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Judge : Don’t Vote!

Michel Balinski and Rida Laraki

The final test of a theory is its capacity to solve the problems which
originated it.

George B. Dantzig

Abstract

This article explains why (1) the traditional model of the theory of so-
cial choice misrepresents reality, (2) it cannot lead to acceptable methods
of ranking and electing in any case, and (3) a more realistic model leads in-
evitably to one method of ranking and electing—majority judgment—that
best meets the traditional criteria of what constitutes a good method.

1 Why Don’t Vote! in Theory

George Dantzig’s limpid, opening phrase of the Preface of his classic work on
linear programming and extensions [9] is worth repeating over and over again,
for it is far too often forgotten. By his final test, the theory of voting—better
known as the theory of social choice—has failed. Despite insightful concepts,
fascinating analyses, and surprising theorems, its most famous results are for
the most part negative: paradoxes leading to impossibility and incompatibility
theorems. The theory has yielded no really decent methods for practical use.

Beginning with the first known written traces (1299) of how candidates are to
be elected and ranked, voting has been viewed in terms of comparing the relative
merits of candidates. Each voter is assumed to rank-order the candidates and
the problem is to amalgamate these so-called preferences into the rank-order of
society.

This view leads to two unsurmountable paradoxes that plague practice, and
so theory. (1) Condorcet’s paradox : In the presence of at least three candidates,
A, B, and C, it is entirely possible that in head-to-head encounters, A defeats
B, B defeats C, and C defeats A, so transitivity fails and a Condorcet-cycle is
produced, A ≻S B ≻S C ≻S A where X ≻S Y means society prefers X to Y .
(2) Arrow’s paradox : In the presence of at least (the same) three candidates,
it is entirely possible for A to win, yet with the same voting opinions for B to
defeat A when C withdraws.

These paradoxes are real. They occur in practice. They are not the inven-
tion of some febrile imagination. Condorcet’s paradox is not often seen because
voting systems very rarely ask voters to give their rank-orders. It was, however,

1



observed in a Danish election [20]. It also occurred in the famous 1976 “Judg-
ment of Paris” where eleven voters—well known wine experts—evaluated six
Cabernet-Sauvignons of California and four of Bordeaux, and the “unthinkable”
is supposed to have occurred: in the phrase of Time magazine “California de-
feated Gaul.” In fact, by Condorcet’s majority principle, five wines—including
three of the four French wines—all preferred to the other five wines by a ma-
jority, were in a Condorcet-cycle, A ≈S B ≻S C ≈S D ≻S E ≻S A, where
X ≈S Y means society considers X and Y to be tied (see [4] section 7.8).

Arrow’s paradox is seen frequently. Had Ralph Nader not been a candidate
for the presidency in the 2000 election in Florida, it seems clear that most
of his 97,488 votes would have gone to Albert Gore who had 537 votes less
than George W. Bush, thus making Gore the winner in Florida and so the
national winner with 291 Electoral College votes to Bush’s 246. According to
the rules that were used for years in amalgamating judges’ opinions of figure
skating performances—where their inputs were rank-orders of skaters—it often
happened that the relative position of two skaters could invert, or “flip-flop,”
solely because of another skater’s performance.

Behind these paradoxes lurk a host of impossibilities that plague the tra-
ditional model. A brief, informal account is given of the most striking among
them. The model is this. Each voter’s input is a rank-order of the candidates.
Their collective input is society’s preference-profile Φ. The output, society’s
rank-order of the candidates, is determined by a rule of voting F that depends
on Φ. It must satisfy certain basic demands. (1) Unlimited domain: Voters
may input whatever rank-orders they wish. (2) Unanimous: When every voter
inputs the same rank-order then society’s rank-order must be that rank-order.
(3) Independence of irrelevant alternatives: Suppose that society’s rank-order
over all candidates C is F (ΦC) and that over a subset of the candidates, C′ ⊂ C,
it is F (ΦC′

). Then the rank-order obtained from F (ΦC) by dropping all candi-
dates not in C′ must be F (ΦC′

). (4) Non-dictatorial: No one voter’s input can
always determine society’s rank-order whatever the rank-orders of the others.

Arrow’s Impossibility Theorem ([1]) There is no rule of voting that satisfies
the properties (1) to (4) (when there are at least three candidates).

Arrow’s theorem ignores the possibility that voters have strategies. Under
the assumption that their “true” opinions are rank-orders, it does not consider
the possibility that their inputs may differ from their true opinions, chosen in
order to maximize the outcome they wish. A rule of voting is strategy-proof
when every voter’s best strategy is his true preference-order; otherwise, the rule
is manipulable. Strategy-proof rules are the most desirable for then the true
preferences of the voters are amalgamated into a decision of society rather than
some other set of strategically chosen preferences. Regrettably they do not exist.

However, the very formulation of the theorem that proves they do not exist
underlines a defect in the traditional model. In general, the output of a rule of
voting is society’s rank-order. Voters usually prefer one rank-order to another,
viz., the rank-order of the candidates is important to a voter, the rank-order of
figure skaters in Olympic competitions is important to the skaters and judges
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and to the public at large. But voters and judges have no way of expressing
their preferences over rank-orders. In the spirit of the traditional approach they
should be asked for their rank-orders of the rank-orders (for a more detailed
discussion of this point see [3, 4]). Be that as it may, when strategic choices
are introduced in the context of the traditional approach something must be
assumed about the preferences of the voters to be able to analyze their behavior.
It is standard to assume that voters only care about who wins, i.e., voters’ utility
functions depend only on who is elected. This is, of course, not true for most
voters.

Each voter’s input is now a rank-order that is chosen strategically, so it may
or may not be her true preference list. A rule of voting is assumed to produce a
winner only, and unanimous means that when all the voters place a candidate
first on their lists then so does the rule.

Gibbard and Satterthwaite’s Impossibility Theorem ([15, 23]) There is
no rule of voting that is unanimous, non-dictatorial and strategy-proof for all
possible preference-profiles (when there are at least three candidates).

A third result shows that there is an inescapable conflict between designating
a winner and determining an order-of-finish among candidates or competitors in
the traditional approach. To explain it an additional concept must be invoked.
When there are n candidates Ai (i = 1, . . . , n), a set of kn voters of a preference-
profile having the preferences

k : A1 ≻ A2 ≻ · · · ≻ An−1 ≻ An

k : A2 ≻ A3 ≻ · · · ≻ An ≻ A1

...
...

...
...

...
...

...
...

...
...

k : An ≻ A1 ≻ · · · ≻ An−2 ≻ An−1

(the first line meaning, for example, that k voters have the preference A1 ≻
A2 ≻ · · · ≻ An−1 ≻ An) is called a Condorcet-component. Each candidate
appears in each place of the order k times. Given a preference-profile that is a
Condorcet-component every candidate has the same claim to the first, the last
or any other place in the order-of-finish: there is a vast tie among all candidates
for every place.

The model is now this. Voters input rank-orders, a rule amalgamates them
into society’s rank-order. The first-place candidate is the winner, the last-place
candidate is the loser. The rule must enjoy three properties. (1) Winner-loser
unanimous: Whenever all voters rank a candidate first (respectively, last) he
must be the winner (the loser). (2) Choice-compatible: Whenever all voters rank
a candidate first (respectively, last) and a Condorcet-component is added to the
profile, that candidate must be the winner (the loser). (3) Rank-compatible:
Whenever a loser is removed from the set of candidates, the new ranking of the
remaining candidates must be the same as their original ranking. Or, instead,
this last property may be replaced by: whenever a winner is removed the new
ranking must be the same as the original.
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Incompatibility Theorem [3, 4] There is no rule of voting that is winner-
loser unanimous, choice- and rank-compatible (when there are at least three
candidates).

This theorem shows that there is an inherent incompatibility between win-
ners or losers and orders-of-finish. Imagine the following situation: All but one
figure skater, Miss LS, have performed, and Miss FS is in first-place among
them. Then Miss LS performs. Result: she finishes last but Miss FS is no
longer in first-place. Rank-compatibility is violated, but a method that guaran-
tees it is satisfied implies one of the other two properties may not be met, which
is unthinkable.

There is still another fundamental difficulty with the traditional model.
Clearly, if a voter has a change of opinion and decides to move some candi-
date up in her ranking that candidate should not as a consequence end up lower
in the final ranking: that is, the method of voting should be “choice-monotone.”
Monotonicity is essential to any practically acceptable method: how can one ac-
cept the idea that when a candidate rises in the inputs he falls in the output?
But there are various ways of formulating the underlying idea. Another is “rank-
monotone”: if one or several voters move the winner up in their inputs, not only
should the remain winner but the final ranking among the others should not
change. Theorem [2]: there is no unanimous, impartial1 rule of voting that is
both choice- and rank-monotone. Moreover, when some non-winner falls in the
inputs of one or more voters no method of the traditional model can guarantee
that the winner remains the winner (none is “strongly monotone”). Why all
of this happens is simple: moving some candidate up necessarily moves some
candidate(s) down, though there may be no change of opinion regarding them.

In short, these four theorems show that there can be no good method of
voting. The traditional paradigm leaves a desperate state of affairs.

But applied mathematics is not only theorems and algorithms. It is also
formulating adequate models. To begin, a problem must be understood as best
as can be. Next, a model must be formulated that attempts to capture the es-
sentials of the real situation. It must then be challenged by the gritty details of
the real problem. Only then is it worthwhile to develop and explore the math-
ematical properties of the model. But this, in turn, can—invariably, will—lead
to new understandings of the problem, to refinements and reformulations of the
model, and so eventually to new probing conclusions. Indeed, applied mathe-
matics that seeks to solve real problems consists of a sequence of repetitions of
this process.

What is amazing about the theory of social choice is that the basic model has
remained the same over seven centuries. The premisses of the model have not
been questioned. Comparing candidates has steadfastly remained the paradigm
of the traditional model. And yet, both common sense and practice show that
voters and judges do not formulate their opinions as rank-orders. Moreover,
rank-orders are grossly insufficient expressions of opinion, because a candidate

1Impartial means candidates and voters are treated equally; see below section 3.
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who is second (or in any other place of an input) may be held in high esteem by
one voter but in very low esteem by another. There is ample evidence for this.

