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Motivation
Holding weekly research seminars in a department.

A B C D E

Tue. Tue. Thu. Thu. Tue.
Mon. Wed. Wed. Fri. Mon.
Wed. Thu. Fri. Mon. Fri.
Thu. Fri. Mon. Tue. Thu.
Fri. Mon. Tue. Wed. Wed.

→ no single day will suit everybody.
→ select 2 seminar days, for even weeks and odd
weeks
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Related Work

Proportional Representation
Condorcet Committees
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Notations

n voters
a set of p candidates X
preference profile P = 〈�1, . . . ,�n〉

4 / 24



θ-Winning Sets

Definition
For Y ⊆ X , z ∈ X \ Y , and 0 < θ ≤ 1
Y θ-covers z if

#{i ∈ N | ∃y ∈ Y such that y �i z} > θn.

(A proportion at least θ of the voters prefers some
alternative of Y to z).

Y is a θ-winning set if ∀z ∈ X \ Y , Y θ-covers z.
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Given P, θ, and k

D(P, θ, k) = {Y ,Y is a θ-winning set, |Y | ≤ k}

We may
fix θ and minimize k
fix k and maximize θ
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Example

P1

�1 �2 �3

a b d
c c a
d d b
b a c

{c} 1
2-covers d

{c} does not 1
2-cover a or b

{a,b} 1
2-covers c

{a,b} 1
2-covers d

→ {a,b} is a 1
2-winning set

D(P1,
1
2 ,1) = ∅

D(P1,
1
2 ,2) = {{a,b}, {a, c}, {a,d}, {b,d}, {c,d}}
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Particular Cases

θ = 1
2 , k = 1

If P has a Condorcet winner c
then D(P, 1

2 ,1) = {{c}}
else D(P, 1

2 ,1) = ∅

θ∗ = max{θ|D(P, θ,1) 6= ∅}
{x} is a θ∗-winning set iff x is a winner for the
maximin voting rule
∀Y ∈ D(P,1, k)
Y contains every candidate ranked first by some
voter
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CWS: not a tournament solution

�1 �2 �3

a b d
c c a
d d b
b a c

{a,b} is a CWS

a

c

b

d

�1 �2 �3

a c d
b d a
c a b
d b c

{a,b} is not a
CWS
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Condorcet Dimension
Definition
Condorcet dimension of a profile P:
dimC(P) = smallest k s.t. D(P, 1

2 , k) 6= ∅

If P has a Condorcet winner
then dimC(P) = 1.
We have seen that dimC(P1) = 2

P1

�1 �2 �3

a b d
c c a
d d b
b a c
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A profile of dimension 3

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 4 5 1 7 8 9 10 6 12 13 14 15 11
3 4 5 1 2 8 9 10 6 7 13 14 15 11 12
4 5 1 2 3 9 10 6 7 8 14 15 11 12 13
5 1 2 3 4 10 6 7 8 9 15 11 12 13 14

6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
7 8 9 10 6 12 13 14 15 11 2 3 4 5 1
8 9 10 6 7 13 14 15 11 12 3 4 5 1 2
9 10 6 7 8 14 15 11 12 13 4 5 1 2 3

10 6 7 8 9 15 11 12 13 14 5 1 2 3 4

11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
12 13 14 15 11 2 3 4 5 1 7 8 9 10 6
13 14 15 11 12 3 4 5 1 2 8 9 10 6 7
14 15 11 12 13 4 5 1 2 3 9 10 6 7 8
15 11 12 13 14 5 1 2 3 4 10 6 7 8 9

Not CWS:

{1, 2}

≺ 5

{1, 3} ≺ 11

{1, 6} ≺ 5

etc.

