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Review of notation and terminology (2/36)

◮ Let K be a finite set of propositions (or ‘issues’, or ‘properties’).
◮ {±1}K is thus the set of all assignments of truth values to K.
◮ A judgement space is a subset X ⊂ {±1}K, representing the set of

logically consistent (or ‘feasible’, or ‘admissible’) truth-valuations.
An element x ∈ X is called a judgement (or view).

◮ A profile is a function µ : X−→[0, 1] such that
∑

x∈X

µ(x) = 1.

◮ Let ∆(X ) denote the set of all profiles.
◮ A judgement aggregation rule is a correspondence F : ∆(X )⇉ X .
◮ For any (odd) gain function φ : [−1, 1]−→ ∗

R, define the additive

support rule Fφ : ∆(X )⇉ X by Fφ(µ) := argmax
x∈X

∑

k∈K

xk · φ(µ̃k).

(Here, µ̃k :=
∑

x∈X

µ(x) xk ∈ [−1, 1], the ‘support’ for proposition k .)

◮ In particular, if φ(r) := r for all r ∈ [−1, 1], we get the median rule:

Median(µ) := argmax
x∈X

∑

k∈K

xk µ̃k = argmax
x∈X

x • µ̃.
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Example: the permutahedron (3/36)

◮ Let A := {1, 2, 3, . . . ,A} be a finite set of ‘social alternatives’.

◮ Let K := {(a, b); a, b ∈ A and a < b}.

◮ Let PA be the set of all strict preference orders over A.

◮ For any ( ≻) ∈ PA define x≻ ∈ {±1}K as follows:

for all a < b ∈ A, x≻
a,b :=

{
+1 if a ≻ b;
−1 if a ≺ b.

◮ Let X pr

A := {x≻; (≻) ∈ PA}. This judgement space is called the
permutahedron. Judgement aggregation over X pr

A is equivalent to
classic Arrovian preference aggregation.

◮ Propositionwise majority voting on X pr

A is the ‘Condorcet rule’, and is
vulnerable to the usual paradoxes.

◮ The median rule on X pr

A corresponds to the Kemeny rule: choose the
preference order in PA which minimizes the “average Kendall
distance” to the preference orders of the voters.
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Reinforcement (4/36)

For any profiles µ0 and µ1 in ∆(X ), and any r ∈ [0, 1], the convex
combination rµ1 + (1 − r)µ0 represents a mixture of a µ0-population and a
µ1-population.
A judgement aggregation rule F : ∆(X )⇉ X satisfies reinforcement if: for
any profiles µ0 and µ1 in ∆(X ) with F (µ0) ∩ F (µ1) 6= ∅, we have

F (rµ1 + (1 − r)µ0) = F (µ0) ∩ F (µ1), for all r ∈ (0, 1).

Idea. If two subpopulations both select judgement x from X , then the
combined population should also select x (and only x).
Proposition. The median rule satisfies reinforcement on every judgement
space.

On the permutahedron, the median rule is the Kemeny rule. Young and
Levenglick (1978) proved that the Kemeny rule is the only neutral,
Condorcet-admissible preference aggregation rule which satisfies
reinforcement. Question: Does the Young-Levenglick theorem extend
to other judgement spaces?
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F (rµ1 + (1 − r)µ0) = F (µ0) ∩ F (µ1), for all r ∈ (0, 1).

Definition. A judgement aggregation rule F is regular if F = Fφ for some
gain function φ : [−1, 1]−→ ∗

R admitting some r2 > r1 > r0 > 0 such that
the ratio is finite.

Example: If st (φ) is finite and not constant in a neighbourhood of zero,
then φ is regular. In particular, any real-valued φ is regular.

If X ⊆ {±1}K, then conv(X ) ⊂ R
K. Say X is thick if dim[conv(X )] = |K|.

The main result of Part II is the following:

Theorem A. Let X be a thick judgement space and let F : ∆(X )⇉ X be
an additive support rule. Then: F is regular, upper hemicontinuous and
satisfies reinforcement on ∆(X ) if and only if F is the median rule.