In the last two presidential election held in France, there were respectively
sixteen and twelve candidates. Voters certainly did not rank-order the candi-
dates. Instead, they rejected most, and chose one among several whom they
held in some degree of esteem (possibly high, often rather low, though it was
impossible for them to express such sentiments). A voting experiment carried
out in parallel with the 2007 presidential election showed that fully one-third of
the voters did not have a single preferred candidate and that the merits of can-
didates ranked highest in a voter’s input, or ranked second highest in his input,
etc., were seen to be quite different [4, 5]. With the old rules for judging figure
skaters, the inputs of judges were rank-orders of the performers, but the judges
were not asked to submit rank-orders, for that is much too difficult. Instead,
they were asked to give number grades, and their number grades were used to
deduce their rank-orders. Indeed, this is the routine in schools and universities
where students’ grades are used to determine their standings.

Thus the traditional approach to voting fails for two separate reasons.

• The traditional model is inadequate: the input a voter is supposed to have
in her mind does not correspond to reality.

• The theory that emerges is inconsistent and contradictory.

The goal of this paper is to give a brief mathematical account of a new paradigm
and model for a theory of social choice that comes much closer to capturing
the way in which voters naturally express their opinions and that escapes the
traditional impossibilities. For a complete account of the theory, a detailed
justification of its basic paradigm, and descriptions of its uses to date and of
experiments that have been conducted to test it, see [4].

2 Why Don’t Vote! in Practice

Everything is ranked all of the time: architectural projects, beauty queens,
cities, dogs, economists, figure skaters, graduates, hotels, investments, journal-
ists, . . . , not only candidates for offices. How? Invariably by evaluating them in
a common language of grades. That it is natural to do so is evident since it is so
often done. In most real competitions (other than elections) the order-of-finish
of competitors is a function of number-grades attributed by judges. Most often
the functions used to amalgamate judges’ grades are their sums, or equivalently,
their averages. But this is not always so. The recent changes in the rules used
in figure skating offer a particularly interesting case study.

Condorcet’s and Arrow’s Paradoxes

Although there already had been occurrences of Arrow’s paradox in the past,
including the 1995 woman’s World Championship, what happened in the 1997
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men’s figure skating European Championships was the extra drop that caused
a flood. Before A. Vlascenko’s performance, the rule’s top finishers were A.
Urmanov first, V. Zagorodniuk second, and P. Candeloro third. Then Vlascenko
performed. The final order-of-finish placed him sixth, confirmed Urmanov’s
first, but put Candeloro in second place and Zagorodniuk in third. The outcry
over this flip-flop was so strident that the President of the International Skating
Union (ISU) finally admitted something must be wrong with the rule in use
and promised it would be fixed. Accordingly, the rules were changed. The ISU
adopted the OBO (“one-by-one”) system in 1998. It is explained in terms of a
real problem.

The Four Continents Figure Skating Championships are annual competitions
with skaters from all the continents save Europe (whence the “Four”). In 2001
they were held in Salt Lake City, Utah. The example discussed comes from the
Men’s “Short Program.” There were twenty-two competitors and nine judges.
The analysis is confined to the six leading finishers. It happens that doing
so gives exactly the same order-of-finish among the six as is obtained with all
twenty-two competitors (it ain’t necessarily so!). Every judge assigns to every
competitor two grades, each ranging between 0 and 6, one “presentation mark”
and one “technical mark.” Their sums determine each judge’s input. The data
concerning the six skaters is given in table 1.

Name J1 J2 J3 J4 J5 J6 J7 J8 J9 Avg.

T. Eldredge 11.3 11.6 11.3 11.4 11.4 11.7 11.4 11.2 11.5 11.42

C. Li 10.8 11.2+ 11.0 10.9 10.6 11.0 10.8 10.9 11.2 10.93

M. Savoie 11.1 10.8+ 11.1 10.8+ 10.5 10.8 10.6 10.5 11.1 10.81

T. Honda 10.3 11.2 10.9 11.0 10.8 10.9+ 10.4 10.3 10.7 10.72

M. Weiss 10.6 11.1 10.6 10.8 10.4 10.9 10.9 10.4 10.9 10.73

Y. Tamura 09.8 10.8 10.1 10.4 11.0 11.6 10.7 10.6 10.8 10.64

Table 1. Scores of competitors given by nine judges (performance plus
technical marks).

Contrary to public belief the sum or the average of the scores given a skater did
not determine a skater’s standing. They were only used as a device to determine
each judge’s rank-order of the competitors.

Name J1 J2 J3 J4 J5 J6 J7 J8 J9

T. Eldredge 1 1 1 1 1 1 1 1 1
C. Li 3 2 3 3 4 3 3 2 2
M. Savoie 2 5 2 4 5 6 5 4 3
T. Honda 5 3 4 2 3 4 6 6 6
M. Weiss 4 4 5 5 6 5 2 5 4
Y. Tamura 6 6 6 6 2 2 4 3 5

Table 2. Judges’ inputs (indicating rank-orders of the six competitors).

When two sums are the same but the presentation mark of one competitor
is higher than the other’s then that competitor is taken to lead the other in
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the judge’s input. This ISU rule breaks all ties in the example; when a tie
occurs a“+” is adjoined next to the number (in table 1) that indicates a higher
presentation mark, so indicates higher in the ranking. The judges’ rank-orders
of the competitors—their inputs to the OBO rule—are given in table 2. Thus,
for example, judge J1 ranked Eldredge first, Savoie second, . . . , and Tamura
last.

To here, the new rule is identical to the old one (for details see [4]). The
innovation was in how the judges’ inputs are amalgamated into a decision. The
OBO system combines two of the oldest and best known voting rules, Llull’s—a
generalization of Condorcet’s known by some as Coleman’s [8]—and Cusanus’s—
best know as Borda’s method. To use what we will call Llull’s and Borda’s rules,
table 3 gives the numbers of judges that prefer one competitor to another for
all pairs of competitors. Thus, for example, Savoie is ranked higher than Weiss
by six judges, so ranked lower by three.

Condorcet was for declaring one competitor ahead of another if a majority
of judges preferred him to the other. But, of course, his paradox may arise. It
does in this example,

Honda ≻S Weiss ≻S Tamura ≻S Honda.

Number Borda
Eldredge Li Savoie Honda Weiss Tamura of wins score

Eldredge – 9 9 9 9 9 5 45
Li 0 – 7 7 8 7 4 29
Savoie 0 2 – 5 6 5 3 18
Honda 0 2 4 – 5 4 1 15
Weiss 0 1 3 4 – 6 1 14
Tamura 0 2 4 5 3 – 1 14

Table 3. Judges’ majority votes in all head-to-head comparisons.

A more general rule than Condorcet’s was proposed in 1299 by Ramon Llull
[16]. Llull’s method : rank the competitors according to their numbers of wins
plus ties. It is a more general rule because a Condorcet-winner is necessarily
a Llull-winner. Eldredge is the Condorcet- and Llull-winner, and Llull’s rule
yields the ranking

Eldredge ≻S Li ≻S Savoie ≻S Honda ≈S Weiss ≈S Tamura.

The first three places are clear, but there is a tie for the next three places.
Eldredge is the Condorcet-winner because he is ranked higher by a majority of
judges in all pair-by-pair comparisons. There is no Condorcet-loser because no
skater is ranked lower by a majority in all pair-by-pair comparisons.

Cusanus (in 1433 [17]) and later Borda (in 1770, published in 1784 [6]) had
an entirely different idea (it is so well-known as Borda’s method that we use this
designation). A competitor C receives k Borda-points if k competitors are below
C in a judge’s rank-order; C’s Borda-score is the sum of his Borda-points over all
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judges; and the Borda-ranking is determined by the competitors’ Borda-scores.
Alternatively, a competitor’s Borda-score is the sum of the votes he receives in
all pair by pair votes. Thus the Borda-scores in table 3 are simply the sums of
votes in the rows, and the Borda-ranking of the six candidates is

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

Borda’s method, however, often denies first place to a Condorcet-winner or last
place to a Condorcet-loser, and that has caused many to be bewitched, bothered
and bewildered (though Borda’s method suffers from much worse defects as will
soon become apparent).

There is an essential difference in the two approaches. Whereas Llull and
Condorcet rely on the candidates’ numbers of wins in all face-to-face confronta-
tions, Cusanus and Borda rely on the candidates’ total numbers of votes in all
face-to-face encounters.

The OBO rule used in skating is this:

• Rank the competitors by their number of wins (thereby giving precedence
to the Llull and Condorcet idea);

• break any ties by using Borda’s rule.

In this case Borda’s rule happens to agree with Llull’s, so the OBO rule ranks
the six skaters as does Borda,

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

This was the official order-of-finish. The OBO rule is also known as Dasgupta-
Maskin’s method [11, 10]. They proposed it with elaborate theoretical argu-
ments, calling it “the fairest vote of all.” In fact it had already been tried, and
discarded.

The OBO rule produces a linear order, so is not subject to Condorcet’s
paradox, but it is (unavoidably) subject to Arrow’s paradox, in this example
viciously. For suppose that the order of the performances had been first Honda,
then Weiss, Tamura, Savoie, Li and Eldredge. After each performance, the
results are announced. Among the first three the judges’ inputs are

Name J1 J2 J3 J4 J5 J6 J7 J8 J9
Honda 2 1 1 1 2 2 3 3 3
Weiss 1 2 2 2 3 3 1 2 1
Tamura 3 3 3 3 1 1 2 1 2

This yields the majority votes, numbers of wins and Borda-scores:

Number Borda-
Honda Weiss Tamura of wins score

Honda – 5 4 1 9
Weiss 4 – 6 1 10
Tamura 5 3 – 1 8
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so the result
Weiss ≻S Honda ≻S Tamura.

