
Clone Structures in Voters’ Preferences

Edith Elkind1, Piotr Faliszewski2, and Arkadii Slinko3

1 School of Physical and Mathematical Sciences, Nanyang Tech. Univ., Singapore
2 Department of Computer Science, AGH Univ. of Science and Technology, Poland

3 Department of Mathematics, University of Auckland, New Zealand

Abstract. In elections, candidates that are ranked consecutively (though
possibly in different order) by all voters are called clones. Clones can
occur naturally, especially if the set of candidates has an internal struc-
ture, or they can be introduced by a malicious manipulator, who wants
to change the election outcome. In this paper, we study the properties of
clone structures, i.e., families of sets such that for some preference profile,
each set in the family consists of candidates that appear consecutively
in all votes in this profile. We provide an axiomatic characterization of
clone structures: A set family satisfies our axioms if and only if there is a
preference profile that has this set family as its clone structure. Further,
we show that clone structures have a natural hierarchical structure that
is very conveniently represented by PQ-trees. Using this PQ-tree repre-
sentation we show, somewhat unexpectedly, that every clone structure
can be obtained from a preference profile of at most three voters.

1 Introduction

Group decision making plays an important role in the proper functioning of
human societies and multiagent systems. Collective decisions are often made by
aggregating the preferences of individual agents by means of voting: each agent
ranks the available alternatives, and a voting rule is used to select one or more
winners (see [2] for a general overview of voting, and [7] for a more algorithmic
perspective). In general, the structure of the set of alternatives may be quite
complex. For instance, Ephrati and Rosenschein [6] explore the situation where
multiple agents try to coordinate their actions in order to devise a global plan.
Then the space of alternatives, i.e., of possible plans, may be huge, with some
alternatives being very similar to each other. In such a case it may be reasonable
to establish which plans under consideration differ fundamentally, and which are
viewed as minor variations of each other.

Such structured decision-making environments have been studied in the so-
cial choice literature: for instance, Laffond et al. [9] describe the situation when
a group of agents has to choose from a set that is partitioned into several
“projects,” where each project is defined as a set of possible variants. In this
setting, all agents are likely to rank the variants of each projects contiguously.
This model was further investigated by Laslier [10, 11]. Tideman and Zavist [14,
15] suggest a different explanation of why several alternatives in an election

may be very similar to each other: a malicious party may try to “duplicate”
an existing candidate in order to change the voting outcome. This procedure
is known as cloning and the alternatives that appear together in all preference
profiles (though not necessarily in the same order) are called clones. A more
nuanced model of cloning was recently studied by Elkind et al. [5], who analyze
the success probability of manipulation by cloning for different voting rules.

Both when clones arise naturally and when they are created by a manipulator,
it may be useful to understand the internal structure of the resulting clone
sets. Indeed, such an understanding could be instrumental in uncovering hidden
properties of voters’ preferences such as, for example, a hierarchical structure of
the alternative set. Further, it may enable us to discover that, by eliminating a
small number of clones, we obtain an election that has certain desirable propeties,
such as, e.g., single-peakedness.4 In either case, we could improve the election
by using a better suited voting rule: in the former case, we could use hierarchic
voting, and in the latter case, we could use the median voter rule—which is
known to be strategy-proof for single-peaked profiles—to select a group of clones,
and then pick the final winner from among them. Such an approach is likely to
produce a better voting outcome as well as to reduce the voters’ incentives for
manipulation.

The goal of this paper is to provide a formal understanding of what families
of clone sets (which we call clone structures) can arise in elections, and to provide
convenient means of representing them. To achieve the former goal, we give an
axiomatic characterization of possible clone structures. To achieve the latter goal,
we show that PQ-trees of Booth and Lueker [4] very conveniently describe clone
structures. In addition—and somewhat unexpectedly—we show that every clone
structure, no matter how complex, can be implemented by a profile with three
voters only; this profile can be constructed efficiently from the corresponding
PQ-tree. We believe that our results are useful for understanding the impact of
clones in decision-making scenarios, and will help in developing algorithms for
settings where some of the candidates may be very similar to each other.

2 Preliminaries

Given a finite set C of candidates (or alternatives), a preference order (or ranking)
over C is a total order over C, i.e., a complete, transitive and antisymmetric
relation on C. Intuitively, a preference order is a ranking of the candidates from
the most desirable one to the least desirable one. Given a preference order �
over C, we denote by ←−� the linear order on C that is obtained by reversing �,
that is, j←−� i if and only if i � j. For two disjoint sets X,Y ⊆ C and an order
�, we write X � Y if x � y for all x ∈ X and all y ∈ Y . Given three pairwise
disjoint subsets X,Y, Z of C, and an order �, we say that X separates Y and Z
in � if either Y � X � Z or Z � X � Y . We say that an alternative a ∈ C splits
4 For the definition of single-peakedness, see, e.g., the classic work of Black [3] or the

handbook [2]. Very briefly put, single-peakedness models societies that care about a
single issue, such as, e.g., taxation level.

a subset X ⊆ C with respect to an order � if X can be partitioned into two
nonempty sets X1 and X2 such that {a} separates X1 and X2 in �; note that
this implies a 6∈ X. Given two sets X,Y ⊆ C, we say that X is a proper subset
of Y if X ⊆ Y and 1 < |X| < |Y |. We say that X and Y intersect non-trivially
and write X ./ Y if X ∩ Y 6= ∅, X \ Y 6= ∅ and Y \X 6= ∅.

A preference profile R = (R1, . . . , Rn) on C is a collection of n preference
orders over C, where each order Ri, 1 ≤ i ≤ n, represents the preference of the
i-th voter; for readability, we sometimes write �i in place of Ri. An election over
C is a pair E = (C,R), where R is a preference profile over C. A voting rule
is a mapping F that, given an election E over C, outputs a set F(E) ⊆ C; the
elements of F(E) are called the election winners.

Example 1. Consider C = {a, b, c, d} and a 3-voter preference profile (R1, R2, R3)
such that R1 : a �1 b �1 c �1 d, R2 : b �2 d �2 c �2 a, and R3 : a �3 b �3

d �3 c. Under the Plurality rule, the candidate ranked first by most voters wins.
If there are many such candidates then they all tie for victory; in practice some
tie-breaking rule has to be applied. In our example a is the unique Plurality
winner. On the other hand, under Borda’s rule for m candidates, each candidate
c receives m − k points for each vote where c is ranked k-th. In our example, b
is the unique Borda winner with 7 points.

There are many more voting rules, both used in practice and studied theo-
retically, than those presented in Example 1 (see [2]). However, in this paper we
focus on the nature of preference profiles; thus, our results do not depend on the
choice of a voting rule.

The following definition, inspired by [14], is fundamental for our work.

Definition 2. Let R = (R1, . . . , Rn) be a preference profile over a candidate set
C. We say that a non-empty subset X ⊆ C is a clone set for R if c �i a =⇒
c′ �i a and a �i c =⇒ a �i c

′ for every c, c′ ∈ X, every a ∈ C \X, and every
i = 1, 2, . . . , n.