Most of the talk will be spent developing results which, while interesting in
themselves, are also key steps in the proof of Theorem A.
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Reinforcement and the median rule (6/36)

When combined with Theorem 3.2 from Part I, Theorem A becomes:

Theorem A*. Let X be a thick judgement space, and let F : ∆(X )⇉ X
be a judgement aggregation rule. Then:
The separable extension F ∗ is SME, upper hemicontinuous, regular, and
satisfies reinforcement on ∆〈X 〉 if and only if F is the median rule.

Ideally, we would like to eliminate the condition of regularity....

Conjecture. Let X be a thick judgement space, and let F : ∆(X )⇉ X be
a judgement aggregation rule. Then:
The separable extension F ∗ is SME, upper hemicontinuous and satisfies
reinforcement on ∆(X ∗) if and only if F is the median rule.

Note that UHC cannot be eliminated from the characterization...

Example. Let > be an arbitrary linear ordering on X . Define
FM,> : ∆(X )−→X by FM,>(µ) := max> [Median (X , µ)]. (That is: first
apply the median rule. Then break any ties using the ordering >.)
The separable extension F ∗

M,> is SME and satisfies reinforcement, but it is
not upper hemicontinuous. It is not the median rule.
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Reinforcement and the median rule (7/36)

Theorem A*. Let X be a thick judgement space, and let F : ∆(X )⇉ X
be a JA rule. Then: F ∗ is SME, UHC, regular, and satisfies reinforcement
on ∆〈X 〉 if and only if F is the median rule.

Let’s compare this with the classic result of Young and Levenglick (1978).
Let A be a finite set of alternatives.
Let P := {all linear preference orders over A}.
Let N

P be the set of all anonymous profiles over P (assigning a
nonnegative integer number of voters to each preference order).
A preference aggregation rule is a correspondence F : N

P ⇉ P.
Any permutation σ : A−→A induces a bijection σ† : P−→P, and from
there, a bijection σ∗ : N

P−→N
P .

The rule F is neutral if F ◦ σ∗ = σ† ◦ F for any permutation σ : A−→A.
The rule F is Condorcet admissible if all the nearest-neighbour orderings
produced by F always agree with majority view.
Theorem. (Y&L) A preference aggregation rule is neutral, Condorcet
admissible, and satisfies reinforcement if and only if it is the Kemeny rule.
(Note: for an abstract JA problem, ‘neutrality’ does not make sense.)
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Theorem A proof strategy (8/36)

Theorem A. Let X be a thick judgement space, and let F : ∆(X )⇉ X be
a judgement aggregation rule. Then:
F is regular, upper hemicontinuous and satisfies reinforcement on ∆(X ) if
and only if F is the median rule.
Proof strategy: “⇐=” is straightforward computation.
“ =⇒ ”

1.
(
Additive representation & upper hemicontinuity

)
=⇒

(
F = Fφ for some continuous gain function φ : [−1, 1]−→R

)
.

2. Reinforcement implies that φ is linear.

Plan of talk:

1. Uniqueness of gain function (Theorem B).

2. From upper hemicontinuity to continuity (Theorems C-F).

3. Homogeneous rules and neutral reinforcement (Theorem G).

4. Proof sketches for the aforementioned results and Theorem A.

5. (Time permitting) Proof of some results from Part I.
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Uniqueness and continuity of the additive representation(9/36)

Recall: Any separable, supermajoritarian efficient judgement aggregation
rule F is contained in some additive support rule Fφ (for some hyperreal
gain function φ : [−1, 1]−→ ∗

R). Also, if F is UHC, then F = Fφ.

◮ Question 1. How unique is this representation? That is: given two
gain functions ψ and φ, how ‘similar’ must they be if Fφ = Fψ?

◮ Question 2. When is the gain function φ real-valued and continuous?
How is this related to the upper hemicontinuity of Fφ?