For the first four skaters the judges’ inputs are

Name J1 J2 J3 J4 J5 J6 J7 J8 J9
M. Savoie 1 3 1 2 3 4 3 2 1
T. Honda 3 1 2 1 2 2 4 4 4
M. Weiss 2 2 3 3 4 3 1 3 2
Y. Tamura 4 4 4 4 1 1 2 1 3

yielding

Number Borda-
Savoie Honda Weiss Tamura of wins score

Savoie – 5 6 5 3 16
Honda 4 – 5 4 1 13
Weiss 3 4 – 6 1 12
Tamura 4 5 3 – 1 13

so the result
Savoie ≻S Weiss ≈S Honda ≻S Tamura.

Before Savoie’s performance Weiss led Honda, after they were tied.
Compare this with the final standings among all six skaters after the perfor-

mances of Eldredge and Li (already computed):

Eldredge ≻S Li ≻S Savoie ≻S Honda ≻S Weiss ≈S Tamura.

The last three did not perform, and yet Honda—who had once been tied with
Weiss and once behind him—is now ahead of him, and Weiss—who had been
ahead of Tamura—is now tied with him. This chaotic behavior of repeated
flip-flops is completely unacceptable to spectators, competitors, and of course
common sense. It is inherent to the OBO and Borda methods.

Strategic Manipulation

The OBO rule was abandoned by the ISU following the big scandal of the 2002
winter Olympics (also held in Salt Lake City). In the pairs figure skating com-
petition the gold medal went to a Russian pair, the silver to a Canadian pair.
The vast majority of the public, and many experts as well, were convinced that
the gold should have gone to the Canadians, the silver to the Russians. A
French judge confessed having favored the Russian over the Canadian pair, say-
ing she had yielded to pressure from her hierarchy, only to deny it later. That
judges manipulate their inputs—reporting grades not in keeping with their pro-
fessional opinions—is known. A recent statistical analysis concluded: “[Judges]
. . . appear to engage in bloc judging or vote trading. A skater whose country is
not represented on the judging panel is at a serious disadvantage. The data sug-
gests that countries are divided into two blocs, with the United States, Canada,
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Germany and Italy on one side and Russia, the Ukraine, France and Poland on
the other” [24]. Once again the skating world entered into fierce fights over how
to express and how to amalgamate the opinions of judges. Finally—thankfully—
it abandoned the idea that judges’ inputs should be rank-orders. In so doing,
they joined the the growing number of competitions where the rules have judges
assign number grades to candidates, and the candidates’ average grades deter-
mine the orders-of-finish (including diving, wine tasting, gymnastics, pianists,
restaurants, and many others).

Such rules or aggregation functions are called by some point-summing meth-
ods by others range voting. The judges’ scores in the 2001 Four Continents
Figure Skating Championships provides an immediate example. Judges’ inputs
are now the scores themselves. They range from a low of 0 to a high of 12. The
candidates’ average scores are given in table 1 and yield an order-of-finish that
differs from that of the Borda and OBO rules:

Eldredge ≻S Li ≻S Savoie ≻S Weiss ≻S Honda ≻S Tamura.

It is at once evident that judges can easily manipulate the outcome by as-
signing their grades strategically. Every judge can both increase and decrease
the final score of every competitor by increasing or decreasing the score given
that competitor.

In this case it is particularly tempting for judges to assign scores strategically.
Suppose they reported the grades they believed were merited. Take, for example,
judge J2. She can change her scores (as indicated in the top part of table 4,
e.g., increasing that of Eldredge from 11.6 to 12.0 so that his average goes
from 11.42 to 11.47) so that the final order-of-finish is exactly the one she
believes is merited. Moreover, the new scores she gives agree with the order of
merit she believes is correct. But judge J2 is not unique in being able to do
this: Every single judge can alone manipulate to achieve precisely the order-of-
finish he prefers by changing his scores. And each can do it while maintaining
the order in which they placed them initially (given in table 2). Results are
announced following every performance, so judges accumulate information as
the competition progresses and may obtain insights as to how best manipulate.

Eldredge Li Savoie Honda Weiss Tamura
1st 2nd 5th 3rd 4th 6th
11.6 11.2+ 10.8+ 11.2 11.1 10.8

J2: ↓ ↓ ↓ ↓ ↓ ↓
12.0 11.9 10.2+ 11.8 11.4 10.2

11.42 10.93 10.81 10.72 10.73 10.64
Averages: ↓ ↓ ↓ ↓ ↓ ↓

11.47 11.01 10.74 10.79 10.77 10.58

Table 4. Judge J2’s manipulations that change the order-of-finish to what
she wishes (given in the first row). Note that her new grades define the
same order.
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This analysis shows how extremely sensitive point-summing methods are to
strategic manipulation; in fact, they are more open to manipulation than any
other method of voting. This is important because the reason for voting is to
arrive at the true collective decision of a society or jury and this can occur only
if each voter’s input is her true opinion, not some input chosen strategically in
the attempt to achieve her ends.

Meaningfulness

Using a point-summing rule raises deep and important questions: Is it at all
meaningful to sum or average the scores given a competitor? What scores?
E.g., if finite in number and they go from a low of 0 to a high of 20, should they
be evenly spaced or not? Why and under what conditions is it justified to sum
them?

How to construct a scale is a science in itself. “When measuring some at-
tribute of a class of objects or events, we associate numbers . . . with the objects
in such a way that the properties of the attribute are faithfully represented as
numerical properties” ([19], p. 1). Given a faithful representation, the type of
scale dictates the meaningfulness of the operations by which measurements may
be analyzed. Pain, for example, is measured on an eleven point ordinal scale
going from 0 to 10: sums and averages are meaningless. Temperature (Celsius
or Fahrenheit) is an interval scale because equal intervals have the same signif-
icance: sums and averages are meaningful but multiplication is not for there is
no absolute 0. Ounces and inches are ratio scales: they are interval scales where
0 has an absolute sense and multiplication is meaningful.

Since a point-summing method sums candidates’ scores they must—to be
meaningful—be drawn from an interval scale. Although in many applications
such as figure skating the numbers of the scale have commonly understood mean-
ings, an increase of one base unit invariably becomes more difficult to obtain
the higher is the score, implying the scores do not constitute an interval scale,
so that sums and averages are meaningless. But in the context of elections the
scores of sum-scoring methods are not even defined, they are given no common
meaning. Range-voting has an infinite scale [0, 100]: but one voter’s 71 may
mean something entirely different from another’s 71. Approval voting—a voter
assigns a 1 (“approves”) or a 0 to each candidate and the candidates are ranked
according to their total numbers of 1’s—has a finite scale of two scores: but
one voter’s 1 may mean something entirely different from another’s 1. Both
methods suggest comparisons since the scores bear no absolute meanings—no
meanings whatsoever other than that they will be summed—so both invite
strategic voting and both are open to Arrow’s paradox (e.g., if some voter’s
favorite candidate withdraws he may decide to increase the score of some other
candidate(s) causing a change in the order-of-finish among the candidates that
remain).

A poll held in the context of the French presidential election of 2007 shows
the extent of the difference in meanings in dichotomous responses. The question
on the right invokes a comparison, that on the left an evaluation: the results
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are completely different. When approval voting is used some voters may well
have the first question in mind, others the second: nothing justifies the idea of
adding such votes.

Question: Question:
Would each of the following Do you personally wish each of the

candidates be a good following candidates to win the
President of France? presidential election?

Yes No Yes No

Bayrou 60% 36% 33% 48%
Sarkozy 59% 38% 29% 56%
Royal 49% 48% 36% 49%
Le Pen 12% 84%

Table 5. Polling results, March 20 and 22, 2007 (Bva), French presidential
election of 2007.

3 A More Realistic Model

Postulate a finite number of competitors or candidates C = {A, . . . , I, . . . , Z}; a
finite number of judges or voters J = {1, . . . , j, . . . , n}; and a common language
of grades Λ = {α, β, γ, . . .}. The grades may be any strictly ordered words,
phrases, levels or categories. Any two levels may be compared, α 6= β implies
either α ≺ β or α ≻ β, and transitivity holds, α ≻ β and β ≻ γ imply α ≻ γ. A
language may be finite or a subset of points of an interval of the real line.

In practice (e.g., piano competitions, figure skating, gymnastics, diving, wine
competitions), common languages of grades are invented to suit the purpose,
and are carefully defined and explained. Their words are clearly understood,
much as the words of an ordinary language, or the measurements of physics.
But they almost surely do not constitute interval scales (for a detailed analysis
of this point see [4] where what it takes for the scale to be interval is explained).
The grades or words are “absolute” in the sense that every judge uses them
to measure the merit of each competitor independently. They are “common”
in the sense that judges assign them with respect to a set of benchmarks that
constitute a shared scale of evaluation. By way of contrast, ranking competitors
is only relative, it bars any scale of evaluation and ignores any sense of shared
benchmarks.

A problem is specified by its inputs, a profile Φ = Φ(C,J ): it is an m by n
matrix of the grades Φ(I, j) ∈ Λ assigned by each of the n judges j ∈ J to each
of the m competitors I ∈ C,

Φ =












...
... · · ·

...
...

α1 α2 · · · αn−1 αn

...
... · · ·

...
...

β1 β2 · · · βn−1 βn

...
... · · ·

...
...












.
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With this formulation of the inputs—the assignment of grades to competitors—
voters specify rank-orders determined by the grades (that may be strict if the
scale of grades is fine enough), so in this sense the inputs include those of
the traditional model. Voters are able to input detailed expressions of their
preferences that are at once simple and cognitively natural (as experience has
proven).

Suppose competitor A is assigned the grades (α1, . . . , αn) and competitor B
the grades (β1, . . . , βn). A method of ranking is a non-symmetric binary relation
�S that compares any two competitors whose grades belong to some profile. By
definition A �S B and B �S A means A ≈S B; and A ≻S B if A �S B and
not A ≈S B. So �S is a complete binary relation.

What properties should any reasonable method of ranking �S possess?
(1) Neutrality: A �S B for the profile Φ implies A �S B for the profile σΦ

for any permutation σ of the competitors (or rows). That is, the competitors’
ranks do not depend on where their grades are given in the inputs.