Unlike paper [14], we define singletons to be clone sets; in the election from
Example 1 each of {a}, {b}, {c}, {d}, {d, c}, {b, c, d}, and {a, b, c, d} is a clone set.

3 Axiomatic Characterization of Clone Structures

The goal of this section is to understand which set families can be represented
as clone structures. That is, given a collection C of subsets of a candidate set
C, we want to determine if there exists a preference profile R over C such that
each clone in R appears in our collection and vice versa; we will say that such
R implements C. The main technical results of this section are (a) an axiomatic
characterization of implementable collections of subsets, and (b) a polynomial-
time algorithm for recognizing such families. While deriving these results, we lay
out the groundwork for understanding clone sets in general.

In this section, we will consider elections over the set [m] = {1, . . . ,m}. We
will write [j, k] to denote {j, j + 1, . . . , k} for j, k ∈ [m].

Definition 3. Given a profile R = (R1, . . . , Rn) over [m], let C(R) ⊆ 2[m] be
a collection of all clone sets for R. We say that a family C ⊆ 2[m] is a clone
structure on [m] if it is equal to C(R) for some profile R on [m].

Let us now consider two examples of clone structures that will play an important
role in our analysis.

Example 4. Let R consist of a single linear order R : 1 � 2 � · · · � m. Then
C(R) = {[i, j] | i ≤ j} (see Figure 1(a)). Let R′ be a cyclic profile on [m], i.e.,
R′ = (R1, . . . , Rm), and the preferences of the i-th voter are given by Ri : i �i

i+ 1 �i · · · �i m �i 1 �i · · · �i i− 1. Then C(R′) = {[m]} ∪ {{i} | i ∈ [m]} (see
Figure 1(b)).

31 42

(a) A string of sausages.

31 42

(b) A fat sausage.

Fig. 1. Diagrams represent-
ing clone structures from
Example 4 for m = 4.

We call the first clone structure from Exam-
ple 4 a string of sausages and that second one a
fat sausage. Observe that any clone structure over
[m] consists of at most m(m+1)

2 sets, since each clone
set can be described by its location (i.e., beginning
and end) in the preference ordering of a fixed voter.
Thus, a string of sausages and a fat sausage can
be thought of as, respectively, the maximal and the
minimal clone structure over [m].

The rest of this section is structured as follows.
In Section 3.1 we derive a number of properties of
clone structures. In Sections 3.2 and 3.3 we show
that these properties indeed constitute an axiomatic
characterization of clone structures. We conclude in Section 3.4 with several
remarks on our proof approach.

3.1 Basic Properties of Clone Structures

Let us now establish some basic properties of clone structures. First, we observe
that if a clone structure can be implemented by some profile, then it can also
be implemented by the same profile with some of the preference orders reversed.
This observation will prove very useful in some of the subsequent proofs.

Proposition 5. Given a profile R = (R1, . . . , Rn), let R′ = (R′1, . . . , R
′
n) be a

profile such that R′i ∈ {Ri,
←−
Ri} for all i = 1, . . . , n. Then C(R) = C(R′).

The next proposition provides four necessary conditions for a family of sub-
sets of [m] to be a clone structure.

Proposition 6. Let R be a profile on [m]. Then (1) {i} ∈ C(R) for any i ∈ [m];
(2) ∅ /∈ C and [m] ∈ C(R); (3) if C1 and C2 are in C(R) and C1 ∩ C2 6= ∅, then
C1∪C2 and C1∩C2 are also in C(R); (4) if C1 and C2 are in C(R) and C1 ./ C2,
then C1 \ C2 and C2 \ C1 are also in C.

Proposition 6 does not give sufficient conditions for a family of subsets of [m]
to be a clone structure. For example, P = 2[m] \ {∅}, where m ≥ 3, satisfies all
the conditions of Proposition 6. Yet, the cardinality of P is 2m−1, whereas each
clone structure over [m] has at most m(m+1)

2 elements. The next proposition
provides a further necessary condition for a family of subsets of [m] to be a clone
structure. It is strong enough to exclude the collection 2[m] \ {∅} for m > 3.

Given a profile R over [m] and a set X ∈ C(R), we say that a set Z ∈ C(R) is
a proper minimal superset of X if X ⊆ Z, X 6= Z, and there is no set Y ∈ C(R)
such that X 6= Y , Y 6= Z and X ⊆ Y ⊆ Z.

Proposition 7. For any profile R on [m], each X ∈ C(R) has at most two
proper minimal supersets in C(R).

Note, however, that for m = 3 the set family 2[m]\{∅} satisfies the conclusion
of Proposition 7. Yet, it is obviously not a clone structure, since it contains a
“cycle” {1, 2}, {2, 3}, {3, 1}. More generally, consider a set family over [m] that
can be obtained from a string of sausages by adding the “missing link”, i.e., the
set {m, 1} as well as all of its supersets that are necessary to satisfy the conclu-
sions of Proposition 6; we will call this set family a ring of sausages. Clearly, a
ring of sausages is not a clone structure, because it cannot be implemented by
an acyclic preference relation; yet, the conclusion of Proposition 7 is satisfied.
Thus, to obtain an axiomatic characterization of clone structures, we require an
axiom that excludes such cyclic families. Simply prohibiting rings of sausages is
not enough, and we need a somewhat more general condition.

Definition 8. We say that a set family {A0, . . . , Ak−1} is a bicycle chain if k ≥
3 and for all i = 0, . . . , k−1 it holds that (1) Ai−1 ./ Ai; (2) Ai−1∩Ai∩Ai+1 = ∅;
(3) Ai ⊆ Ai−1 ∪Ai+1, where all indices are computed modulo k.

Proposition 9. If C is a clone structure, it does not contain a bicycle chain.

Putting together the properties from from Propositions 6, 7 and 9 we obtain
the following set of axioms:

A1. {f} ∈ F for any f ∈ F , ∅ /∈ F , and F ∈ F .
A2. if C1 and C2 are in F and C1 ∩C2 6= ∅, then C1 ∪C2 and C1 ∩C2 are in F .
A3. If C1 and C2 are in F and C1 ./ C2, then C1 \ C2 and C2 \ C1 are in F .
A4. Each C ∈ F has at most two proper minimal supersets in F .
A5. F does not contain a bicycle chain.

Our next goal is to show that these five axioms indeed characterize clone
structures. In Section 3.2 we build up the necessary tools to be used in our
inductive proof of this fact; the proof itself appears in Section 3.3.

3.2 Embedding and Collapsing Set Families

Let E and F be two families of subsets on two disjoint finite sets E and F ,
respectively. We can embed F into E as follows. Given e ∈ E, let E(e → F)
denote the family of subsets E ′ ∪ F ⊆ 2(E\{e})∪F , where E ′ is obtained from E
by replacing each set X containing e with (X \ {e}) ∪ F .