The answer to these questions depends upon the structure of X .
For example, if X is supermajoritarian determinate, then for any φ and

ψ, we have Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ).
In particular, Median(X , µ)=LexiMin(X , µ) for all µ ∈ ∆(X ).
Thus, the additive representation is far from unique, and the continuity

of φ is not necessary for the upper hemicontinuity of Fφ.
Thus, φ is forced to be unique (and continuous) only to the extent that

X deviates from supermajoritarian determinacy.
Also, we shall see that the uniqueness and continuity of φ can only be

established in a subset Rφ
X ⊆ [−1, 1], the ‘domain of robust tradeoffs’...
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The boundary set oBφx,y (10/36)

For any x, y ∈ X , we define K±(x, y) := {k ∈ K; xk 6= yk}.

For example, suppose K = {1, 2, 3, 4, . . . ,K}.
If x = (−1,−1,−1, u, v ,w , . . .) and y = (1, 1, 1, u, v ,w , . . .), then
K±(x, y) = {1, 2, 3}.

Let C := conv(X ) ⊆ R
K. Then µ̃ ∈ C for all µ ∈ ∆(X ).

Thus, for any odd gain function φ : [−1, 1]−→ ∗
R, the additive support rule

Fφ can be reinterpreted as a function Fφ : C ⇉ X , defined by
Fφ(c) := argmax

x∈X
(x • φ(c)), for all c ∈ C. (Here, φ(c) := (φ(ck))k∈K.)

For any x ∈ X , define Cφx := {c ∈ C ; x ∈ Fφ(c)} (the ‘preimage’ of x).

Let A be the affine subspace of R
K spanned by C, and let int (C) be the

relative interior of C as a subset of A. (If X is thick, then this is just the
interior of C as a subset of R

K).

Finally, for any x, y ∈ X , define oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}.
(The ‘interior boundary’ between x and y. This set might be empty.)
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To visualize this, suppose that X = {w, x, y, z, . . .}.
Again, suppose K = {1, 2, 3, 4, . . . ,K}, x = (−1,−1,−1, u, v ,w , . . .), and
y = (1, 1, 1, u, v ,w , . . .), so that K±(x, y) = {1, 2, 3}.
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{1, 2, 3} are allowed to vary, while coordinates {4, 5, 6, . . . ,K} are held fixed
at some values a, b, c , . . ..



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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Not in conv(X)

Here we show a section through the cube [−1, 1]K, where the coordinates
{1, 2, 3} are allowed to vary, while coordinates {4, 5, 6, . . . ,K} are held fixed
at some values a, b, c , . . ..
Suppose the orange region is the part of this section which is not in C.



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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In conv(X)

Here we show a section through the cube [−1, 1]K, where the coordinates
{1, 2, 3} are allowed to vary, while coordinates {4, 5, 6, . . . ,K} are held fixed
at some values a, b, c , . . ..
Suppose the orange region is the part of this section which is not in C.
Thus, the grey region represents a section through C.



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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Suppose the brown region represents a section through Cφw...
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Suppose the brown region represents a section through Cφw...
...and suppose the green region represents a section through Cφz .
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Suppose the red region represents a section through Cφx ...



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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Cy

Suppose the red region represents a section through Cφx ...
...and suppose the blue region represents a section through Cφy .



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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Then the purple triangle represents a section through Cφx ∩ Cφy .



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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Then the purple triangle represents a section through Cφx ∩ Cφy .

Thus, the interior of this purple triangle represents a section through oBφx,y.



Recall: C := conv(X ) and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}}
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y

x

y

oBφ
x,y

Then the purple triangle represents a section through Cφx ∩ Cφy .

Thus, the interior of this purple triangle represents a section through oBφx,y.

We shall see later that, if Fφ is upper hemicontinuous, then the sets oBφx,y
alone completely determine the behaviour of Fφ (Proposition H).



K±(x, y) = {k ∈ K; xk 6= yk} and oBφx,y = {c ∈ int (C); Fφ(c) = {x, y}}.

