Dealing with the inconsistencies of judgment aggregation and social choice:

A general proposal based on Theophrastus principle

Rosa Camps, Xavier Mora, Laia Saumell Dep. Matemàtiques Univ. Autònoma de Barcelona

Dealing with the inconsistencies of judgment aggregation and social choice: A general proposal based on Theophrastus principle

Inconsistencies: when using the majority rule

Doctrinal paradox: inconsistency with the doctrine $t \leftrightarrow p \land q$

The doctrinal paradox

$t \leftrightarrow p \land q$				
		p	q	†
	45%	У	N	N
	30%	Ν	y	Ν
	25%	У	У	y
	Y - N	70 - 30	55 - 45	25 - 75

- Inconsistencies: when using the majority rule
- Doctrinal paradox: inconsistency with the doctrine $t \leftrightarrow p \land q$
- Preferential voting: inconsistency with transitivity (Condorcet)
- Approval-preferential voting: inconsistency between approval and prefs

Approval-preferential voting

Approving-disapproving + ranking

40%	a b > c
30%	b > c a
25%	c a > b
5%	a > c b
Majority	c a b, b > c

- Inconsistencies: when using the majority rule
- Doctrinal paradox: DP inconsistency with the doctrine $t \leftrightarrow p \land q$
- Preferential voting: PV inconsistency with transitivity
- Approval-preferential voting: APV inconsistency between approval and prefs

How to arrive at consistent decisions?

Dealing with the inconsistencies of judgment aggregation and social choice:

A general proposal based on Theophrastus principle

Theophrastus principle

Modal logic, degrees of belief

"Peiorem semper conclusio sequitur partem" the conclusion follows the weakest premise

 $p \wedge q \rightarrow t$

Theophrastus principle

Modal logic, degrees of belief

"Peiorem semper conclusio sequitur partem" the conclusion follows the weakest premise

$$p \land q \rightarrow t$$

$$r \wedge s \rightarrow t$$

scale from 0 to 1 arises when aggregating many individual views

The doctrinal paradox

+ ←	\rightarrow h \wedge a			
$t \leftrightarrow p \land q$		p	q	†
	45%	y	N	N
	30%	N	y	N
	25%	y	y	y
	Y - N	70 - 30	55 - 45	25 - 75
		$\bar{f} \wedge q \rightarrow \bar{p}$	$\bar{f} \wedge p \rightarrow \bar{q}$	
70 - 55 55 - 70 55 - 75				55 - 75

Dealing with the inconsistencies of judgment aggregation and social choice:

A general proposal based on Theophrastus principle

Basic propositions (issues)

Examples

```
DP t: the accused is guilty; p, q

PV p_{xy}: x is preferable to y (x,y \in A)

APV p_{xy} (x,y \in A); g_x: x is good (x \in A)

T: set of basic propositions ("literals") + their negations

\bar{p}: opposite of p \bar{p} = p
```

Constraints (feasibility)

Examples

DP
$$t \leftrightarrow (p \land q)$$

PV $p_{xy} \leftrightarrow \overline{p}_{yx}$, $(p_{xy} \land p_{yz}) \rightarrow p_{xz}$

APV $p_{xy} \leftrightarrow \overline{p}_{yx}$, $(g_x \land \overline{g}_y) \rightarrow p_{xy}$

In general: Several compound propositions (basic propositions combined by $\neg \land \lor \rightarrow \leftrightarrow$) that are required/assumed to hold

Constraints (feasibility)

Examples

DP
$$t \leftrightarrow (p \land q)$$

PV $p_{xy} \leftrightarrow \overline{p}_{yx}$, $(p_{xy} \land p_{yz}) \rightarrow p_{xz}$
APV $p_{xy} \leftrightarrow \overline{p}_{yx}$, $(g_x \land \overline{g}_y) \rightarrow p_{xy}$

In general: A compound proposition (basic propositions combined by $\neg \land \lor \rightarrow \leftrightarrow$) that is required /assumed to hold

"Doctrine"