Example 10. Consider set families D = {{x}, {y}, {x, y}} and C = {{a}, {b}, {c},
{a, b}, {b, c}, {a, b, c}} (both are strings of sausages and hence clone structures).
Then, C(b→ D) = {{a}, {x}, {y}, {x, y}, {c}, {a, x, y}, {x, y, c}, {a, x, y, c}}. It is
easy to check that this, again, is a clone structure.

x y

a b c

(a) Before embed-
ding.

ca x y

(b) After embedding.

Fig. 2. Clone structures
from Example 10.

If E and F satisfy axioms A1–A5 then so does
E(e→ F). We prove it directly (it also follows from
Theorem 17 combined with Proposition 16).

Proposition 11. Let E and F be families of sub-
sets on disjoint sets E and F , respectively, that sat-
isfy A1–A5. Then for any e ∈ E the set family
E(e→ F) also satisfies A1–A5.

Next, we would like to define an inverse oper-
ation to embedding, which we will call collapsing.
Observe that when we embed F ⊆ 2F into E ⊆ 2E ,
any C ∈ E(e→ F) is either a subset of F , a super-
set of F , or does not intersect F at all. Thus, for a
set family C on A to be collapsible, it should contain
a set A′ that does not intersect non-trivially with any other set in C.
Definition 12. Let F be a family of subsets on a finite set F . A subset E ⊆ F is
a subfamily of F if there is a set E ∈ F such that (i) E = {F ∈ F | F ⊆ E}; (ii)
for any X ∈ F \ E we have either E ⊆ X or X ∩E = ∅. The set E is called the
support of E. E is called a proper subfamily of F if E is a proper subset of F .

It is not hard to check that if F satisfies axioms A1–A5 and E is a subfamily
of F , then E satisfies A1–A5 as well. In particular, note that we require E ∈ F
(rather than just E ⊆ F), and hence E ∈ E .

Let F be a family of subsets on F that satisfies A1–A5 and let E be a proper
subfamily of F on E ⊂ F . Then no set Y ∈ F intersects E non-trivially, and
hence E can be “collapsed”. That is, we can obtain a new set family B from F
by picking some alternative b /∈ F , removing all sets X ∈ E \ {E} from F , and
replacing each set Y that contains E with (Y \E)∪ {b}. It is not hard to check
that B satisfies A1–A5; the proof is similar to that of Proposition 11. We will
write F(E → b) to denote the set family obtained by collapsing a subfamily E
of F . That is, we have B = F(E → b) if and only if F = B(b→ E).

Now, suppose that F has no proper subfamilies; we will call such subset
families irreducible. Observe that if F is irreducible, any proper subset E ∈ F
violates the condition (ii) in Definition 12, i.e., for any proper subset E ∈ F there
exists a subset X ∈ F such that X ./ E. We will use irreducible set families
as a base for our inductive argument in the following section. The following
preliminary observations will be useful.

Proposition 13. Let F be an irreducible family of subsets of [m] that satisfies
A1–A5, and let D be a minimal proper subset of F . Then |D| = 2.

Proposition 14. Let F be a family of subsets of [m] that satisfies A1–A5. Then
each candidate i ∈ [m] belongs to at most two minimal proper subsets in F .

3.3 Proof of Correctness of the Axiomatic Characterization

We are ready to prove our axiomatic characterization.

Theorem 15. Any irreducible family of subsets satisfying A1–A5 is either a
string of sausages or a fat sausage.

Proof. Let F be an irreducible family of subsets over [m] that satisfies A1–A5.
If F does not contain any proper subsets, then it is a fat sausage. Thus, for the
remainder of the proof let us assume that F does contain at least one proper
subset.

Let us consider a graph G whose vertices are elements of [m] and there is an
edge between i and j if and only if {i, j} is a minimal proper subset of F . By
Proposition 14, the degree of each vertex in G is at most 2. Further, G cannot
contain cycles, since each cycle in G would correspond to a bicycle chain in F
formed by the two-element subsets {i, j}. Thus, G is a colleciton of paths. We
will now prove that G has at most one connected component, and hence F is a
string of sausages.

Let G′ be a maximal connected component in G, and let F be the set of
vertices of G′. Suppose that F 6= [m]. Note that by A3, F is a subset in F . Since
F is not a fat sausage, by Proposition 13 we have |F | ≥ 2. Let us rename the
alternatives so that F = {f1, . . . , fk} and each {fi, fi+1}, 1 ≤ i < k, is an edge
of G′.

If F 6= [m], there exists a proper subset E ∈ F such that E ./ F . Let us pick
such a set E for which |E \ F | is smallest. By A3, the set E \ F belongs to F .
We consider two cases.

|E \ F| = 1. Observe that in this case |E ∩ F | ≥ 2: otherwise, E would be
an edge of G′. Let e be a member of E \ F . Suppose first that E ∩ F is not a
contiguous subset of F , that is, there are some i, j, ` ∈ [k] such that i < ` < j,
and (i) fi ∈ E and fs 6∈ E for s < i, (ii) fj ∈ E and ft 6∈ E for t > j, and
(iii) f` /∈ E. Then either E ∩ F = {fi, fj}, or E ∩ F intersects {fi+1, . . . , fj−1}
and we have {fi, fj} = (E ∩ F) \ {fi+1, . . . , fj−1}. In both cases, we can use
axiom A3 to conclude that {fi, fj} belongs to F , and hence G′ contains a cycle,
a contradiction. Thus, we have E ∩ F = {fi, . . . , fj} for some 1 ≤ i < j ≤ k.

Suppose that j 6= k. Then, since i < j, by A3 the set E \ {f1, . . . , fj−1} =
{e, fj} is in F . However, this means that e ∈ F , which is a contradiction. Thus,
j = k. Similarly, we can argue that i = 1. Hence, we have F ⊆ E, a contradiction.

|E \ F| > 1. By A3, E\F is a proper subset in F . Thus, since F is irreducible,
there is a proper subset H in F such that H ./ (E \ F).

Suppose first that F ⊆ H, and consider the set H ′ = H ∩ E. Since E
intersects F , we have H ′ ∩ F 6= ∅. Further, H ′ ∩ (E \ F) = H ∩ (E \ F) 6= ∅,
so H ′ \ F 6= ∅. Finally, F \ E 6= ∅ and H ′ ⊆ E, so F \H ′ 6= ∅. Thus, F ./ H ′.
However, H ′ \F = H ∩ (E \F) is a strict subset of E \F , so |H ′ \F | < |E \F |,
a contradiction with our choice of E.

Thus, we have F 6⊆ H. If, nevertheless, F ∩H 6= ∅, we set H ′′ = H ∩ (E∪F).
Clearly, we have F ∩H ′′ 6= ∅. Since H ′′ is a subset of H, we also have F \H ′′ 6= ∅.