(2) Anonymity: A �S B for the profile Φ implies A �S B for the profile Φσ
for any permutation σ of the voters (or columns). That is, no judge has more
weight than another judge in determining the ranks of competitors. When a
rule satisfies these first two properties it is called impartial.

(3) Transitivity: A �S B and B �S C implies A �S C. That is, Condorcet’s
paradox cannot occur.

(4) Independence of irrelevant alternatives in ranking (IIAR): When A �S B
for the profile Φ, A �S B for any profile Φ′ obtained by eliminating or adjoining
other competitors (or rows). That is, Arrow’s paradox cannot occur.

These four are the rock-bottom necessities. Together they severely restrict
the choice of a method of ranking.

A method of ranking respects grades if the rank-order between them
depends only on their sets of grades; in particular, when two com-
petitors A and B have the same set of grades, they are tied.

With such methods the rank-orders induced by the voters’ grades must be for-
gotten, only the sets of grades count, not which voter assigned which grade.
Said differently, if two voters switch the grades they give a competitor this has
no effect on the electorate’s ranking of the competitors.

The following theorem shows that the new paradigm—voters evaluate compe-
titors—must replace the old paradigm—voters compare competitors.

Theorem 1 A method of ranking is impartial, transitive and independent of ir-
relevant alternatives in ranking if and only if it is transitive and respects grades.

Proof. Assume a method satisfies the properties. IIAR implies that to compare
two competitors it suffices to compare them alone.

Suppose A is assigned the grades (α1, α2, . . . , αn) and B is assigned a per-
mutation of them (ασ1, ασ2, . . . , ασn). Then, it is shown, the properties imply
A and B must be tied in society’s ranking.
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Let

Φ1 =

(
α1 α2 · · · ασ1 · · · αn

ασ1 α2 · · · α1 · · · αn

)

,

where the grades of A are in the first row and those of some other competitor
A′ are in the second row. Suppose A �S A′. Permute the grades of the two
judges 1 and σ1,

Φ1∗ =

(
ασ1 α2 · · · α1 · · · αn

α1 α2 · · · ασ1 · · · αn

)

.

By anonymity this changes nothing. So the first row of Φ1∗ ranks at least
as high as the second: but by neutrality A′ �S A, so that A ≈S A′. Thus
(α1, α2, . . . , αn) ≈S (ασ1, α2, . . . , αn) and the second list agrees with B’s in the
first place.

Now let

Φ2 =

(
ασ1 α2 · · · ασ2 · · · αn

ασ1 ασ2 · · · α2 · · · αn

)

,

and permute judges 2 and σ2 to conclude, as in the first step, together with tran-
sitivity, that (α1, α2, . . . , αn) ≈S (ασ1, ασ2, . . . , αn), where the second list agrees
with B’s in the first two places. Continuing, it at most n steps, (α1, α2, . . . , αn) ≈S

(ασ1, ασ2, . . . , ασn), showing that two competitors with the same set of grades
are tied.

Consider any two lists α and β. Each is equivalent to a unique representation
in which the the grades are listed from the highest to the lowest. It suffices to
compare them to determine which leads the other, so grades are respected.

The converse is immediate.
This simple theorem is essential: it says that if Arrow’s and Condorcet’s

paradoxes are to be avoided, then the traditional model and paradigm must be
abandoned. Who gave what grade cannot be taken into account—only the sets
of grades themselves may be taken into account. Not only do rank-order inputs
not permit voters to express themselves as they wish, but they are the culprits
that lead to all of the impossibilities and incompatibilities.

This suggests that what is needed is a function that transforms the grades
given any competitor into a final grade, the order among the final grades de-
termining the order-of-finish of the competitors. The usual practice, as was
mentioned, is to use the average grade, though sometimes the top and bottom
grades, or top two and bottom two grades, are omitted. Such rules present an
immediate difficulty because two competitors with different sets of grades may
have the same average, and so are tied.

In any case, such functions should enjoy at least two other properties. First,
if the voters all assign the same grade to a competitor it should be his final
grade. Second, in comparing two ordered sets of grades, when each in the first
set is at least as high as the corresponding grade in the second set, the final
grade given the first should be no lower than that given the second; moreover,
when each in the first set is strictly higher than the corresponding grade in the
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second set, the final grade given the first should be strictly higher than that
given the second.

Accordingly, a function
f : Λn → Λ

that transforms grades given a competitor into a final grade is an aggregation
function if it satisfies three properties:

• Anonymity: f(. . . , α, . . . , β, . . .) = f(. . . , β, . . . , α, . . .);

• Unanimity: f(α, α, . . . , α) = α; and

• Monotonicity:

αj � βj for all j ⇒ f(α1, . . . , αn) � f(β1, . . . , βn)

and
αj ≺ βj for all j ⇒ f(α1, . . . , αn) ≺ f(β1, . . . , βn).

An aggregation function serves two separate though related purposes: (1)
It assigns a final grade to each competitor and (2) it determines the order-of-
finish of all competitors. They are analyzed in both their uses, as, respectively,
social-grading functions and social-ranking functions.

A language of grades Λ is usually parameterized as a bounded interval of the
nonnegative rational or real numbers [0, R]. Obvious examples of aggregation
functions are the arithmetic mean or average, any other means such as the
geometric or harmonic mean, and the kth order function fk that is the kth
highest grade (for k = 1, 2, . . . , n). Since small changes in the parametrization
or the input grades should naturally imply small changes in the outputs or final
grades it is natural to assume that an aggregation function is continuous. This
assumption is sometimes necessary to establish the characterizations that follow,
but not always. However, the characterizing properties hold for arbitrary finite
or infinite common languages of grades.

The question that presents itself is: Which aggregation function(s) of the
grades of competitors should be used to grade and which to rank?

4 How Best to Evaluate: Majority Judgment

A method of voting must meet six essential demands:

• Avoid Condorcet’s paradox,

• Avoid Arrow’s paradox,

• Elicit honest voting,

• Be meaningful,

• Resist manipulation, and

• Heed the majority’s will.

One method best meets these demands, majority judgement.
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Description

Suppose there are n judges or voters who assign competitors grades. The kth
order function fk is the aggregation function social-grading function whose value
is the kth highest grade. When the set of grades r of a competitor are ordered
from highest to lowest,

r = (r1 � r2 � · · · � rn) ⇒ fk(r) = rk,

a competitor’s majority-grade fmaj is his middlemost or median grade when n
is odd, his lower-middlemost when n is even:

fmaj =

{

f
n+1

2 if n is odd,

f
n+2

2 if n is even.

Interpret the judges’ scores as the grades of a finite common language (going
from 0 to 12 in tenths). Ordering each competitor’s grades from highest to lowest
gives table 5.

f1 f2 f3 f4 fmaj f6 f7 f8 f9

T. Eldredge 11.7 11.6 11.5 11.4 11.4 11.4 11.3 11.3 11.2
C. Li 11.2 11.2 11.0 11.0 10.9 10.9 10.8 10.8 10.6
M. Savoie 11.1 11.1 11.1 10.8 10.8 10.8 10.6 10.5 10.5
T. Honda 11.2 11.0 10.9 10.9 10.8 10.7 10.4 10.3 10.3
M. Weiss 11.1 10.9 10.9 10.9 10.8 10.6 10.6 10.4 10.4
Y. Tamura 11.6 11.0 10.8 10.8 10.7 10.6 10.4 10.1 09.8

Table 5. Competitors’ scores ordered from highest to lowest (identities of
judges forgotten). Majority-grade italicized.

The order-of-finish of the competitors is determined by their majority-grades.
In this case there is a three-way tie for third place. So a finer distinction is
needed. If two competitors such as Savoie and Honda have the same majority-
grade, then the order between them must depend on their sets of grades exclud-
ing that one common grade. So it is dropped, and the majority-grades of the
remaining eight grades are determined. In this case Savoie’s is 10.8, Honda’s is
10.7: Savoie’s is higher, so he leads Honda by majority judgment.

In general, suppose a competitor’s grades are

r1 � r2 � · · · � rn.

Her majority-value is an ordered sequence of these grades. The first in the
sequence is her majority-grade; the second is the majority-grade of her grades
when her (first) majority-grade has been dropped (it is her “second majority-
grade”); the third is the majority-grade of her grades when her first two majority-
grades have been dropped; and so on. Thus, when there is an odd number of
voters n = 2t− 1, a competitor’s majority-value is the sequence that begins at
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the middle, rt, and fans out alternately from the center starting from below, as
indicated here

r1 � · · · � rt−2 � rt−1 � rt � rt+1 � rt+2 � · · · � r2t−1

5th 3rd 1st 2nd 4th

so that it is
−→r = (rt, rt+1, rt−1, rt+2, rt−2, . . . , r1, r2t−1).

When there is an even number of voters n = 2t−2, the majority-value begins at
the lower middle and fans out alternatively from the center starting from above,

−→r = (rt, rt−1, rt+1, rt−2, rt+2, . . . , r2t−2, r1).

If the majority-values of two competitors A and B are respectively −→r A and
−→r B, the majority-ranking ≻maj is defined by

A ≻maj B when −→r A ≻lexi
−→r B ,

where ≻lexi means lexicographically greater, i.e., the first grade where −→r A and
−→r B differ A’s is higher. The majority-ranking in the skating competition is thus

Eldredge ≻maj Li ≻maj Savoie ≻maj Honda ≻maj Weiss ≻maj Tamura.

There are no ties. There can be no tie unless two competitors have precisely
the same set of grades.

A key point should be noted. Consider any judge or set of judges who
assigned a competitor a grade higher than his majority-grade; e.g., Honda’s
majority-grade is 10.8 and four judges—J2, J3, J4, J6—believed he merited a
higher grade: neither one of them nor all of them acting together can do anything
to raising his majority-grade by changing the grades they assigned. Symmet-
rically, four judges—J1, J7, J8, J9—believed he merited a lower grade: neither
one of them nor all of them acting together can do anything to lowering his
majority-grade. The best strategy of a judge who wishes that a competitor be
awarded a particular majority-grade is to assign him that grade: honesty is the
best policy.