CWS:
{1, 6, 11}

{1, 3, 6}

etc.
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High dimension profiles?

finding P such that dimC(P) = 1 or dimC(P) = 2
is trivial.
dimC(P) = 3 needs more work(previous slide).
we could not find a profile of dimension 4 or
more

Question
Does there exist a profile of dimension k for any k?
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Probabilistic approach
n voters
m = |X | candidates
generate profiles randomly with a uniform
distribution (impartial culture)

Proposition
{a,b} ⊆ X is CWS with probability ≥ 1−me−n/24

Hint: with probability 2
3 in any given vote, either a or b is ranked

above c, therefore the expected number of votes where a or b
beats c is 2n

3 . By Chernoff bound, the probability that a or b is
ranked above c in at least n

2 votes is at most e−n/24. Therefore
the probability that {a,b} is not a CWS is at most me−n/24.

13 / 24



Experimental results (1)

0 20 40 60 80 100

k = 1
k = 2
k = 3
k = 4

Figure: probability that a fixed set of size k is a Condorcet
winning set as a function of n, for a 30-candidate election
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Important remark: dominating sets
are CWS

�1 �2 �3

a b d
c c a
d d b
b a c

{a,b}, {a, c},
{a,d}, {b,d},
{c,d}

a

c

b

d

{a, c}, {a,d},
{b,d}, {c,d}

15 / 24



An upper bound on the dimension

Proposition
For any profile P with n voters (n odd) we have
dimC(P) ≤ dlog2 me.

Proof.
n odd⇒ the majority graph is a tournament
dominating sets of the majority graph are CWS.
Megiddo and Vishkin (1988): a tournament has
a dominating set of size dlog2 me.

16 / 24
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Complexity
CONDORCET DIMENSION: compute dimC(P).

Is there a K such that for all P, dimC(P) ≤ K ?

Yes
enumerate all subsets of size ≤ K
→ poly(n,m)mK

polynomial (∈ P)

No
enumerate all subsets of size ≤ dlog2 me
→ poly(n,m)mlog m

quasi-polynomial (∈ QP)
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θ-Winning Sets for θ 6= 1
2

θ = 1
2, k ≥ 2,

every pair is with high probability a CWS.
⇒ fixing θ = 1

2 and minimizing k is not
interesting.
fix k and use θ = k

k+1

18 / 24



Experimental Results (2)

0 1 2 3 4 5 6

n = 5
n = 8

n = 20
n = 500

n = 2000

Figure: Empirical distribution of the number of 2
3 -winning sets of

size 2 for 20 candidates
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Experimental Results (3)

0 1
2

2
3

3
4

4
5 1

k = 1
k = 2
k = 3
k = 4

Figure: Empirical distribution of θ(k) for m = 30 and n = 100
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Related Work (1)

Proportional representation
Chamberlin and Courant (1983):
choose the highest-ranking alternative from the given
set in each vote, but use the Borda score as a basis.

A set Y receives maxy∈Y sB(y ; i) points from a voter i
and the winning committee of size k is the k -element
set of candidates with the highest score.
Procaccia et al. (2008): computing a winning committee of size
k is NP-hard.

Lu and Boutilier (2011): trade-off between committee size and
quality of representation; computation of optimal sets.
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Related Work (2)

Condorcet committees: “conjunctive” sets
Gehrlein (1985): Y ⊆ X is a Condorcet committee if
for every alternative y in Y and every alternative x in
X \ Y , a majority of voters prefers y to x .

6= CWS: disjunctive interpretation of sets

22 / 24



Related Work (2)
Condorcet committees, continued

Ratliff (2003): generalizes Dodgson and Kemeny to sets of
alternatives.

Fishburn (1981): defines preference relations on sets of
alternatives and looks for a subset that beats any subset in a
pairwise election.

Kaymak and Sanver (2003): under which conditions on the
extension function can a Condorcet committee in the sense of
Fishburn be derived from preferences over single alternatives?

Can Condorcet committees be also CWSs?
Depends on the extension function.
For “standard” extension functions: no.

23 / 24



Conclusion

Reconciliating both approaches
disjunctive interpretation (as in proportional
representation)
satisfies the Condorcet criterion (like Condorcet
committees)

Question
Are there profiles of Condorcet dimension 4 or more?

24 / 24
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