For all k ∈ K±(x, y), let Rk
x,y :=projection of oBφx,y onto the kth coordinate.

Finally, define

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y

(a subset of [−1, 1]).

Lemma. Let X be any judgement space, and let φ : [−1, 1]−→ ∗
R be any

gain function such that Fφ is upper hemicontinuous. If X is not

supermajoritarian determinate, then Rφ
X is a nonempty open set.

(In particular, this holds if X thick and non-proximal).
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Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Uniqueness of the gain function (13/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Theorem B. Let φ : [−1, 1]−→R and ψ : [−1, 1]−→R be odd, continuous,
real-valued gain functions. Let X be a thick judgement space, such that
Rφ

X ∪ {0} is connected. Then:
Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X ) if and only if there is some scalar

s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X .

Interpretation: The behaviour of Fφ on ∆(X ) uniquely determines the

gain function φ (up to positive scalar multiplication) inside the region Rφ
X .

However, outside of Rφ
X , the gain function φ can be redefined arbitrarily,

without changing the behaviour of Fφ.



Continuity implies upper hemicontinuity (14/36)

Recall, a judgement aggregation rule F : ∆(X )⇉ X is upper
hemicontinuous (UHC) if, for any sequence µn−−−−n→∞−→µ ∈ ∆(X ), if
x ∈ F (µn) for all n ∈ N, then x ∈ F (µ).

Theorem C. If φ : [−1, 1]−→R is continuous, then the additive support
rule Fφ is upper hemicontinuous on ∆(X ), for any judgement space X .

Question. Is this theorem still true for φ : [−1, 1]−→ ∗
R?

Answer. It depends on what you mean by “continuous”.

◮ If you mean “continuous” relative to the order topology on ∗
R, then

no non-constant function φ : [−1, 1]−→ ∗
R can be continuous.

◮ If you mean “continuous” relative to the subspace topology on the
image φ[−1, 1] ⊂ ∗

R, then Theorem C is still true.
However, in any such φ can be converted to a real-valued function
through some rescaling. So this is not a useful extension of Theorem C.

Question. Is the converse of Theorem C true?
Answer. Not quite...
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Upper hemicontinuity implies continuity? (15/36)

Let φ : [−1, 1]−→R be a gain function, and X a judgement space. Recall:

Rφ
X :=

⋃

x,y∈X
d(x,y)≥3

⋃

k∈K±(x,y)

Rk
x,y ⊆ [−1, 1].

Also, recall that X is thick if dim[conv(X )] = |K|.

Proposition D Let φ : [−1, 1]−→R be any real-valued gain function.
If X is a thick judgement space, and Fφ : ∆(X )⇉ X is upper

hemicontinuous, then φ must be continuous on Rφ
X .

Does upper hemicontinuity imply that φ must be continuous and/or
real-valued on all of [−1, 1]? In general, no.

Proposition E. Let M ∈ N, and let X pr

M be the permutahedron on M
alternatives. Let φ : [−1, 1]−→ ∗

R be a gain function such that φ is
continuous, real-valued, and unbounded on

(
−1 + 2

M
, 1 − 2

M

)
, and φ is

infinite on
[
−1, −1 + 2

M

]
⊔

[
1 − 2

M
, 1

]
. Then Fφ is upper hemicontinuous

on ∆(X pr

M ).

Thus, the strict converse of Theorem C is false. Instead, we have....
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Proposition E. Let M ∈ N, and let X pr
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Continuity vs. upper hemicontinuity (16/36)

Theorem F. Let X be a thick judgement space. Let φ : [−1, 1]−→ ∗
R be a

gain function such that Fφ : ∆(X )⇉ X is upper hemicontinuous and

Rφ
X 6= ∅.

(a) Let R ⊆ Rφ
X be a connected component of Rφ

X , and fix r1, r2 ∈ R
with 0 < r1 < r2. Define φ : R−→R by

φ(r) := st

(
φ(r) − φ(r1)

φ(r2) − φ(r1)

)
,

for all r ∈ R. Then φ is continuous, real-valued, and increasing on R.