Finally, since H ∩ (E \ F) 6= ∅. we have H ′′ \ F 6= ∅. Thus, H ′′ ./ F , yet
H ′′ \ F = H ∩ (E \ F) is a strict subset of E \ F , so |H ′′ \ F | < |E \ F |, a
contradiction with our choice of E.

Hence, H ∩ F = ∅. However, this means that E \ H still intersects F non-
trivially, and |(E \H) \ F | < |E \ F |, a contradiction again.

We have shown that assuming that F 6= [m] leads to a contradiction. Hence,
F = [m], which means that F is a string of sausages. ut

Thus, any irreducible set family that satisfies A1–A5 is a clone structure. This
provides the basis for our inductive argument. For the inductive step, we need to
show that if C and D are two clone structures over disjoint sets C and D, and c is
some candidate in C, then C(c→ D) is a clone structure. However, the proof of
this fact is somewhat more complicated than one might expect. Indeed, suppose
that we have a pair of profiles R = (R1, . . . , Rn) and Q = (Q1, . . . , Qn) over sets
C and D, respectively, such that C = C(R) and D = C(Q). One might think that,
given c ∈ C, we can obtain a preference profile R′ such that C(c→ D) = C(R′)
simply by substituting Qi for c in Ri, for i = 1, . . . , n. This intuition is not
entirely correct: without additional precautions, we may introduce “parasite”
clones, i.e., clones that cross the boundary between C and D. However, we can
construct R′, containing n preference orders, from R and Q by tweaking this
construction slightly.

Proposition 16. Let C and D be two clone structures over sets C and D, re-
spectively, where |C| = m, |D| = k, and C ∩ D = ∅. Then for each c ∈ C, the
family of subsets C(c→ D) is a clone structure.

Propostion 16, used inductively on top of Theorem 15, gives our main result.

Theorem 17. A family F of subsets of [m] is a clone structure if and only if it
satisfies conditions A1–A5.

Corollary 18. Any irreducible clone structure is either a string of sausages or
a fat sausage. Further, any subfamily of a clone structure is a clone structure.

Based on Theorem 17, we derive a polynomial-time algorithm for testing if
a given set family is a clone structure. We assume that the input set family is
represented explicitly, by listing the members of each set in the family.

Theorem 19. There exists a polynomial-time algorithm that, given a family of
subsets F over a finite set F , checks if F is a clone structure over F .

3.4 Remarks

Note that axioms A1–A3 and axioms A4–A5 play different roles in our charac-
terization of clone structures. Indeed, A1–A3 require the set family to be “rich”
enough, i.e., to be closed under various operations, and A4 and A5 require it to
be “not too rich”, i.e., they say that if certain sets belong to the family, then

other sets should not. In fact, axioms A4 and A5 can be replaced by the require-
ment that there exists a linear order over the alternatives such that each set
in the family occurs contiguously in this order, or, in other words, that our set
family is contained in a clone structure. Checking the latter requirement reduces
to the “consecutive 1s” problem, where we are given a 0-1 matrix, and are asked
to reorder its columns so that 1s in each row appear consecutively; this problem
is known to be polynomial-time solvable [4, 8] and is indeed closely related to
our work. This provides an alternative proof of Theorem 19.

The advantage of using axioms A4 and A5 instead of the order axiom is that
it is fairly easy to check whether a set family satisfies A4 and A5. In fact, we can
strengthen the proof of Theorem 19 to obtain a logarithmic space algorithm.
(The only hard part is to verify axiom A5 in logarithmic space; this can be
done by reducing the verification problem to connectivity testing for undirected
graphs and by applying the break-through result of Reingold [13]). It is unclear
if we can directly verify the order axiom in logarithmic space.

Our characterization and the high-level proof strategy we used to obtain it
are similar in spirit to the very general work of Möhring [12]. Since we need
some of our partial results from Section 3 later on, we chose to present a self-
contained argument instead of translating Möhring’s results to our setting. We
remark that the latter approach would be far from straightforward, since our
axioms are somewhat different from those in paper [12],

4 Compact Representations of Clone Structures

In this section we consider the issue of representing clone structures. The most
direct representation, suggested by Definition 3, is to list all the sets included in
the clone structure. However, this representation is often wasteful and does not
reveal any information about the internal workings of the clone structure. Thus,
we now consider two compact representations: one using PQ-trees of Booth and
Lueker [4], and one listing votes that implement a particular clone structure.

4.1 PQ-Tree Representation

In the previous section we have seen that, intuitively, clone structures are orga-
nized hierarchically. Thus, it is natural to represent them using trees. The specific
type of trees that are most convenient for this task are PQ-trees introduced by
Booth and Lueker [4] in the context of consecutive-1s property (and several other
problems). In this section we will describe how one can derive PQ-trees for clone
structures.

A PQ-tree T over a set A = {a1, . . . , an} is an ordered tree that represents
a family of permutations over A as follows. The leaves of the tree correspond to
the elements of A. Each internal node is either of type P or of type Q. A frontier
of T is a permutation of A obtained by reading the leaves of T from left to right
(recall that T is ordered). The following operations are allowed on the tree: If a
node is of type P, then its children can be permuted arbitrarily. If a node is of

type Q, then the order of its children can be reversed. A given permutation π
of A is consistent with a PQ-tree T , if we can obtain π as the frontier of T by
applying the above operations.

We now describe a natural way to represent clone structures as PQ-trees.
Consider a clone structure C over a finite set C. Our characterization of irre-
ducible clone structures implies that any two proper irreducible subfamilies of C
have non-intersecting supports.

Proposition 20. Let C be a clone structure over a finite set C, and let B and D
be two proper irreducible subfamilies of C on sets B ⊆ C and D ⊆ C, respectively.
Then B ∩D = ∅.

Proposition 20 implies that every element of C belongs to at most one proper
irreducible subfamily of C. Thus, given a clone structure C ⊆ 2C , there is a unique
maximal collection of pairwise disjoint sets Dec(C) = {C1, . . . , Ck} such that
Ci ⊆ C, |Ci| ≥ 2, and for each i = 1, . . . , k the set family Ci = {C ∈ C | C ⊆ Ci}
is an irreducible subfamily of C (if C is itself irreducible, then k = 1 and C1 = C).
This collection can be efficiently constructed by identifying the minimal (with
respect to inclusion) non-singleton sets in C: any such set of size s ≥ 3 is itself an
irreducible clone structure (a fat sausage), and for a set of size s = 2 we need to
find the maximal string of sausages that contains it. Note that it need not be the
case that ∪k

i=1Ci = C: some elements may not belong to any proper irreducible
clone structure (consider, for instance, the clone structure over {a, b, c, d} given
by {{a}, {b}, {c}, {d}, {b, c}, {a, b, c, d}}). We will refer to the collection Dec(C)
as the decomposition of C.