Valuation (profile)

$$v: \prod \rightarrow [0,1]$$
 $p \mapsto v_p$

$$v = \sum_{k} \alpha_{k} v^{k} (\sum_{k} \alpha_{k} = 1)$$

ignorance $v_p + v_{\overline{p}} = 1$ contradiction

Decision associated to v

p accepted &
$$\bar{p}$$
 rejected iff $v_p > v_{\bar{p}}$
p & \bar{p} undecided iff $v_p = v_{\bar{p}}$

Valuation (profile)

$$v: \prod \rightarrow [0,1]$$
 $p \mapsto v_p$

$$v = \sum_{k} \alpha_{k} v^{k} (\sum_{k} \alpha_{k} = 1)$$

ignorance
$$v_p + v_{\overline{p}} = 1$$
contradiction

Decision associated to
$$v_p + v_{\overline{p}} = 1$$
)

p accepted & \overline{p} rejected iff $v_p > 1/2$

p & \overline{p} undecided iff $v_p = 1/2$

Valuation (profile)

$$v: \prod \rightarrow [0,1]$$

$$p \mapsto v_p$$

$$v = \sum_{k} \alpha_{k} v^{k} (\sum_{k} \alpha_{k} = 1)$$

ignorance
$$v_p + v_{\overline{p}} = 1$$
contradiction

Decision associated to v (margin η)

p accepted &
$$\bar{p}$$
 rejected iff $v_p - v_{\bar{p}} > \eta$
p & \bar{p} undecided iff $|v_p - v_{\bar{p}}| \le \eta$

The problem

We are given a valuation v, possibly inconsistent with the doctrine. Want to make a consistent decision. Which one is most suitable to v?

Main idea

Revise v using Theophrastus principle, along the implications of the doctrine

To get all the implications:

Rewrite the doctrine in

conjunctive normal form

(a conjunction of disjunctions of literals)

$$t \leftrightarrow (p \land q)$$

$$\parallel \parallel$$

$$(t \rightarrow (p \land q)) \land ((p \land q) \rightarrow t) \qquad \alpha \rightarrow \beta$$

$$\parallel \parallel$$

$$(\overline{t} \lor (p \land q)) \land (\overline{p} \lor \overline{q} \lor t) \qquad \overline{\alpha} \lor \beta$$

$$\parallel \parallel$$

$$(\overline{t} \lor p) \land (\overline{t} \lor q) \land (\overline{p} \lor \overline{q} \lor t)$$
clause clause clause

In general:

$$\bigwedge \bigvee p$$
 $C \in \mathcal{D} p \in C$
true \downarrow

(p v p)

"tertium non datur"

for any p and C with $p \in C \in D$:

$$\mathbf{p} \leftarrow \bigwedge_{\substack{\alpha \in \mathbf{C} \\ \alpha \neq \mathbf{p}}} \overline{\alpha}$$

 $p \leftarrow p$

Theophrastus principle

$$v_p' \geq \min_{\substack{\alpha \in C \\ \alpha \neq p}} v_{\overline{\alpha}}$$

 $v_p' \geq v_p$

$$v_p' = \max_{\substack{C \in \mathcal{D} \ \alpha \in C \\ C \ni p}} \min_{\alpha \in C} v_{\overline{\alpha}}$$

- * The iteration $v \rightarrow v' \rightarrow v''$... eventually reaches an invariant state v^* ("upper revised valuation")
- * Characterization. v* is the lowest valuation w that lies above v and satisfies w' = w (consistency)
- * Consistency of the associated decisions. For any η in the interval $0 \le \eta \le 1$, the decision of margin η associated with v^* is definitely consistent with the doctrine:

 $\forall C \in \mathcal{D}, \forall p \in C$: all $\alpha \in C \setminus \{p\}$ rejected \Rightarrow p accepted

- * Respect for consistent majority decisions. Assume that every p satisfies either $v_p > 1/2 > v_{\overline{p}}$ (p accepted) or $v_{\overline{p}} > 1/2 > v_p$ (p rejected). Assume also that this decision is consistent. In that case,