The Case of Large Electorates

Majority judgment has been tested in several elections [4, 5]. In an experiment
conducted on the Web within the last six weeks of the United States presi-
dential election of 2008, members of INFORMS were invited to vote using the
ballot given in table 6. Rather than numbers (which have no meaning unless
carefully defined), voters were posed a solemn question asking them to evaluate
candidates in grades from a scale of six commonly understood words.

Election of the President of the United States of America 2008

To be the President of the United States of America,
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having taken into account all relevant considerations,
I judge, in conscience, that this candidate would be:

Excell- Very Good Accept- Poor To No

ent Good able Reject Opinion

Michael R. Bloomberg, Ind.

Hillary R. Clinton, Dem.

John R. Edwards, Dem.

Michael D. Huckabee, Rep.

John S. McCain, Rep.

Barack H. Obama, Dem.

Colin L. Powell, Ind.

W. Mitt Romney, Rep.

You must check one single grade or “No opinion” in the line of each candidate.

“No opinion” is counted as To Reject.

Table 6. Ballot, U.S. presidential election, INFORMS experiment, con-
ducted September-early October, 2008.

When there are many voters and few grades it is essentially certain that a
candidate’s middlemost grade will be repeated many times. Thus, a majority
of voters assign a candidate at least her majority-grade, and also a majority of
voters assign the candidate at most her majority-grade.

Excellent Very Good Good Acceptable Poor to Reject

Obama 35.9% 32.1% 12.2% 08.4% 07.6% 03.8%
Clinton 16.0% 29.0% 21.4% 16.8% 11.5% 05.3%
Powell 10.7% 22.1% 26.0% 26.7% 09.2% 22.1%
Bloomberg 03.1% 14.5% 24.4% 26.7% 09.2% 22.1%
Edwards 01.5% 13.0% 22.1% 30.5% 18.3% 14.5%
McCain 03.1% 07.6% 23.7% 21.4% 30.5% 13.7%
Romney 00.8% 07.6% 10.7% 27.5% 30.5% 22.9%
Huckabee 03.8% 03.8% 06.1% 19.8% 19.1% 47.3%

Table 7. Results, U.S. presidential election, INFORMS experiment, con-
ducted September-early October, 2008.

The results are given in table 7. For example, Clinton’s majority-grade is Good :
16.0%+ 29.0%+ 21.4% = 66.4% assign her at least Good and 21.4%+ 16.8%+
11.5%+ 5.3% = 55.0% assign her at most Good.

The procedure for finding the majority-ranking when there are many voters
does not necessitate finding the candidates’ majority-values. A simpler proce-
dure determines the majority-ranking. Suppose a candidate’s majority-grade
is α and that p% of his grades are higher than α and q% are lower. Then
his majority-gauge is (p, α±, q), where p > q implies α is endowed with a
+, and otherwise it is endowed with a −. Thus Clinton’s majority-gauge is
(45.0%,Good+,33.6%). The majority-gauges determine the rank-order of the
candidates. Naturally, α+ ranks higher than α−, which suffices to rank-order
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all the candidates except Bloomberg and Edwards who both have the majority-
grade Acceptable+. If two candidates have an α+, then the one with the larger
p ranks higher; and if two candidates have an α−, then the one with the higher
q ranks lower. So Bloomberg with p = 42.0% ranks higher than Edwards with
p = 36.6%.

p α± q
Barack H. Obama 35.9% Very Good+ 32.0%
Hillary R. Clinton 45.0% Good+ 33.6%
Colin L. Powell 32.8% Good− 41.2%
Michael R. Bloomberg 42.0% Acceptable+ 31.3%
John R. Edwards 36.6% Acceptable+ 32.8%
John S. McCain 33.4% Acceptable− 44.2%
W. Milt Romney 46.6% Poor+ 22.9%
Michael D. Huckabee 33.5% Poor− 47.3%

Table 8. Majority-gauges and majority-ranking, U.S. presidential election,
INFORMS experiment, conducted September-early October, 2008.

Notice that voters who believed Clinton merited a higher majority-grade
than Good—and 45.0% were of that persuasion—could do nothing alone or in
concert to raise her majority-gauge. Symmetrically, those who believed she
merited a lower majority-grade—33.6% of them—could do nothing alone or in
concert to lower her majority-gauge. The best strategy of a voter who wishes
that a candidate be awarded a particular majority-grade is to assign him that
grade: honesty is the best policy.

5 Majority Judgment: Theory

When an aggregation function is used to amalgamate the grades voters or judges
assign competitors, and the grades determine the order-of-finish of the competi-
tors, the Condorcet and Arrow paradoxes cannot occur—transitivity is assured
and there can be no flip-flops—as has been proven. Thus two of the six essential
demands are necessarily met.

Elicits Honesty

Assigning grades to competitors is a game played by voters or judges. As early as
1907 Sir Francis Galton pointed out that when a jury is to decide on an amount
of money—e.g., to allocate to a project, or in assessing damages in an insurance
claim—“that conclusion is clearly not the average of all the estimates, which
would give a voting power to ‘cranks’ in proportion to their crankiness” [14]. He
realized that point-summing methods do not elicit honesty, (equivalently, that
one extreme assignment of points or one extreme money estimate can completely
alter the collective outcome).
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The strategy a voter adopts depends on her personal likes and dislikes.
Some voters and judges may care most about assigning the grades they be-
lieve are truly merited. Some may care most about the final grades assigned
each competitor—and are ready to adjust their assignments so as to attain that
end. Others may not care at all about the final grades but only about the order-
of-finish of the competitors. Still others may think that only the identity of the
winner is of importance. Some few may be bought or bribed. Some other few
may simply be completely incompetent judges who assign unwarranted grades.
The final grade a voter wishes a competitor to be awarded, the final grade he be-
lieves the competitor merits, and the grade he gives may all be different. Some
juries and electorates almost certainly include judges and voters who honestly
wish grades to be assigned according to merit, and in certain cases it is perfectly
reasonable to assume that all the players share this intent. Nevertheless, a very
complex set of unknown wishes, opinions, expectations and anticipations—the
voters’ or judges’ utility functions—determines the grades they give.

How is a social-grading function to elicit honesty? By making it impossible or
difficult for individual voters to change the outcome by using devious strategies.
Clearly, no social grading function can prevent all voters from lowering the final
grade or all voters from raising the final grade.

Suppose that a competitor’s final grade is r∗. A social-grading func-
tion is strategy-proof-in-grading if, when a voter’s input grade is
higher than the final grade, r+ > r∗, any change in his input can
only lead to a lower final grade; and if, when a voter’s input grade
is lower than the final grade, r− < r∗, any change in his input can
only lead to a higher final grade.

It is easy to see that the majority judgement is not only strategy-proof-in-
grading but also group strategy-proof-in-grading in that a group whose inputs are
higher (or lower) than the final grade can only lower (raise) the final grade. Thus,
one or all of those who gave Clinton a grade above her majority-grade (Good)
cannot change her majority-grade or-gauge except to lower it (presumably not
their intention). Similarly, one or all of those who gave her a grade below her
majority-grade cannot change her majority-grade or -gauge except to raise it
(presumably not their intention).

Assume the more a final grade deviates from the grade a voter wishes it to
be the less she likes it (“single-peaked preferences over grades”), so that the
voter’s utility function is uj(r

∗, r, f, C,Λ) = −|r∗j − f(r1, . . . , rn)|. Then it is a
dominant strategy for her to assign the grade she believes is merited: that is, it
is at least as good as any other strategy and it is strictly better than others in
some cases.

The use of a strategy-proof-in-grading function permits an “honest-grade-
seeking” judge—one whose objective is a final-grade as close as possible to the
grade he believes should be assigned—to discard all strategic considerations
and to concentrate on the task of deciding what he believes is the true grade;
moreover, he has no need to pay attention to his preference between two grades
when one is lower than the true grade and the other higher.
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Theorem 2 The unique strategy-proof-in-grading social-grading functions are
the order functions (for a finite or an infinite number of grades).

Proof. Let Λ = [0, R] and f(r1, . . . , rn) = r. Unanimity and monotonicity
imply the value of r must fall between the worst and best grades, max rj ≥ r ≥
min rj .

Suppose the judges assigned the grades, r1 ≥ . . . ≥ rn. Then

f(r1, . . . , rn) = rk for some k,

as will be shown.
To begin, notice that if f(r1, . . . , rn) = r,

rj > r implies f(r1, . . . , rj−1, r
∗
j , rj+1, . . . , rn) = r for any r∗j ≥ r.

This is true for two separate reasons. First, when rj is increased to a higher
grade r∗j the value of f cannot increase since f is strategy-proof-in-grading.
Second, when rj is decreased to a lower grade r∗j ≥ r, the value of f can either
remain the same or decrease. But if it decreased, then increasing the grade from
that point would again contradict the strategy-proofness of f .

Similarly, and for the same reasons, when f(r1, . . . , rn) = r,

rj < r implies f(r1, . . . , rj−1, r
∗
j , rj+1, . . . , rn) = r for any r∗j ≤ r.

Define r = (r1, . . . , rn) with r1 ≥ . . . ≥ rn. If f(r) = r = R, then r1 =
maxj rj = R, so k = 1. Similarly, f(r) = r = 0 implies that rn = minj rj = 0
and k = n.

So, it may be supposed R > f(r) = r > 0. Assume, now, that r 6= rj for
all j ∈ J : this leads to a contradiction. Given that r1 ≥ . . . ≥ rn, it must be
that rj > r > rj+1 for some j. Therefore, the previous deductions imply that
for any grades r+ and r− satisfying r+ > r > r−,

f(

j
︷ ︸︸ ︷

r+, . . . , r+,

n−j
︷ ︸︸ ︷
r, . . . , r) = r and f(

j
︷ ︸︸ ︷
r, . . . , r,

n−j
︷ ︸︸ ︷

r−, . . . , r−) = r.

But by monotonicity, the value of f on the left is strictly greater than the value
of f on the right, a contradiction, proving r = rk for some k ∈ J .