We can now inductively define a PQ-tree T (C) associated with a clone struc-
ture C ⊆ 2C (for convenience, our PQ-tree will be labeled). Suppose first that C
is an irreducible clone structure over the set C = {c1, . . . , cm}. Then by Theo-
rem 15 it is either a string of sausages or a fat sausage. In the former case, assume
without loss of generality that C is associated with the order c1 � c2 � . . . � cm,
i.e., it contains sets {ci, ci+1} for i = 1, . . . ,m − 1. In both cases, we let T (C)
to be a tree of depth 1 that has m (ordered) leaves. The i-th leaf is labeled by
ci. If C is a string of sausages, the root of the tree is of type Q and is labeled
by c1 ⊕ . . . ⊕ cm; if C is a fat sausage, the root is of type P and is labeled by
c1 � . . . � cm. Note that when m = 2 the clone structure C is both a string of
sausages and a fat sausage; to avoid ambiguity, we treat it as a fat sausage.

Now, if C is reducible, we compute its decomposition Dec(C) = {C1, . . . , Ck}.
For i = 1, . . . , k, we set Ci = {X ∈ C | X ⊆ Ci}, pick c1, . . . , ck 6∈ C, and
let C′ be the set family on the set C ′ = (C \

⋃k
i=1 Ci) ∪ {c1, . . . , ck} given by

C′ = C(C1 → c1, . . . , Ck → ck). We then construct the tree T (C′). This tree has
leaves labeled by c1, . . . , ck. We replace each such leaf ci by the labeled tree T (Ci)
for the irreducible set family Ci.

We can verify by induction on m that each leaf of T (C) is labeled with an
element of C, each element of C appears as a label of some leaf, and the internal
nodes of T (C) are labeled with expressions of the form c1 ⊕ . . . ⊕ ck (nodes of
type Q) or c1 � . . . � ck (nodes of type P); for the inductive proof, it suffices

to observe that, whenever we construct C′ from C, we have |C ′| < |C|. Further,
the tree T (C) is unique up to the standard transformations of PQ-trees. Given
the tree T (C), we can reconstruct the clone structure C in an obvious way. To
illustrate this discussion, in Figure 3 we give a PQ-tree for the clone structure
from Example 10.

We remark that the descendants of any internal node of T (C) form a clone
set. However, the converse is not necessarily true, i.e., there are clone sets that
cannot be obtained in this way: if an internal node v is labeled with a string of
sausages and has k children, k ≥ 3, the descendants of any ` consecutive children
of v, ` < k, form a clone set. Indeed, it is not hard to see that any clone set
corresponds either to a subtree of T (C) or to a collection of subtrees of T (C)
whose roots are consecutive children of the same Q-node.

a⊕ (x⊕ y)⊕ c

ca

yx

x⊕ y

Fig. 3. Tree rep-
resentation of the
embedded clone
structure from
Example 10.

Note that the PQ-tree representation provides yet an-
other proof of Theorem 19. Indeed, Propositions 13 and 14
hold for any subset family that satisfies A1–A5. Using this
observation, we can modify the proof of Theorem 15 to
show that any irreducible family of subsets satisfying A1–
A5 is either a string of sausages, a ring of sausages or a
fat sausage. Further, the procedure for constructing the
tree T (C) works for any set family that satisfies A1–A5;
the only difference is that some nodes may have to be la-
beled by rings of sausages, i.e., expressions of the form
c1⊕ . . .⊕ ck⊕ c1. Thus, to determine whether a given sub-
set family C is a clone structure, we can check whether it
satisfies A1–A4, construct the tree T (C), and verify that
none of its nodes is labeled with a ring of sausages.

4.2 Minimal-Cardinality Profiles for Clone Structures

One might expect that to obtain a complex clone structure we need an election
with many voters. However, it turns out that this is not true: any clone structure
can be implemented by a profile with at most three voters. In what follows, we
say that a clone structure C is k-implementable if there is a k-voter profile R
such that C = C(R). Thus, our goal is to show that any clone structure is 3-
implementable. We deal with irreducible clone structures first.

Proposition 21. Let C be an irreducible clone structure over [m]. If C is a
string of sausages, it is 1-implementable. If C is a fat sausage and m > 3, then
C is 2-implementable, but not 1-implementable. If C is a fat sausage and m = 3,
then C is 3-implementable, but not 2-implementable.

Now, the general case follows from Proposition 16.

Theorem 22. Any clone structure C is 3-implementable. Moreover, if the tree
T (C) does not have nodes that carry labels of the form x � y � z, then C is
2-implementable. If C is a string of sausages then it is 1-implementable.

5 Conclusions and Future Work

We have characterized the set families that can be obtained as clone structures
in elections. We have demonstrated that every clone structure is organized hi-
erarchically and can be conveniently represented using PQ-trees. We have also
discussed implementing clone structures using a small number of voters.

We are currently working on applying the techniques and results of this paper
to compute “the distance from single-peakedness” of a given profile, measured
as the number of clones that need to be eliminated to obtain a single-peaked
election. Our preliminary results indicate that this quantity can be efficiently
computed. We believe that our analysis of clone structures may also prove useful
in the context of decloning problems considered in [5], i.e., determining whether
a given candidate can be made a winner with respect to a given voting rule by
removing at most k clones; using our techniques for this type of problems is a
fruitful direction for future research.

References

1. K. Arrow, A. Sen, and K. Suzumura, editors. Handbook of Social Choice and
Welfare. Elsevier, 2002.

2. D. Black. The Theory of Committees and Elections. Cambridge University Press,
1958.

3. K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976.

4. E. Elkind, P. Faliszewski, and A. Slinko. Cloning in elections. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence, pages 768–773. AAAI Press,
July 2010.

5. E. Ephrati and J. Rosenschein. A heuristic technique for multi-agent planning.
Annals of Mathematics and Artificial Intelligence, 20(1–4):13–67, 1997.

6. P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. Using complexity to
protect elections. Commun. ACM, 53(11):74–82, 2010.

7. D. Fulkerson and G. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15(5):835–855, 1965.

8. G. Laffond, J. Laine, and J. Laslier. Composition consistent tournament solutions
and social choice functions. Social Choice and Welfare, 13(1):75–93, 1996.

9. J. Laslier. Rank-based choice correspondencies. Economics Letters, 52(3):279–286,
1996.

10. J. Laslier. Aggregation of preferences with a variable set of alternatives. Social
Choice and Welfare, 17(2):269–282, 2000.

11. R. Möhring. Algorithmic aspects of the substitution decomposition in optimization
over relations, set systems and boolean functions. Annals of Operations Research,
4:195–225, 1985.

12. O. Reingold. Undirected ST-connectivity in log-space. In Proceedings of the 37th
ACM Symposium on Theory of Computing, pages 376–385. ACM Press, May 2005.

13. T. Tideman. Independence of clones as a criterion for voting rules. Social Choice
and Welfare, 4(3):185–206, 1987.

14. T. Zavist and T. Tideman. Complete independence of clones in the ranked pairs
rule. Social Choice and Welfare, 64(2):167–173, 1989.