(b) Suppose there exists some s ∈ ∗
R such that the function st (s φ) is

continuous and real-valued on cl
(
Rφ

X

)
. Then there is a continuous,

real-valued gain function ψ : [−1, 1]−→R such that Fφ = Fψ.

(Theorem F(a) will be useful later in the proof of Theorem G, our
characterization of homogeneous rules.)
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Homogeneous Rules (17/36)

Fix some positive d ∈ ∗
R. For all r ∈ [−1, 1], define

φd(r) := sign(r) · |r |d =

{
rd if r ≥ 0;

−|r |d if r ≤ 0.

(Note: φd is well-defined in ∗
R even if d is infinite or infinitesimal.)

Then define Hd(X , µ) := Fφd
(X , µ). (a ‘homogeneous’ rule)

Example: H1(X , µ) = Median (X , µ).
Proposition: Let X be any judgement space, and let µ ∈ ∆(X ).

(a) lim
d→∞

Hd(X , µ) = LexiMin (X , µ).

(b) If ∞ ∈ ∗
R is any positive infinite hyperreal, then

H∞(X , µ) = LexiMin (X , µ).
(c) lim

d→0
Hd(X , µ) ⊆ Slater (X , µ). (Generally, strict inclusion.)
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Example: H1(X , µ) = Median (X , µ).
Proposition: Let X be any judgement space, and let µ ∈ ∆(X ).

(a) lim
d→∞

Hd(X , µ) = LexiMin (X , µ).

(b) If ∞ ∈ ∗
R is any positive infinite hyperreal, then

H∞(X , µ) = LexiMin (X , µ).
(c) lim

d→0
Hd(X , µ) ⊆ Slater (X , µ). (Generally, strict inclusion.)



Neutral Reinforcement & Homogeneous rules (18/36)

For any x, y ∈ X , let δx,y be the profile such that δx,y(x) := 1
2 =: δx,y(y),

whereas δx,y(z) := 0 for all z ∈ X \ {x, y}.
Idea: δx,y is a population evenly split between x and y.

An aggregation rule F : ∆(X )⇉ X satisfies neutral reinforcement on X
if, for any x, y ∈ X and µ ∈ ∆(X ), if F (µ) = {x, y}, then
F (rµ+ (1 − r)δx,y) = {x, y} for all r ∈ (0, 1].

Idea: If x and y are the only winning alternatives, and we mix the
population with a new population which is evenly split between x and y,
then x and y should remain the only winning alternatives.

Example: Slater, Leximin, Median, and Hd (for any d > 0) satisfy neutral
reinforcement.

Note. (Reinforcement) =⇒ (neutral reinforcement), but not conversely.

Theorem G. Let X be a thick judgement space, and let F : ∆(X )⇉ X be
a judgement aggregation rule. F is regular, upper hemicontinuous and
satisfies neutral reinforcement on ∆(X ) if and only if F = Hd for some
d ∈ (0,∞).
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Proof sketches



Let X be a judgement space, and let C := conv(X ).
Let φ : [−1, 1]−→ ∗

R be any gain function. For any x, y ∈ X , recall that

Cφx := {c ∈ C ; x ∈ Fφ(c)}, Bφx,y := Cφx ∩ Cφy ,

and oBφx,y := {c ∈ int (C) ; Fφ(c) = {x, y}} ⊆ Bφx,y.