Putting the two parts of the argument together establishes:

f(r1, . . . , rn) = rk when r1 ≥ . . . ≥ rn

implies

f(s1 . . . , sn) = rk when s1 ≥ . . . ≥ sk−1 ≥ sk = rk ≥ sk+1 ≥ . . . ≥ sn ;

that is, so long as sk = rk and there are k − 1 values of s at least as big as rk
and n− k values of s at most as big as rk, the value of f does not change: it is
the kth biggest of these arguments when its value is rk.
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It must still be shown that k is independent of the input r. Define g(r) = k
if f(r) = rk on the open set R > r1 > · · · > rn > 0. The continuity of
f implies the continuity of g on this set. Since g takes only integer values,
it must be a constant on this set. So f(r) = rk for the same constant k on
R > r1 > · · · > rn > 0, hence everywhere by the continuity of f , completing
the proof when the language is infinite.

When the language is finite, identify the lowest grade with 0, the highest
grade with R.

By unanimity, f(R, ..., R) = R, and f(0, ..., 0) = 0. Since the value of
f(r1, . . . , rn) must be one of its arguments, monotonicity implies that there is
some k such that

f(

k−1
︷ ︸︸ ︷

R, . . . , R,R,

n−k
︷ ︸︸ ︷

0, . . . , 0) = R and f(

k−1
︷ ︸︸ ︷

R, . . . , R, 0,

n−k
︷ ︸︸ ︷

0, . . . , 0) = 0.

This k is unique. If the language contains only two grades, the proof ends here.
Suppose the language contains at least 3 grades. Let R > rk > 0 and

f(

k−1
︷ ︸︸ ︷

R, . . . , R, rk,

n−k
︷ ︸︸ ︷

0, . . . , 0) = r.

It will be shown that r = rk. Since f ’s values are one of its arguments, either
r = 0, rk or R. If r = R, voter k who believes that the final grade should
be lower can decrease the final-grade to the lowest grade (or 0) by lowering his
grade to the lowest grade (or 0), violating strategy-proofness. Similarly, if r = 0,
voter k can increase the final-grade from the lowest (0) to the highest (or R).
Thus, rk = r. Therefore, as has already been seen,

f(s1 . . . , sn) = rk when s1 ≥ . . . ≥ sk−1 ≥ sk = rk ≥ sk+1 ≥ . . . ≥ sn.

Thus since k is defined uniquely it does not depend on the input r, completing
the proof.

A competitor who receives a higher majority-grade than another is naturally
ranked higher in the order of the candidates or alternatives than the other:
grades imply orders. But when an important component of the voters’ utilities
are the orders of finish and not merely the final grades of competitors, their
strategic behavior may well alter.

Given a profile of grades (rIj ) where r
I
j ∈ [0, R], let the vector of final grades

be rI . Suppose the final grades of some two competitors A,B ∈ C are rA < rB ,
but that some voter j is of the opposite conviction, rAj > rBj . She would like
either to increase A’s final grade, or decrease B’s final grade, or better yet do
both.

When the final grade of A is lower than that of B, rA < rB , and
any voter j is of the opposite conviction, rAj > rBj , a social-ranking
function is strategy-proof-in-ranking if he can neither decrease B’s
final grade nor increase A’s final grade.
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Consider a voter j whose utility function uj depends only on the ultimate
ranking of the competitors, that is, only on the order of the final grades. Then if
the aggregation function is strategy-proof-in-ranking, it is a dominant strategy
for voter j to assign grades according to his convictions since it serves no earthly
purpose to do otherwise.

Theorem 3 There exists no social-ranking function that is strategy-proof-in-
ranking.

It is an immediate consequence of the next theorem. But the impossibility
of perfection does not deny a search for the best possible.

A social-ranking function is partially strategy-proof-in-ranking when
rA < rB and any voter j is of the opposite persuasion, rAj > rBj ,
then if he can decrease B’s final grade he cannot increase A’s final
grade and if he can increase A’s final grade he cannot decrease B’s
final grade.

To see that the majority-gauge is partially strategy-proof-in-ranking con-
sider the data of the INFORMS experiment (table 8). Obama with a majority-
gauge of (35.9%,Very Good+, 32.0%) leads Clinton whose majority-gauge is
45.0%,Good+, 33.6%). How could a voter who prefers Clinton to Obama manip-
ulate the outcome? Suppose she could increase Clinton’s majority-gauge. Then
she gave to Clinton at most a Good, so to Obama a lower grade, implying she
can do nothing to decrease Obama’s majority-gauge. If, on the other hand, she
could decrease Obama’s majority-gauge, then she gave Obama at least a Very
Good, so to Clinton a higher grade, implying she can do nothing to increase
Clinton’s majority-gauge.

Theorem 4 The unique social-ranking functions that are partially strategy-
proof-in-ranking are the order functions.

Proof. Suppose f is a partially strategy-proof-in ranking. It is first shown that
this implies f is strategy-proof-in grading.

Suppose rA1 > rA2 > . . . > rAn and that rAj > rA for some voter j. Take B’s

grades to all be different and in the open interval (rA, rAj ):

rAj > rBj > rB1 > . . . > rBj−1 > rBj+1 > . . . > rBn > rA.

Then since all of B’s grades are higher than rA, so is B’s final grade, rB > rA.
Now suppose judge j reduces B’s grade to any value r̂Bj in the open interval

(rA, rBn ). Then

(rBj , rB1 , . . . , rBj−1, rBj+1, . . . , rBn−1, rBn ) >
(rB1 , rB2 , . . . , rBj+1, rBj+2, . . . , rBn , r̂Bj ),

with a strict inequality holding between every pair of corresponding components.
So monotonicity implies the final grade determined by the grades on the top is
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strictly higher than that determined by the grades on the bottom. Thus judge
j is able to reduce B’s final grade. Therefore, by partial strategy-proofness, he
cannot increase A’s final grade. But then any voter who gave A a higher grade
than rAj cannot increase the final grade as well as voter j.

A completely symmetric argument shows that if rAj < rA for some voter j
then he cannot decrease the final grade, nor can any voter who gave a grade
lower than rAj .

Together, these last two statements show that f is strategy-proof-in-grading.
So, by theorem 2, f must be an order function.

Conversely, let f = fk be the kth-order function and consider the grades of
two candidates A and B

rA1 ≥ . . . ≥ rAk = rA ≥ . . . ≥ rAn

and
rB(1) ≥ . . . ≥ rB(k) = rB ≥ . . . ≥ rB(n),

where
{
(1), . . . , (n)

}
is a permutation of {1, . . . , n}. Suppose rA < rB and

rAj > rBj where j = (i). Judge j would like to increase A’s final grade or

decrease B’s final grade. If he can increase A’s final grade then (since f = fk)
rAj ≤ rA < rB, so that rB(i) < rB , implying he cannot decrease B’s final grade.

Symmetrically, if he can decrease B’s final grade then rB(i) ≥ rB > rA, so that

rAj > rA, implying he cannot increase A’s final grade. Thus fk is partially
strategy-proof-in-ranking, completing the proof.

Notice that theorem 4 proves theorem 3: since the only partially strategy-
proof-in-ranking functions are the order functions and none of them is strategy-
proof-in-ranking there can be no such functions.

In elections with many voters (say in the hundreds and above) the majority-
gauges (p, α±, q) of the candidates almost always determine the majority-ranking
since ties among them almost never occur. Observe that it too is partially
strategy-proof-in-ranking.

The same argument shows that the order functions are the only social-
ranking functions that are group partially strategy-proof-in ranking: if a group
acting together can increase (respectively, decrease) some competitor’s final
grade then they cannot decrease (increase) the final grade of a competitor to
whom they gave a lower (a higher) grade.

Consider, by way of a practical illustration, how the judges might try to
manipulate the outcome to obtain what they believe is a better order-of-finish
by falsifying their grades in the skating competition (see tables 1, 2 and 5).
Assume the grades they gave are honest, and that their utility functions on the
order-of-finish is lexicographic: what matters most to each judge is the winner,
next the second place skater, and so on.

The effective possible manipulations of the judges are:

• J1 would like Savoie in 2nd place, Li in 3rd. He gave Savoie (with majority-
grade 10.8) an 11.1: raising Savoie’s grade accomplishes nothing. He gave
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Li (with majority-grade 10.9) a 10.8: lowering Li’s grade accomplishes
nothing. J1 would like Weiss in 4th place, Honda in 5th. He cannot lower
Honda below anyone. He can place Weiss in 4th place by increasing his
grade to 10.7; but if he increased it to 10.8, Weiss would leap ahead of
Savoie, not at all his intention.

• J2 would like to raise Honda and Weiss above Savoie. He can do nothing
to raise either Honda or Weiss; but he can lower Savoie below them by
decreasing his grade to 10.6.

• J3 agrees with J1, she would like Savoie in 2nd place, Li in 3rd. Raising
Savoie’s grade and lowering Li’s does not reverse their order. Indeed, even
in collusion J1 and J3 could not together inverse the order of Li and Savoie.

• J4 would like to push Honda up to 2nd place, Li and Savoie down to
3rd and 4th. Increasing Honda’s grade accomplishes nothing; nor does
decreasing Li’s. By decreasing Savoie’s to 10.7 she can place Honda in 3rd
and Savoie 4th; but if she decreased it to 10.6, Savoie would vault down
to 5th.

• J5 would like Tamura in 2nd place not 6th, but he cannot raise Tamura
above any other skater nor can he lower any other skater below Tamura.
The best he can do is to raise Honda to 3rd place by assigning him 10.9.

• J6 faces a situation similar to J5’s, though she can lower Honda and Weiss
below Tamura, her 2nd place skater, thus putting Tamura in 4th place.
In fact, acting together J5 and J6 can do no more than placing Tamura
above Honda and Weiss.

• J7 would like to push Weiss up to 2nd place and Savoie down to last place.
He can do nothing to change the standings.

• J8 would like to put Tamura in 3rd place ahead of Savoie and invert
the positions of Honda and Weiss. He can accomplish the first wish by
increasing Tamura’s grade to 10.9, but can do nothing about the second.