A Missing Proofs

Proposition 6. Let R be a profile on [m]. Then (1) {i} ∈ C(R) for any i ∈ [m];
(2) ∅ /∈ C and [m] ∈ C(R); (3) if C1 and C2 are in C(R) and C1 ∩ C2 6= ∅,
then C1 ∪ C2 and C1 ∩ C2 are also in C(R); (4) if C1 and C2 are in C(R) and
C1 ./ C2, then C1 \ C2 and C2 \ C1 are also in C.

Proof. Properties (1) and (2) are immediate. Let us prove (3). Let C1 and C2

be two sets in C(R) with I = C1 ∩C2 6= ∅, and let Ri be an arbitrary preference
order from R. Consider some a ∈ [m]. Since C1 ∈ C(R), if a ∈ [m] \ C1, then a
does not split C1 and, as a result, a does not split I. Similarly, no alternative
in [m] \ C2 can split I. Thus, no element outside of I can split I, and hence
members of I are ranked contiguously in Ri. Since this holds for any Ri in R,
we have I ∈ C(R).

Now, suppose that there is an alternative a ∈ [m] \ (C1 ∪ C2) that splits
C1∪C2 in some order Ri. We know that a splits neither C1 nor C2, hence either
C1 �i a �i C2 or C2 �i a �i C1, which is impossible since the intersection of
C1 and C2 is nonempty. Thus, C1 ∪ C2 ∈ C(R). This proves that (3) holds.

Let us now consider property (4). Suppose C1, C2 ∈ C(R) and C1 ./ C2.
Consider the set C1 \ C2; for C2 \ C1 the argument is similar. First, no element
outside of C1 can split C1 \C2, because otherwise it will split C1 too. Further, in
each Ri, the intersection C1 ∩C2 separates C1 \C2 and C2 \C1. Hence elements
of C1 ∩ C2 cannot split C1 \ C2 either, and the property follows. ut

Proposition 7. For any profile R on [m], each X ∈ C(R) has at most two
proper minimal supersets in C(R).

Proof. For the sake of contradiction, assume that there are three distinct sets
Y, Z,W in C(R) such that each of them is a proper minimal superset of X. It is
easy to see that Y ∩Z = X: by Proposition 6, Y ∩Z ∈ C(R), so if (Y ∩Z)\X 6= ∅,
neither Y nor Z would be a proper minimal superset of X. Similarly, Y ∩W = X
and Z ∩W = X. Pick two alternatives y, z so that y ∈ Y \X and z ∈ Z \X. Let
Ri be a preference order from R. The set X separates Y \X and Z \X, and so
either y �i X �i z or z �i X �i y; by Proposition 5 we may assume the former.
Now, pick w ∈W \X. A similar argument shows that we have y �i X �i w (as
w �i X �i y leads to a contradiction). But now we must have z �i X �i w or
w �i X �i z, none of which is possible. ut

Proposition 9. If C is a clone structure, it does not contain a bicycle chain.

Proof. Suppose that a clone structure C contains a bicycle chain {A0, . . . , Ak−1},
and let R = (R1, . . . , Rn) be a preference profile such that C = C(R).

As argued in the proof of Proposition 6, the set A0 ∩ A1 separates A0 \ A1

and A1 \A0 in R1. Thus, by Proposition 5, we can assume that we have

A0 \A1 �1 A0 ∩A1 �1 A1 \A0.

Further, by the definition of the bicycle chain we have A1 \ A0 = A1 ∩ A2,
A1 \A2 = A0 ∩A1. Again, we have

A1 ∩A0 = A1 \A2 �1 A1 ∩A2 �1 A2 \A1.

Now, if k = 3, we have a contradiction already: since A0 \ A1 6= ∅ and A0 ⊆
A1 ∪ A2, it has to be the case that A0 intersects A2, yet all elements of A2 are
ranked strictly below A0. If k > 3, continuing inductively, we obtain that for
each i = 1, . . . , k − 1 the set Ai is ranked below Ai−1 \ Ai in R1. Hence, all
elements of Ak−1 are ranked below A0 in R1. However, we have A0 ∩Ak−1 6= ∅,
a contradiction. ut

Proposition 11. Let E and F be families of subsets on disjoint sets E and F ,
respectively, that satisfy A1–A5. Then for any e ∈ E the set family E(e → F)
also satisfies A1–A5.

Proof. We have {e′} ∈ E for all e′ ∈ E, {f} ∈ F for all f ∈ F , so {g} ∈ E(e→ F)
for all g ∈ (E \ {e}) ∪ F . Clearly, ∅ 6∈ E(e → F). Further, E ∈ E and e ∈ E, so
(E \ {e}) ∪ F ∈ E(e→ F). Thus, A1 is satisfied.

Throughout the rest of the proof, we will use the observation that no set D ∈
E(e→ F) can intersect F non-trivially, i.e., we have that for each D ∈ E(e→ F)
it holds that either D ∩ F = ∅ or D \ F = ∅ or F \D = ∅.

We will now show that E(e → F) satisfies A3 and A4. Consider two sets
C1, C2 in E(e→ F) such that C1 ∩C2 6= ∅. If C1 ⊆ C2 or C2 ⊆ C1, then A2 and
A3 trivially hold, so we can assume that C1 ./ C2.

Suppose first that C1 ⊆ F . Then C2 ∩ F 6= ∅ and it cannot be the case that
F ⊆ C2, since we assume C1 \ C2 6= ∅. Hence, C2 ⊆ F , so C1, C2 ∈ F , and the
sets C1 ∩ C2, C1 ∪ C2, C1 \ C2, C2 \ C1 belong to F and hence to E(e→ F).

Next, suppose that F ⊆ C1. Set C ′1 = (C1 \ F) ∪ {e}. Since C2 6⊆ C1, we
have C2 6⊆ F , and hence either F ⊆ C2 or F ∩ C2 = ∅. In the former case, set
C ′2 = (C2 \ F) ∪ {e}; in the latter case, set C ′2 = C2. In both cases, we have
C ′1, C

′
2 ∈ E , and C ′1 ./ C

′
2. Therefore, the sets C ′1 ∩ C ′2, C ′1 ∪ C ′2, C ′1 \ C ′2, C ′2 \ C ′1

belong to E , and hence the sets C1 ∩ C2, C1 ∪ C2, C1 \ C2, C2 \ C1 belong to
E(e→ F).

If F ⊆ C2, the argument is similar. Thus, it remains to consider the case
C1 ∩ F = ∅, C2 ∩ F = ∅. Then C1, C2 ∈ E . Thus, the sets C1 ∩C2, C1 ∪C2, C1 \
C2, C2\C1 belong to E and do not contain e, and hence they belong to E(e→ F)
as well. Thus, axioms A2 and A3 are satisfied.

