functions as characterized by regular substitutive synergies.

5 Implicit Joint Inputs Obtained from Conjugate

Moebius Inversion

Consider now a monotone and totally submodular cost function. The above procedure
for aggregating product-group specific fixed costs can be inverted, as shown by the
following result.

Theorem 1 (Conjugate Moebius Inversion) For any set function c : 2X → R
there exists a unique measure λ on 2X, the so-called conjugate Moebius inverse, such
that (3) holds, i.e. such that for all S,

c(S) = λ({A ⊆ X : A ∩ S 6= ∅}) =
∑

A⊆X:A∩S 6=∅

λA,

where λA := λ({A}). The measure λ has the following representation. For all A,

λA =
∑

S⊆A

c(Sc) · (−1)#(A\S)+1.

Moreover, λ is non-negative if and only if c is totally submodular.

The first part is a standard result in combinatorics and the theory of non-additive
probabilities (see Rota [13], Chateauneuf and Jaffray [2]). The second part, also well-
known, follows from Theorem 2 below.

The non-negativity of the conjugate Moebius inverse (henceforth: c.m.i.) allows us
to interpret it as a cost decomposition. In the BMW example above the cost decom-
position was exogeneously given, as total costs were computed based on presupposed
fixed costs specific to certain groups of products. However, even if the public inputs
are not part of the physical description of the technology, the decomposition (3) can
still admit an economic interpretation in terms of imputed fixed costs, with the values
λA representing the fixed costs of the public inputs “imputed” to exactly the goods in
A. Theorem 1 thus entails that, up to conditions on derivatives of order ≥ 4 (“regu-
larity”), any cost function characterized by substitutive synergies admits such a cost
decomposition in terms of imputed fixed costs.

The use of (non-conjugate) Moebius inversion is standard in the literature on cost
sharing since Shapley [14]. Occasionally, one also finds reference to its conjugate form
as defined here. For instance, Young [15] refers to cost functions with the representation
(3) as “decomposable.” Both Young [15, p. 93] and Moulin [5, p. 140] note that in the
totally submodular case, the Shapley value admits a particularly simple and intuitive
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representation. It amounts to assigning, for any implicit input, an equal cost share to
each good that uses it: Sh(x) =

∑

A3x
λA

#A
.

As a formal result, Theorem 1 can of course only secure the logical possibility of a
joint public input interpretation. The mathematically identified inputs need not neces-
sarily be economically meaningful.7 Nonetheless, Theorem 1 establishes the remarkable
generality of the joint public input language for talking about economies of scope as if
originating from joint public inputs.

As a first illustration, consider again the example of serving stores in the linear city.
Serving a store x requires the input “driving from x − 1 to x.” This input is in fact
shared by all stores that are farther out than x. Hence, for each x, the set {x, ..., n} is
a public input with λ{x,...,n} as the transportation cost of driving from x − 1 to x. In
addition, each store x requires an idiosyncratic input {x} with λ{x} = a representing
the cost of unloading. The c.m.i. of the cost function c(S) = a · (#S) + max S is thus
obtained by setting

λA =















1 if A = {x, ..., n} for x < n,

a if A = {x} for x < n,

1 + a if A = {n},
0 otherwise.

In other words, the cost decompositon of the function c(S) = a · (#S)+max S in terms
of joint public inputs is given by imputing one cost-unit to each set that consists of all
stores that are farther away from the starting point than some given store x, and an
unloading cost of a to each single store (see Figure 2). Note that the fixed cost λ{n}

imputed to the farthest store subsumes both the transportation cost from n − 1 to n

and the unloading cost at n.
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Figure 2: Extensionally identified public inputs in the linear city

The following result shows that the c.m.i. simultaneously describes the cost function
and all its derivatives. Since derivatives play such a central role in the analysis of cost
functions, it shows at a purely mathematical level the importance of the c.m.i.

Theorem 2 Let c : 2X → R be a set function with c.m.i. λ. For all S and all non-
empty W ⊆ X,

∇W c(S) = (−1)#W+1 · λ({A : W ⊆ A ⊆ Sc}).

Proof The proof proceeds by induction over #W . For W = {x},

∇xc(S) = c(S ∪ {x}) − c(S)

= λ({A : A 3 x, A ∩ S = ∅})

= λ({A : x ∈ A ⊆ Sc}).

7See, however, Nehring and Puppe [10] where we provide a simple sufficient condition under which
the economic meaningfulness of the imputed inputs is secured.
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Next, let #W ≥ 2, and suppose the given formula applies to all derivatives of order
< #W . Then, for any x ∈ W ,

∇W c(S) = ∇x

(

∇W\{x}c(S)
)

= ∇W\{x}[c(S ∪ {x}) − c(S)]

= (−1)#W [λ ({A : (W \ {x}) ⊆ A ⊆ (S ∪ {x})c})

−λ ({A : (W \ {x}) ⊆ A ⊆ Sc})]

= (−1)#W+1λ ({A : (W \ {x} ⊆ A ⊆ Sc, x ∈ A})

= (−1)#W+1λ ({A : W ⊆ A ⊆ Sc}) .

q.e.d.
Taking W = A and S = Ac in Theorem 2 one obtains the following simple repre-

sentation of the c.m.i.