• J9 would like to put Honda in 6th place. The best she can do is to put
him in 5th by decreasing his grade to 10.6.

All judges are contented with the 1st place of Eldredge. None can change Li’s
2nd place; the only effective manipulations concern skaters in 3rd place or below.
Two judges can do nothing (J3, J7); one can realize his preferred order-of-finish
by moving his candidate for 5th place from 3rd place to 5th place (J2); four can
invert the order of two consecutive skaters in the order-of-finish (J1, J4, J5, J9);
one can move his candidate for 2nd place from 6th place to 4th place (J6); and
one can move his candidate for 3rd place from 6th place to 3rd place (J8). This
comparison with point-summing assumes that judges only care about the order-
of-finish, which is almost certainly false, for they are likely to give importance to
the absolute final scores of the skates if not other considerations as well. Proven
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in theory, practice confirms that majority judgment is much better at resisting
manipulation than point-summing and so also in eliciting honesty.

Meaningful

In the spirit of measurement theory an aggregation must be “meaningful” in
both its uses, as social-grading and social-ranking functions: the particular lan-
guage of grades that is used should make no difference in the ultimate outcomes.
By way of an analogy, distance in the absolute and in comparisons should not
change the ultimate outcomes when the scale is meters rather than yards.

A social-grading function f is language-consistent if

f
(
φ(r1), . . . , φ(rn)

)
= φ(f(r1, . . . , rn)

)

for any increasing, continuous transformation φ of the grades of each
voter.

For example, when a Franco-American jury assigns grades to students, and each
member is asked to give a grade in both of the languages, the French and the
American grading systems, language-consistency asks that the aggregate French
grades rank the students in the same order as the aggregate American grades.

Order functions are clearly language-consistent: the kth highest grade re-
mains the kth highest grade under increasing, continuous transformations. It is
well known that the reverse is true as well:

Theorem 5 The unique social-grading functions that are language-consistent
are the order functions.

To be meaningful as a social-ranking function the analogous property must
hold for rankings as well.

A social-ranking function �S is order-consistent if the order between
any two candidates for some profile Φ implies the same order for any
profile Φ′ obtained from Φ by any increasing, continuous transfor-
mation φ of the grades of each voter.

The order functions are clearly order-consistent. To characterize them requires
an additional, eminently acceptable, property; namely, that an increase in a
candidate’s grade necessarily helps.

A social-ranking function �S is choice-monotone if A �S B and a
judge increases the grade of A implies A ≻S B.

Note in passing that the traditional model’s difficulties with monotonicity
are completely eliminated. Majority judgment is at once choice-, rank- and
strongly-monotone. The reason is simple: a change in heart concerning one
candidate is expressed by the grade he is given, but that changes nothing in the
inputs concerning the other candidates.
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Theorem 6 ([18, 12]) The unique choice-monotone, order-consistent social-
ranking functions f are the lexi-order functions.

A lexi-order social-ranking function is a permutation σ of the order functions
fσ = (fσ(1), . . . , fσ(n)), that ranks the candidates by

A ≻S B if
(
fσ(1)(A), . . . , fσ(n)(A)

)
≻lex

(
fσ(1)(B), . . . , fσ(n)(B)

)
.

Here ≻lex means the lexicographic order: the first term where the corresponding
grades differ A’s is higher. There are n! lexi-order social-ranking functions. The
idea is simple: some order function decides; if it doesn’t because there is a tie,
a second order function is invoked; if there is a tie in the second order function,
a third is called upon; and so on.

The importance of Arrow’s impossibility becomes very clear in this context.
A social-ranking function is preference-consistent if the order between any two
candidates for some profile Φ implies the same order for any profile Φ′ obtained
from Φ by increasing, continuous transformations φj of the grades of each voter
j. For voters’ rank-orders to be meaningfully amalgamated there must exist
a preference-consistent social-ranking function. But Arrow’s theorem tells us
that there exists no monotonic preference-consistent social-ranking function.
It says that there is no meaningful way of amalgamating the voters’ inputs
when they have no common language. This is the deep enduring significance
of Arrow’s theorem (rather than the supposed impossibility of surmounting
Arrow’s paradox). But this should not be surprising: how can agreement be
found among persons who cannot communicate!

Once again, only the order functions will do. But why the majority-grade
and why the majority-value?

Resists Manipulation

To manipulate successfully a voter (or judge) must be able to raise or to lower
a candidate’s (or competitor’) final grade by changing the grade he assigns. In
some situations voters can only change a final grade by increasing his grade,
in others only by decreasing it. Voters who can both lower and raise the final
grade have a much greater possibility of manipulating: an outsider seeking to
bribe or otherwise influence the outcome would surely wish to deal with such
voters.

It may be shown that the order functions are the unique social grading
functions for which at most one voter may both increase and decrease a final
grade.

Given a social-grading function f and a profile of a candidate’s grades
r = (r1, . . . , rn), let µ−

(
f(r)

)
be the number of voters who can decrease the

final grade, µ+
(
f(r)

)
be the number of voters who can increase the final grade,

and µ
(
f(r)

)
= µ−

(
f(r)

)
+ µ+

(
f(r)

)
. Take the measure of manipulability

µ of a social-grading function f to be the worst that can happen, µ(f) =
maxr µ

(
f(r)

)
≤ 2n. It is easily verified that µ(fk) = n + 1 for any order

function fk. By way of contrast, for f a point-summing method µ(f) = 2n.
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In fact, the only social-grading functions f for which µ(f) = n + 1 are the
order functions. For assume µ(f) ≤ n + 1 and take any r. If more than one
voter can both increase and decrease the final grade, then, since all other voters
can either increase or decrease the final grade, µ(f) ≥ n + 2, a contradiction.
Therefore, at most one voter can both increase and decrease the final grade,
implying f must be an order function.

Taking λ to be the probability the briber wishes to increase the grade and
1 − λ that he wishes to decrease the grade, a social-grading function is sought
that minimizes the probability that a voter may be found who can effectively
raise or lower the grade in the worst case.

The probability of cheating Ch(f) with a social-grading function f
is

Ch(f) = max
r=(r1,...,rn)

max
0≤λ≤1

λµ+
(
f(r)

)
+ (1− λ)µ−

(
f(r)

)

n
.

What social-grading functions minimize the probability of cheating?

A social-grading function is middlemost if it is defined by a middle-
most aggregation function f , where for r1 ≥ . . . ≥ rn,

f(r1, . . . , rn) = r(n+1)/2 when n is odd, and

rn/2 ≥ f(r1, . . . , rn) ≥ r(n+2)/2 when n is even.

When n is odd, there is exactly one such function, f (n+1)/2. When
n is even, there are infinitely many; in particular, fn/2 is the upper-
middlemost and f (n+2)/2 is the lower-middlemost.

An aggregation function f depends only on the middlemost interval means
that f(r1, . . . , rn) = f(s1, . . . , sn) when the middlemost interval of the grades
r = (r1, . . . , rn) and the grades s = (s1, . . . , sn) is the same.

Theorem 7 The unique social-grading functions that minimize the probability
of cheating are the middlemost that depend only on the middlemost interval.

Proof. Suppose, first, that n is odd. To see that f (n+1)/2 minimizes Ch, observe
that for any social-grading function f ,

max
r

max
0≤λ≤1

{

λµ+
(
f(r)

)
+ (1 − λ)µ−

(
f(r)

)}

≥

≥ max
r

{1

2
µ+

(
f(r)

)
+

1

2
µ−

(
f(r)

)}

≥
n+ 1

2
,

the last inequality following from the earlier discussion. Thus it suffices to show
that Ch(f (n+1)/2) ≤ n+1

2n . But that follows because neither µ+
(
f (n+1)/2(r)

)
nor

µ−
(
f (n+1)/2(r)

)
are greater than n+1

2 (equality holding when r1 > . . . > rn).
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To prove the reverse implication when n is odd, suppose f is an aggregation
function that minimizes Ch. Then by the observation just made

max
r

{
µ+

(
f(r)

)
+ µ−

(
f(r)

)}
= n+ 1,

so f must be an order function. But Ch(fk) = max{ k
n ,

n−k+1
n }, so k = n+1

2 .
Now suppose n is even, and that f is any aggregation function for which

Ch(f) ≤ n+2
2n , so that

max
r

{

µ+
(
f(r)

)
, µ−

(
f(r)

)}

≤
n+ 2

2
.

Take r1 > . . . > rn, let f(r1, . . . , rn) = r, and suppose that some judge j with
rj < r(n+2)/2 can change the final grade by increasing his grade not beyond
r(n+2)/2: then a fortiori he can somewhere both increase and decrease the final
grade. But that implies that every judge k with rk ≥ rj can decrease it as
well, so that at least n+2

2 + 1 = n+4
2 judges can decrease the final grade, a

contradiction. Therefore no judge j with rj < rn+2

2

can change the final grade

by increasing his grade to r(n+2)/2. Similarly, no judge j with rj > rn

2
can

change the final grade by decreasing his grade to rn/2. Therefore,

f(r1, . . . , rn) = f(

n/2
︷ ︸︸ ︷
rn/2, . . . , rn/2,

n/2
︷ ︸︸ ︷
r(n+2)/2, . . . , r(n+2)/2) = r,

implying rn/2 ≥ r ≥ r(n+2)/2, so f must be a middlemost aggregation function
that depends only on the middlemost interval.

To prove the reverse implication, suppose f is a middlemost aggregation
function that depends only on the middlemost interval. Its values are in the
middlemost interval. If at most one judge is able to both increase and decrease
the final grade by changing his grade, then f must be an order function, so
f is either fn/2 or f (n+2)/2, and Ch(f) = n+2

2n . Otherwise, since no other
judge can both increase and decrease the final grade and f depends only on
the middlemost interval, the two judges who give the middlemost grades can
both increase and decrease the final grade for some profile of grades (r1, . . . , rn).
Since judge n/2 can increase it, so can all judges j with grades rj < rn/2 ; since
judge (n + 2)/2 can decrease it, so can all judges j with grades rj > r(n+2)/2.