To show that A4 holds, assume for the sake of contradiction that some set
C ∈ E(e → F) has three proper minimal supersets X, Y , and Z in E(e → F).
If we have C ⊆ F , then the sets X, Y and Z cannot strictly contain F (or they
would not be proper minimal supersets), but have to intersect F , so it has to be
the case that X,Y, Z ⊆ F . Thus, C has three proper minimal supersets in F , a
contradiction. Next, suppose that F ⊆ C. Then all three sets X, Y and Z are
supersets of F , too. Consider the sets C ′ = (C \ F) ∪ {e}, X ′ = (X \ F) ∪ {e},
Y ′ = (Y \ F) ∪ {e}, Z ′ = (Z \ F) ∪ {e}. All these sets are in E . Moreover,
X ′, Y ′ and Z ′ are distinct, and each of them is a superset of C ′. To see that

all of them are proper supersets of C ′, observe that if C ′ ⊂ T ′ ⊂ X ′, then
C ⊂ (T ′ \{e})∪F ⊂ X, a contradiction with X being a minimal proper superset
of C. Thus, C ′ has three minimal proper supersets in E , a contradiction. Finally,
if C ∩ F = ∅, we have C ∈ E . For T = X,Y, Z, let T ′ = T if F ∩ T = ∅ and
T ′ = (T \ F) ∪ {e} otherwise. Clearly, the sets X ′, Y ′ and Z ′ are in E . By the
same argument as above, we can show that C has three minimal proper supersets
in E , a contradiction. Thus, E(e→ F) satisfies A4.

Finally, let E(e→ F) contain a bicycle chain {A0, . . . , Ak−1}; in what follows,
all indices are computed modulo k. Suppose first that we have Ai ⊆ F for some
i = 0, . . . , k − 1. Then Ai−1 ∩ F 6= ∅, Ai+1 ∩ F 6= ∅. Since both Ai−1 and Ai+1

intersect Ai non-trivially, neither of them can contain F , and therefore both of
them are subsets of F . Applying this argument inductively, we conclude that
all sets Ai, i = 0, . . . , k − 1, are subsets of F , i.e., F contains a bicycle chain, a
contradiction. Thus, we can assume that for each i = 0, . . . , k− 1 either F ⊆ Ai

or F ∩ Ai = ∅. For each i = 0, . . . , k − 1, set A′i = (Ai \ F) ∪ {e} if F ⊆ Ai

and set A′i = Ai otherwise. It is straightforward to check that the set family
{A′0, . . . , A′k−1} is a bicycle chain in E , a contradiction. Thus, E(e→ F) satisfies
A5. ut

Proposition 13. Let F be an irreducible family of subsets of [m] that satisfies
A1–A5, and let D be a minimal proper subset of F . Then |D| = 2.

Proof. Suppose for the sake of contradiction that |D| ≥ 3. The set family D =
{F ∈ F | F ⊆ D} is not a subfamily of F , which means that F contains a proper
subset E such that D ./ E. However, by A2 and A3, both D∩E and D\E must
belong to F , both are strict subsets of D, and at least one of them has at least
two elements. Thus, D is not a minimal proper subset, a contradiction. ut

Proposition 14. Let F be a family of subsets of [m] that satisfies A1–A5. Then
each candidate i ∈ [m] belongs to at most two minimal proper subsets in F .

Proof. Suppose for the sake of contradiction, that i belongs to three minimal
proper subsets in F . Since these subsets are minimal proper subsets, they are
also minimal proper supersets of {i}. However, by A4, no subset of F has more
than two minimal proper supersets, a contradiction. ut

Proposition 16. Let C and D be two clone structures over sets C and D,
respectively, where |C| = m, |D| = k, and C ∩D = ∅. Then for each c ∈ C, the
family of subsets C(c→ D) is a clone structure.

Proof. Fix a c ∈ C, and let R = (R1, . . . , Rn) and Q = (Q1, . . . , Qn′) be two
profiles of voters such that C = C(R) and D = C(Q). Since duplicating linear
orders in R and Q does not change C and D, we can assume without loss of
generality that n = n′ ≥ 2. Our goal is to construct a profile R′ such that
C(c → D) = C(R′). This profile will have n voters and m + k − 1 alternatives,
that is, R′ = (R′1, . . . , R

′
n). We will construct R′ in two steps. First, for each

i = 1, . . . , n, we set R0
i to be identical to Ri except that the occurrence of c

is replaced by Qi; denote the resulting profile by R0 = (R0
1, . . . , R

0
n) and let

C0 = C(R0). It is easy to see that all elements of C(c→ D) are clones in R0, so
C(c → D) ⊆ C0. If also C0 ⊆ C(c → D), we are done, since in this case we can
set R′ = R0.

Otherwise, we flip Qn. That is, assuming without loss of generality that Qn

ranks the elements of D as

Qn : d1 � d2 � . . . � dk

and Rn is given by C1 � c � C2, we define

R′n : C1 � dk � . . . � d1 � C2,

where we assume that R′n orders the elements of C1 and C2 in the same way as
Rn does; we also set R′i = R0

i for i = 1, . . . , n− 1. Consider the resulting profile
R′, and let C′ = C(R′). We claim that C′ = C(c → D). As above, it is easy to
see that C(c→ D) ⊆ C′. It remains to show that C′ ⊆ C(c→ D).

Let X be the “parasite” clone in C0 \ C(c → D). Clearly, it cannot be the
case that X ⊆ C or X ⊆ D. Further, if D ⊆ X, then (X \D) ∪ {c} is a clone
in C, and hence X ∈ C(c → D). Thus, the sets CX = X ∩ C and DX = X ∩D
are both non-empty, and DX 6= D. By Proposition 5, we may assume that each
order in R0 is of the form . . . � CX � DX � D \DX �

Now, suppose for the sake of contradiction that Y is a clone in C′ \C(c→ D).
By the same argument as in the previous paragraph, we conclude that Y ∩D 6= ∅,
Y ∩ C 6= ∅, and D 6⊆ Y . Thus, we have two possibilities:

– d1 ∈ Y , dk 6∈ Y . Then, since Y is contiguous in R′1 and Y ∩ C 6= ∅, we have
Y ∩CX 6= ∅. However, in R′n the element dk splits Y and CX , a contradiction.

– d1 6∈ Y , dk ∈ Y . Then, since Y is contiguous in R′n and Y ∩ C 6= ∅, we have
Y ∩CX 6= ∅. However, in R′1 the element d1 splits Y and CX , a contradiction.

Hence, we have Y ∈ C(c→ D). The proof is complete. ut

The above proof could be simplified if we were willing to use more voters in
the profile for C(c→ D). However, the current version of the proof is very useful
when we consider the number of voters needed to implement a particular clone
structure.

Theorem 17. A family F of subsets of [m] is a clone structure if and only if
it satisfies conditions A1–A5.

Proof. We have already argued that any clone structure satisfies A1–A5; it re-
mains to prove that the converse is also true.