Corollary Let c : 2X → R be a set function with c.m.i. λ. For all A,

λA = ∇Ac(Ac) · (−1)#A+1.

Observe that both results apply to arbitrary set functions. In particular, the equiva-
lence of non-negativity of λ and total submodularity of c is an immediate consequence
of Theorem 2.8

Theorem 2 can be used to demonstrate the restrictiveness of quadratic cost func-
tions, thereby underlining the role of third and higher-order derivatives. Suppose that
for all x, y and all S with S ∩ {x, y} = ∅, the synergy syn{x,y}(S) between x and y is
strictly positive but does not depend on S. By Theorem 2, this implies that the sup-
port of the corresponding c.m.i. λ consists exactly of all one- and two-element subsets
of X , i.e. Λ = {{x, y} : x, y ∈ X}. In particular, one obtains by (3), for all S,

c(S) ≥
1

2

∑

x∈S

c({x}), (7)

and more generally, c(S ∪W ) ≥ 1
2

∑

x∈S mx(W ). Note that (7) is easily violated when
many goods in S share a common input, e.g. when there are significant overhead costs.
Hence, modelling a cost function as quadratic entails a strong quantitative limitation
on the extent of synergies.

Analogously, a vanishing (k +1)-th derivative means, by Theorem 2, that all public
inputs are shared by at most k goods, which implies c(S) ≥ 1

k

∑

x∈S c({x}) for all S.

6 The Privileged Status of Substitutive Synergies

As we have seen, the applicability of the joint public input interpretation, i.e. the in-
terpretation of the c.m.i. as a cost decomposition, is limited to the case of substitutive
(decreasing) synergies. This condition is not as restrictive as it may appear, since sub-
stitutivity of synergies is economically more natural than their complementarity. This

8Choquet [3, Sect. 14 and 26] introduced totally submodular set functions in terms of the alter-
nating sign of the higher-order derivatives (thus calling them “alternating of infinite order”), and
suggested that they occur more frequently and seem more useful than totally supermodular ones
(belief functions). He did not state Theorem 2 nor its corollary; both seem to be new.
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intuition is confirmed by the fact that complementary (i.e. increasing) synergies im-
pose strong restrictions on the overall extent of synergies, as expressed by the following
inequality. For all x,

∑

y∈X\{x}

syn{x,y}(∅) ≤ c({x}).9

In terms of total cost, complementary synergies entail the same strong restriction
as the quadratic model (cf. (7)):

Theorem 3 Let c : 2X → R be monotone and submodular. Furthermore, assume that,
for all x, y, syn{x,y}(·) is increasing, i.e. that the third derivative of c is non-positive
everywhere. Then, for all S,

c(S) ≥
1

2

∑

x∈S

c({x}).

Proof Let c : 2X → R be monotone, submodular with non-positive third derivative.
The restriction of c to any S ⊆ X has these same properties; hence, for the proof it
suffices to show that

c(X) ≥
1

2

∑

x∈X

c({x}). (8)

Define the average cost function f : {0, ..., #X} → R by f(i) := 1
#S(i)

∑

S∈S(i) c(S),

where S(i) := {S ⊆ X : #S = i}. Note that f(0) = 0, n · f(1) =
∑

x∈X c({x})
and f(n) = c(X), where n := #X . Consider the derivative ∇f defined by ∇f(i) :=
f(i + 1) − f(i). By assumption, ∇f : {0, ..., n − 1} → R is positive, decreasing and
concave. By Jensen’s inequality, one has for all i = 1, ..., n − 1,

f(i + 1) − f(i) = ∇f(i) ≥
n − 1 − i

n − 1
· ∇f(0).

Summing these inequalities, one obtains

f(n) =

n−1
∑

i=0

[f(i + 1) − f(i)] ≥

(

n−1
∑

i=0

n − 1 − i

n − 1

)

· f(1) =
n

2
f(1),

i.e. (8). q.e.d.

Note that, by comparison, substitutive synergies entail no analogous restriction be-
yond monotonicity (i.e. c(S) ≥ maxx∈S c({x}) ≥ 1

#S

∑

x∈S c({x})). The analogy to

functions on the real line may be instructive. If f : [0,∞) → R is increasing and con-
cave, then it is not possible that its third derivative is strictly negative everywhere.10

By contrast, it is perfectly possible that its third derivative is strictly positive every-
where.

As we have already argued in the context of quadratic cost functions, the restrictions
described above will be undesirable in many cases, for instance they are easily violated
when overhead costs are significant. From this we conclude that the case of substitutive
synergies is the by far more relevant case in applications.

9For verification, let X = {x, y1, ..., ym}, and observe that
∑m

i=1
syn{x,yi}

(X \ {x, y1, ..., yi}) =

mx(∅) − mx(X \ {x}) ≤ c({x}). The stated inequality thus follows from the assumption of increas-
ing synergies. Note that, by contrast, in the substitutive case one can only deduce the inequality
∑

y∈X\{x}
syn{x,y}(∅) ≤ (n − 1) · c({x}).

10This is easily seen by considering the first derivative f ′. By assumption, f ′ is non-negative and
decreasing everywhere. Clearly, in this case f ′ must have a convex part.
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