Therefore, µ+(f) = (n+ 2)/2 and µ−(f) = (n+ 2)/2, so Ch(f) = n+2
2n .

When f is the max or the min order function, or the average function, the
probability of cheating is maximized: Ch(f) = 1. When f is a middlemost
order function, Ch(f) ≈ 1

2 . In this sense, the middlemost cut cheating by half.
The unique meaningful social-ranking functions are the lexi-order functions,

each a sequence of all n order functions that determines the final ranking of the
candidates. Which among the n! of them minimize cheating?

To determine the ranking between any two candidates, the first order func-
tion decides, unless there is a tie; in which case the second order function decides,
unless the first two are tied; in which case the third decides, unless the first three
are tied; and so on. The need to use each succeeding order function becomes
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increasingly rarer. Accordingly, it is of the first importance to minimize the
probability of cheating in the first order function: by theorem 7 this is accom-
plished by choosing an order function that is in the (first) middlemost interval:
it is unique if n is odd and one of two is n is even, namely, f (n+1)/2 when n
is odd and either the upper-middlemost fn/2 or the lower-middlemost f (n+2)/2

when n is even. Given that choice, there are now n−1 order functions to choose
from and the first importance to minimize the probability of cheating is once
again to take a middlemost of those that remain: it is either unique or one of
two. Given the first two choices, there are n− 2 to choose from, a middlemost
must again be taken, and so on iteratively. To see this more clearly, consider
a finite language of number grades going from a high of 10 to a low of 0 and
a candidate who receives the seven grades {10, 9, 7, 6, 4, 3, 2}. The first order
function of a lexi-order function that minimizes the chance of cheating is the
middlemost, in this case its value is 6. The second that minimizes the chance of
cheating is either the upper- or the lower-middlemost, in this case its value is 7
or 4. If it is the upper-middlemost (its value 7) the next middlemost is unique
(with value 4), if it is the lower-middlemost (its value 4) the next middlemost
is unique (with value 7).

Thus there are some 2n/2 lexi-order functions that minimize the chance of
cheating. Which among them should be chosen?

Heeds the Majority’s Will

The basic idea—a candidate’s majority-grade—is firmly based on the majority’s
will: it is the highest grade α that commands an absolute majority in answer to
the question: “Does this candidate merit at least an α?” Moreover, the unique
social-grading functions that assign a candidate the final grade α if a majority of
voters assign her α are the middlemost aggregation functions. But when there
are many voters and a language of relatively few grades the two middlemost
order functions will (almost always) have one value, the majority-grade.

Another basic collective decision idea—a kind of “unanimity”—also singles
out the majority-grade fmaj among the social grading functions.

A social grading function respects consensus when all of A’s grades
belong to the middlemost interval of B’s grades implies that A’s final
grade is not below B’s final grade.

The rationale is evident: when a jury is more united on the grade of one al-
ternative than on that of another, the stronger consensus must be respected by
the award of a final grade no lower than the other’s. Or, taking Galton’s per-
spective, respecting consensus means denying crankiness by heeding the middle
grades rather than the extreme grades. Recall that the majority-grade fmaj is
the lower-middlemost order function.

Theorem 8 The majority-grade fmaj is the unique middlemost social grading
function that respects consensus.
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Proof. A social grading function f respects consensus if and only if f ≤ fmaj .
For suppose f respects consensus, and consider any profile r1 ≥ . . . ≥ rn. If n
is odd, f(r1, . . . , rn) ≤ f(r(n+1)/2, . . . , r(n+1)/2) = r(n+1)/2 = fmaj. If n is even,
f(r1, . . . , rn) ≤ f(r(n+2)/2, . . . , r(n+2)/2) = r(n+2)/2 = fmaj.

Assume now that f ≤ fmaj , and suppose all the grades of A are in the
middlemost interval of B’s grades. Then, since f ≤ fmaj , the final grade of B
according to f is at most the majority-grade of B. But since f is unanimous and
monotonic, the majority-grade of B is at most the final grade of A according to
f . This shows that f gives a grade to A at least as high as that given to B, so
f respects consensus.

But the only middlemost social grading function f for which f ≤ fmaj is the
majority-grade fmaj , and it is clear that the majority-grade respects consensus.
The theorem and its proof are valid when the language is finite.

A similar concept singles out the majority-ranking ≻maj among the social
ranking functions. Consider an ordered set of input grades r1 ≥ · · · ≥ rn. The
1st-middlemost interval is the middlemost interval previously defined. The 2nd-
middlemost interval is the middlemost interval when the defining grades of the
1st-middlemost interval are ignored. The kth-middlemost interval is the mid-
dlemost interval when the defining grades of the previous middlemost intervals
are ignored. For example, when the set of grades is {10, 9, 7, 6, 4, 3, 2} the 1st-
middlemost interval is [6, 6], the 2nd is [7, 4], the 3rd is [9, 3], and the fourth is
[10, 2].

Suppose the grades of A and B are rA = (rA1 , . . . , r
A
n ), r

B = (rB1 , . . . , rBn ).

A social ranking function is a middlemost if A ≻S B depends only
on the set of grades that belong to the first of the kth-middlemost
intervals where they differ.

For example, if A’s grades are those of the example just given and B’s are
{10, 10, 7, 6, 4, 3, 1}, then the first interval where they differ is the 3rd: A’s is
[9, 3] and B’s is [10, 3]. This is a natural extension of the idea of a middlemost
social grading function that depends only on the middlemost interval.

Suppose the first of the jth-middlemost intervals where A’s and B’s
grades differ is the kth. A social-ranking function rewards consensus
when all of A’s grades strictly belong to the kth-middlemost interval
of B’s grades implies that A is ranked above B, A ≻S B.

Thus, A is ranked above B for the example just given by a SRF that rewards
consensus. This is a natural extension of the idea of respecting consensus for a
social-grading function.

Theorem 9 The majority-ranking ≻maj is the unique middlemost, choice-mono-
tone social-ranking function that rewards consensus.

Proof. Suppose the ranking �S satisfies the properties, and consider two can-
didates, A and B.
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If they differ in the 1st-middlemost interval and n is odd, the statement
is true. If n is even, suppose the 1st-middlemost intervals of A and B are
[rA−, r

A
+] 6= [rB− , rB+ ]. The properties imply

A ≻S B when







rA− > rB− and rA+ > rB+ ,
rA− > rB− and rA+ = rB+ ,
rA− = rB− and rA+ > rB− ,
rA− > rB− and rA+ < rB+ .

The three first comparisons are implied by choice-monotonicity (starting from
rA− = rB− and rA+ = rB+) and the middlemost property (since it may be assumed
that all grades outside the 1st-middlemost intervals are minimum or maximum
grades). The last comparison is implied by rewarding consensus and the mid-
dlemost property (since it may be assumed that all grades of A are in the 1st-
middlemost interval of B). This is exactly the output of the majority-ranking.
(For the four remaining possibilities A ≺S B.)

If they first differ in the kth-middlemost intervals of their grades for k > 1,
the proof is the same.

The choice of the lower-middlemost order function for ranking and electing
is the consequence of seeking consensus.

6 In Conclusion

The above results are bolstered by others that single out majority judgment as
the best method that emerges from the new model. This has important practical
implications across a very large spectrum of applications that span sporting
events, artistic performances, intellectual achievements, political elections, and
a host of other instances where competing entities are to be ranked and winners
are to be designated.

Among them are the elections organized by the Monthly’s publisher, the
Mathematical Association of America. The MAA’s bylaws stipulate how its
officers are to be elected:

“Each voting member of the Association may vote for as many can-
didates for each office as he or she desires. For President-Elect, First
Vice President, and Second Vice President, the Nominating Com-
mittee shall declare elected the person having received the most votes
. . . ”

This is approval voting. It is meaningless and subject to Arrow’s paradox unless
it is changed in a seemingly trivial but actually deep and significant manner.
By giving absolute common meanings to 0’s and 1’s approval voting becomes
the special case of majority judgment where the language of grades consists of
exactly two words (so is better identified as approval judgment). A reasonable
way in which to do this is to vote with a ballot such as that used in the U.S.
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presidential INFORMS experiment (table 6), defining 1 to be a grade of Good
or better and 0 to be a grade worse than Good. Had it been so defined, that ex-
periment (table 7) would have yielded precisely the same order of finish, Obama
receiving 80.2% approvals, Clinton 66.4%, Powell 58.8%, and so on. Had 1 been
defined to be a grade of Excellent, 0 a grade worse than Excellent, only the order
of finish of the first three is the same.

But why on earth choose the most restrictive possible set of grades—two
grades, an unnatural “pass/fail” dichotomy—when the aim is to select the best
possible candidates? In particular, why do so when a richer common scale of
evaluation is available?

The most important property of a system of voting is to give the voters the
opportunity to express their opinions as accurately as possible. This is limited
only by the necessity of a language of grades that is common to all voters.
Research in cognition suggests seven grades plus or minus two [22] is the optimal
number for most situations where ordinary mortals are involved (e.g., most
people can accurately distinguish at most six different pitches in tone). In
contrast, practical experience where a small number of expert judges evaluate
skating, diving, gymnastics, piano performances, or wines, for instance, suggests
that as many as twenty-five or even forty grades can be distinguished by them
(much as a person with perfect pitch can accurately identify up to 60 different
tones). The evidence from experiments with majority judgment suggests six is
the optimal number in political elections [4, 5].
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Mathématiques.

34



[22] George A. Miller. 1956. “The magical number seven, plus or minus two:
some limits on our capacity for processing information.” Psychological Re-
view 63 81-97.

[23] Mark A. Satterthwaite. 1973. “Strategy-proofness and Arrow’s conditions:
existence and correspondence theorems for voting procedures and social
welfare functions.” Journal of Economic Theory 10 187-217.

[24] Eric Zitzewitz. 2006. “Nationalism in winter sports judging and its lessons
for organizational decision making.” Journal of Economics and Manage-
ment Strategy 15 67-100.

35