The proofs of Theorems A and E depend on the following result:
Proposition H. Let φ, ψ : [−1, 1]−→ ∗

R be gain functions. Suppose the
rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch. “ =⇒ ” is obvious: if Fψ = Fφ, then oBφx,y = oBψx,y for all

x, y ∈ X , and hence, oBφx,y ⊆Bψx,y.
“⇐=” First, why only require the RHS for x, y ∈ X with d(x, y) ≥ 3?
Reason: If d(x, y) ≤ 2, then supermajoritarian efficiency alone dictates that
Fφ and Fψ must behave identically when choosing between x and y.
(If d(x, y) = 1 and xk = 1 while yk = −1, then any SME rule must choose
x over y if µ̃k > 0. If d(x, y) = 2 and xj = xk = 1 while yj = yk = −1,
then any SME rule must choose x over y if µ̃j + µ̃k > 0.)
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Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Proposition H. Let φ, ψ : [−1, 1]−→ ∗
R be gain functions. Suppose the

rules Fφ : ∆(X )⇉ X and Fψ : ∆(X )⇉ X are UHC. Then(
Fψ(µ) = Fφ(µ) for all µ ∈ ∆(X )

)
⇐⇒

(
oBφx,y ⊆Bψx,y ∪ (C \ Cψx ) for every x, y ∈ X with d(x, y) ≥ 3

)
.

Proof sketch “⇐=” (continued). For any x ∈ X it can be shown that:

(a) Cφx and Cψx are connected, and are the closures of their interiors.

(b) ∂Cφx =
⋃

y∈X\{x}

Bφx,y =
⋃

y∈X\{x}

cl
(

oBφx,y

)
(and likewise for Cψx .)

If the RHS is true, then Fact (b) can be used to show that

∂Cφx ⊆ cl
(
C \ Cψx

)
for all x ∈ X . Thus, either:

(1) int
(
Cψx

)
⊆ int

(
Cφx

)
; or (2) int

(
Cψx

)
⊆ C \ Cφx ; or

(3) Cψx is ‘cut in half’ by ∂Cφx .

Option (3) is excluded by Fact (a). Option (2) is impossible because
Fφ(x) = Fψ(x) = x. This leaves only Option (1). Now Fact (a) implies that

Cψx ⊆ Cφx . If this holds for all x ∈ X , it is easy to deduce that Fψ = Fφ.



Theorem B. Let φ, ψ : [−1, 1]−→R be odd, continuous gain functions. Let

X be a thick judgement space, such that Rφ
X ∪ {0} is connected. Then:

(Fφ(X , µ) = Fψ(X , µ) for all µ ∈ ∆(X )) ⇐⇒

(There exists s > 0 such that ψ(r) = s φ(r) for all r ∈ Rφ
X ).

Proof sketch. “⇐=” Let x, y ∈ X , with d(x, y) ≥ 3. We claim that
oBφx,y ⊆ Bψx,y ∪ (C \ Cψx ). Let b ∈ oBφx,y. Then

(x − y) • ψ(b) =
∑

k∈K±(x,y)

(xk − yk)ψ(bk)
(†)

∑

k∈K±(x,y)

(xk − yk) s φ(bk)

= s
∑

k∈K±(x,y)

(xk − yk)φ(bk) = s (x − y) • φ(b)
(∗)

0. (⋄)

Here, (†) is because ψ(r) = s φ(r) for all r ∈ Rφ
X , while bk ∈ Rφ

X for all

k ∈ K±(x, y), because d(x, y) ≥ 3. Next, (∗) is because b ∈ oBφx,y.
Thus, x • ψ(b) = y • ψ(b). Now, if x • ψ(b) ≥ z • ψ(b) for all

z ∈ X , then statement (⋄) implies that Fψ(b) ⊇ {x, y}, so b ∈ Bψx,y.
Otherwise, if x • ψ(b) < z • ψ(b) for some z ∈ X , then x 6∈ Fψ(b), so

b ∈ C \ Cψx . Thus, oBφx,y ⊆ Bψx,y ∪ (C \ Cψx ), for all x, y ∈ X with
d(x, y) ≥ 3. Thus, Proposition H says that Fφ(X , µ) = Fψ(X , µ) for all
µ ∈ ∆(X ).
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φ(b1) =
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j=2

φ(bj) and ψ(b1) =
J∑

j=2

ψ(bj). (2)