 - v* arrives at the same decision.
 - * Respect for unanimity. If v is an aggregate of consistent truth assignments and $v_p = 1$, then p is accepted by the basic decision associated with v*
 - * Monotonicity. If v_p grows while v_α is kept constant for $\alpha \neq p$, then the acceptability of p, namely $v_p^* - v_{\overline{p}}^*$, either increases or stays constant

We did a sort of non-convex projection

- possible valuations
- consistent valuations (w' = w)
 - undecidedness

- individual valuations
- collective **V**
 - revised **v***

Which conjunctive normal form?

```
Not unique
They can lead to different v*!
Example: Adding (p \lor q \lor r) besides (q \lor r)
"Implicate": any clause implied by the doctrine
Include only "prime" implicates

Blake canonical form"

Include all of them
Unique, its computation is finite (though may take long)
             (Blake 1937, Quine 1955-59)
```

C prime $\equiv \overline{C}$ "critical (forbidden) fragment" (Nehring+Puppe) $\equiv \overline{C}$ "minimal inconsistent set" (Dietrich+List)

DP The doctrinal paradox

+ ,	h			
$t \leftrightarrow p \wedge q$		p	q	+
	45%	У	N	N
	30%	N	y	N
	25%	y	Y	y
	V	70 - 30	55 - 45	25 - 75
	V *	70 - 55	55 - 70	55 - 75

v* "conclusion"-based criterion = v* "premise"-based criterion!

PV Preferential voting

$$v^*(p_{xy}) = Max min(v(p_{x_0x_1}), v(p_{x_1x_2}), ..., v(p_{x_{n-1}x_n}))$$

Max: all (non-cyclic) paths
$$x_0, x_1, ... x_n$$

of length $n \ge 1$ from $x_0 = x$ to $x_n = y$

The method of "paths" (Schulze 1997, 2011)

Other good properties:

- Condorcet-Smith
- Clone consistency
- Can be extended to a "continuous rating method" (CMS 2011)

PV Approval-preferential voting

$$v^*(g_x) = Max min(v(p_{x_0x_1}), v(p_{x_1x_2}), ..., v(p_{x_{n-1}x_n}), v(g_{x_n}))$$

$$v^*(\bar{g}_x) = Max min(v(\bar{g}_{x_0}), v(p_{x_0x_1}), v(p_{x_1x_2}), ..., v(p_{x_{n-1}x_n}))$$

Max: all (non-cyclic) paths $x_0, x_1, ... x_n$ of length $n \ge 0$ from $x_0 = x$ to $x_n = y$

Other good properties:

Monotonicity

PV Approval-preferential voting

 $40\% \ a \ | \ b > c$, $30\% \ b > c \ | \ a$, $25\% \ c \ | \ a > b$, $5\% \ a > c \ | \ b$

PV Approval-preferential voting

 $40\% \ a \ | \ b > c$, $30\% \ b > c \ | \ a$, $25\% \ c \ | \ a > b$, $5\% \ a > c \ | \ b$

V	g_{x}	\bar{g}_{x}
а	45	55
Ь	30	70
С	60	40
v*	g_{x}	\bar{g}_{x}
а	60	55
b	60	70

a	70	45	
30	Ь	70	
55	30	С	

70	9 _c	\bar{g}_{b}	p _k	oc .
/ U	a	gain	st	
С	$\bar{g}_b \wedge$	p _{bc} -	\rightarrow	\overline{g}_{c}
60				

p_{xy}

Our Choice: a

accepts

Concluding remarks

- Can be applied to any set of constraints
- It reveals the logic behind a variety of known methods
 - plurality, minimax, maximin, approval \leftarrow binary logic paths (Schulze) median rate \leftarrow graded logic single link (aggregation of equivalence relations)
- Produces new interesting methods
- Incomplete valuations are welcome

References

Rosa Camps, Xavier Mora, Laia Saumell, 2010.

A general method for deciding about logically constrained issues http://arxiv.org/abs/1007.2534

Rosa Camps, Xavier Mora, Laia Saumell, 2011. Choosing and ranking · Let's be logical about it http://arxiv.org/abs/1109.4335