Our proof is by induction on m. Clearly the theorem holds for m = 1 and
for m = 2. For the inductive step, assume it holds for each m′ < m. Let F
be a family of subsets of [m] that satisfies A1–A5. If F is irreducible then, by
Theorem 15, it is either a string of sausages or a fat sausage and thus a clone
structure. Otherwise, F contains a proper subfamily D. Let F ′ = F(D → e)
for some e /∈ [m]. We have argued that D and F ′ satisfy axioms A1–A5. Hence,

by our inductive hypothesis both F ′ and D are clone structures and so, by
Proposition 16, F = F ′(e→ D) is a clone structure as well. This completes the
proof. ut

Theorem 19. There exists a polynomial-time algorithm that, given a family of
subsets F over a finite set F , checks if F is a clone structure over F .

Proof. It is easy to see that we can check in polynomial time whether F satisfies
A1–A5. Now, suppose that F has passed this check, and it remains to verify
that it satisfies A5. We can directly check if F contains a bicycle chain of size
3, by considering all possible triples of the subsets in F . To check for bicycle
chains of size 4 or more, we will construct a directed graph G as follows. The
vertices of G are ordered pairs (X,Y), where X and Y are two subsets in F
such that X ./ Y . There is a directed edge from (X,Y) to (Y ′, Z) if Y = Y ′,
X ∩Y ∩Z = ∅. and Y ⊆ X ∪Z. Intuitively, G has an edge from (X,Y) to (Y,Z)
if X, Y and Z can be three consecutive sets in a bicycle chain. It is not hard to
verify that G contains a directed cycle if and only if F contains a bicycle chain
of size 4 or more. Indeed, let {A0, . . . , Ak−1} be a bicycle chain of size k ≥ 4
in F . Then any pair (Ai, Ai+1) is a vertex of G. Moreover, there is an edge in
G between (Ai−1, Ai) and (Ai, Ai+1), so (A0, A1), (A1, A2), . . . , (Ak−1, A0) is a
directed cycle in G (as always in our discussion of bicycle chains, the indices
are computed modulo k). Conversely, if G contains a directed cycle of the form
(X0, X1), (X1, X2), . . . , (Xk−1, X0), then the sets X0, . . . , Xk−1 form a bicycle
chain. ut

Propostion 21. Let C be an irreducible clone structure over [m]. If C is a string
of sausages, it is 1-implementable. If C is a fat sausage and m > 3, then C is
2-implementable, but not 1-implementable. If C is a fat sausage and m = 3, then
C is 3-implementable, but not 2-implementable.

Proof. If C is a string of sausages, it can be implemented using a single order,
namely, 1 � . . . � m.

Now, suppose that C is a fat sausage. Clearly, it cannot be implemented with
a single order, as the clone structure that corresponds to the latter is a string of
sausages.

Suppose first that m = 2k. For convenience, set xi = i, yi = k + i for
i = 1, . . . , k. We define R = (R1, R2) as follows.

R1 : x1 � . . . � xk � y1 � . . . � yk,

R2 : y1 � x1 � y2 � x2 � . . . � yk � xk.

We claim that C = C(R). Clearly, we have C ⊆ C(R). Now, suppose that D ∈
C(R) \ C, i.e., |D| 6= 1,m. Since D has to be contiguous in R1, we have one of
the following three cases:

(a) D = {xi, . . . , xj} for some 1 ≤ i < j ≤ k;
(b) D = {yi, . . . , yj} for some 1 ≤ i < j ≤ k;

(c) D = {xi, . . . , yj} for some 1 ≤ i ≤ k, 1 ≤ j ≤ k.

Case (a) is impossible since in R2 the element yj appears between xi and xj .
Similarly, case (b) is impossible since in R2 the element xi appears between
yi and yj . In case (c) we have xk, y1 ∈ D. Since these elements appear at the
opposite ends of R2, we conclude that D = [m], a contradiction.

Next, suppose that m = 2k+ 1, k > 1. Set xi = i, yi = k+ i for i = 1, . . . , k,
z = 2k + 1. We define R = (R1, R2) as follows.

R1 : x1 � . . . � xk � y1 � . . . � yk−1 � z � yk,

R2 : y1 � x1 � y2 � x2 � . . . � yk � xk � z.

Again, it is clear that C ⊆ C(R). Now, suppose that D ∈ C(R)\C, i.e., |D| 6= 1,m.
As in the case of even m, D cannot be of the form {xi, . . . , xj} for 1 ≤ i < j ≤ k,
or of the form {yi, . . . , yj} for 1 ≤ i < j ≤ k − 1. Further, if D is of the form
{xi, . . . , yj} for some i = 1, . . . , k and some j = 1, . . . , k − 1, then D must
contain all elements that appear between xk and y1 in R2, i.e., either D = [m]
or D = [m] \ {z}, which is impossible. Now, if D contains z, it must also contain
the only element that is adjacent to it in R2, i.e., xk. As y1 appears between xk

and z in R1, we have y1 ∈ D. But then D = [m], since y1 and z are extreme
elements of R2.

Finally, if m = 3, we can set R = (R1, R2, R3), where R1 : 1 � 2 � 3,
R2 : 2 � 1 � 3, R3 : 2 � 3 � 1. To see that C cannot be implemented by any
2-voter profile (R1, R2), observe that we can assume without loss of generality
that R1 is of the form 1 � 2 � 3, and in R2 element 2 is adjacent to at least one
of the remaining elements (and hence forms a clone with that element). ut

Proposition 20. Let C be a clone structure over a finite set C, and let B
and D be two proper irreducible subfamilies of C on sets B ⊆ C and D ⊆ C,
respectively. Then B ∩D = ∅.

Proof. We have B ∈ B, D ∈ D, so, by definition of a subfamily, it cannot be the
case that B ./ D. Further, if, say, B ⊆ D, each element of B would be a subset
of D, so B would be a subfamily of D, a contradiction with the irreducibility of
D. Similarly, D ⊆ B leads to a contradiction as well. ut

Theorem 22. Any clone structure C is 3-implementable. Moreover, if the tree
T (C) does not have nodes that carry labels of the form x � y � z, then C is
2-implementable. If C is a string of sausages then it is 1-implementable.

Proof. If C is a string of sausages, then it clearly is 1-implementable. Otherwise,
the following argument proves the theorem.

Fix a clone structure C on a set C of size m. If T (C) does not have nodes
that carry labels of the form x� y� z, then set k = 2. Otherwise set k = 3. The
proof is by induction on m. If m = 1 or m = 2, the theorem is obviously true.
Further, if C is irreducible, the theorem follows from Proposition 21. Otherwise, C
contains a proper subfamily D. By the inductive assumption, the clone structures

D and C(D → d), where d 6∈ C, are k-implementable. Let R = (R1, . . . , Rk) and
Q = (Q1, . . . , Qk) be the respective preference profiles, i.e., C(D → d) = C(R),
D = C(Q). Then the proof of Proposition 16 shows how to combine R and Q to
obtain a preference profile R′ with k voters such that C = C(R′). ut