Finally, define b̃ := (φ(bj))
J
j=1 ∈ R

J , and let B̃x,y := {b̃; b ∈ oBφx,y}. Define

τ := ψ ◦ φ−1. Then for all b̃ ∈ B̃x,y, equation (2) becomes:

b̃1 =

J∑

j=2

b̃j and τ(b̃1) =

J∑

j=2

τ(b̃j)
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Claim 2. Fγ = Fφ for some real-valued, continuous gain function φ.
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Claim 2. Fγ = Fφ for some real-valued, continuous gain function φ.
Proof sketch. Use Theorem F(a) to deduce that st (γ) (suitably rescaled)
is real-valued and continuous in [−S ,S ], for some S > 0.
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Separability + SME =⇒ additive (finite populations) (29/36)

For any N ∈ N, let IN := {0, 1
N
, 2

N
, . . . , N−1

N
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Formal definition of ∗
R: ultrafilters (31/36)

Let I be an infinite set.

Let P := the power set of I.

A free filter is a subset U ⊂ P (i.e. a collections of subsets of I) with the
following properties:

◮ (F0) No finite subset of I is an element of U. (Hence, ∅ 6∈ U.)
◮ (F1) If U ,V ∈ U, then U ∩ V ∈ U.
◮ (F2) For any U ∈ U and P ∈ P, if U ⊆ P, then P ∈ U.

Example: The set of all co-finite subsets of I is a free filter.
A free filter U is a free ultrafilter if it also satisfies:
◮ (UF) For any P ∈ P, either P ∈ U or P∁ ∈ U (but not both).

Idea: Elements of U are ‘large’ subsets of I; if U ∈ U and a certain
statement holds for all i ∈ U , then this statement holds for ‘almost all’
i ∈ I. (In particular, axioms (F0) and (UF) imply that I ∈ U.)

Ultrafilter lemma. Any free filter can be extended to a free ultrafilter.
Proof. Use Zorn’s Lemma.
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Example: The set of all co-finite subsets of I is a free filter.
A free filter U is a free ultrafilter if it also satisfies:
◮ (UF) For any P ∈ P, either P ∈ U or P∁ ∈ U (but not both).

Idea: Elements of U are ‘large’ subsets of I; if U ∈ U and a certain
statement holds for all i ∈ U , then this statement holds for ‘almost all’
i ∈ I. (In particular, axioms (F0) and (UF) imply that I ∈ U.)

Ultrafilter lemma. Any free filter can be extended to a free ultrafilter.
Proof. Use Zorn’s Lemma.
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Formal definition of ∗
R as an ultraproduct (32/36)

For any r , s ∈ R
I , define r �

U
s if and only if {i ∈ I; ri ≥ si} ∈ U.

This yields a complete preorder (�
U

) on R
I .

Let ( ≈
U

) be the symmetric part of ( �
U

) (an equivalence relation on R
I).

Thus, r ≈
U

s if they agree ‘almost everywhere’. Define ∗
R := R

I/( ≈
U

).
For any r ∈ R

I , let ∗r denote the equivalence class of r in ∗
R.

Define linear order ( >) on ∗
R, by ( ∗r > ∗s) ⇔ (r ≻

U
s), for all ∗r , ∗s ∈ ∗

R.

For any r , s ∈ R
I , we define r + s, r · s, r/s, and r s in R

I by: (r + s)i
:= ri + si , (r · s)i := ri · si , (r/s)i := ri/si , and (r s)i := r si

i , ∀ i ∈ I.
Then, for any ∗r , ∗s ∈ ∗

R, we define ∗r + ∗s := ∗(r + s), ∗r · ∗s := ∗(r · s),
∗r/ ∗s := ∗(r/s), and ∗r

∗s := ∗(r s).
Then ( ∗

R,+, ·, >) is a linearly ordered field. Exponentiation works normally.
Furthermore, R can be embedded as an ordered subfield of ∗

R by mapping
any r ∈ R to the element ∗r in ∗

R, where r := (r , r , r , . . .) ∈ R
I .

A positive element ∗r ∈ ∗
R is infinitesimal if, for any real ǫ > 0, we have

0 < ∗r < ∗̄ǫ (that is: {i ∈ I; 0 < ri < ǫ} ∈ U.). Likewise, ∗r is infinite if,
for any M ∈ N, we have ∗r > ∗M (that is: {i ∈ I; ri > M} ∈ U).
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Claim 1. For any (ω,Y) ∈ I, ∃ increasing function φω,Y : Qω−→R such
that F (Y, µ) ⊆ Fφω,Y

(Y, µ) for all Y ∈ Y and µ ∈ ∆ω(Y).
Let T ⊂ ∆(X) be any finite subset. That is, T := {(X1, µ1), . . . ,
(XN , µN)}, where X1, . . . ,XN ∈ X, and µn ∈ ∆(Xn) for all n ∈ [1 . . .N].
Define IT := {(ω,Y) ∈ I; Xn ∈ Y and µn ∈ ∆ω(Xn) for all n ∈ [1 . . .N]}.
Then define F := {J ⊆ I; IT ⊆ J for some finite T ⊂ ∆(X)}.
Claim 2. F is a free filter. (Proof is straightforward.)
Let U be a free ultrafilter containing F. For any (X , µ) ∈ ∆(X), Claim 1
says F (X , µ) ⊆ Fφω,Y

(X , µ), for all (ω,Y) ∈ I{(X ,µ)}. But I{(X ,µ)} ∈ U;
thus, F (X , µ) ⊆ Fφω,Y

(X , µ), for ‘almost all’ (ω,Y) ∈ I.

Let ∗
R := R

I/U. The system {φω,Y}(ω,Y)∈I defines an odd, increasing
function φ : [−1, 1]−→ ∗

R, such that F (X , µ) ⊆ Fφ(X , µ), ∀(X , µ) ∈ ∆(X).



Theorem 3.2. Let X be any judgement monoid, and let F be a separable
judgement aggregation rule on X.
(a) The rule F is SME on ∆(X) if and only if there is a hyperreal field ∗

R

and an odd, increasing function φ : [−1, 1]−→ ∗
R such that

F (X , µ) ⊆ Fφ(X , µ) for all X ∈ X and µ ∈ ∆(X ).
(b) In this case, for all X ∈ X, there is a dense open subset O ⊆ ∆(X )
such that F (X , µ) = Fφ(X , µ) and is single-valued for all µ ∈ O.
(c) Let F and φ be as in part (a). Fix X ∈ X, and suppose F is upper
hemicontinuous on ∆(X ). Then F (X , µ) = Fφ(X , µ) for all µ ∈ ∆(X ).
Proof sketch.
(b) follows from (a) because φ is strictly increasing, so Fφ is monotone: for
any µ ∈ ∆(X ) and any x ∈ Fφ(µ), the slightest increase in the support for
x breaks the tie and makes x the unique winner.



Theorem 3.2. Let X be any judgement monoid, and let F be a separable
judgement aggregation rule on X.
(a) The rule F is SME on ∆(X) if and only if there is a hyperreal field ∗

R

and an odd, increasing function φ : [−1, 1]−→ ∗
R such that

F (X , µ) ⊆ Fφ(X , µ) for all X ∈ X and µ ∈ ∆(X ).
(b) In this case, for all X ∈ X, there is a dense open subset O ⊆ ∆(X )
such that F (X , µ) = Fφ(X , µ) and is single-valued for all µ ∈ O.
(c) Let F and φ be as in part (a). Fix X ∈ X, and suppose F is upper
hemicontinuous on ∆(X ). Then F (X , µ) = Fφ(X , µ) for all µ ∈ ∆(X ).
Proof sketch.
(b) follows from (a) because φ is strictly increasing, so Fφ is monotone: for
any µ ∈ ∆(X ) and any x ∈ Fφ(µ), the slightest increase in the support for
x breaks the tie and makes x the unique winner.
(c) follows from (b) through a continuity argument.



Thank you.

These presentation slides are available at

<http://euclid.trentu.ca/pivato/Research/SMEslides.pdf>
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