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1 Introduction

This paper studies the determinants of the direction of technical change and highlights
their implications for economic growth and economic policy. More precisely, we focus
on endogenous capital- and labor-augmenting technical change and embed this phe-
nomenon into the one-sector neoclassical growth model of Ramsey (1928), Cass (1965),
and Koopmans (1965). To accomplish this, we develop a novel micro-foundation of the
competitive production sector that allows for endogenous innovation investments.1 It
rests on the idea that the fabrication of output requires tasks to be performed. Some tasks
are carried out by capital, others by labor. Innovation investments increase the produc-
tivity of capital and labor in the performance of their respective tasks. These investments
are associated with new technological knowledge that accumulates over time so that eco-
nomic growth becomes sustainable in the long-run.

Our main findings may be summarized as follows. First, a key determinant of the direc-
tion of technical change is the relative scarcity of “efficient capital” with respect to “effi-
cient labor” measured by the ratio of these two factors of production at the beginning of
each period. This ratio determines relative factor prices and the relative profitability of
innovation investments. If a factor of production becomes scarcer, then it also becomes
more expensive, i. e., its price increases relative to the price of the other factor. Accord-
ingly, an investment enhancing the productivity of this factor is more advantageous and
the direction of technical change shifts towards this factor. It is in this sense that our
analysis provides a formal interpretation of Hicks’ famous assertion according to which
technical change is directed to economizing the use of a factor that has become relatively
more expensive (see, Hicks (1932), pp. 124-125).

Second, along the transition towards the steady state, the growth rate of the economy
reflects both capital- and labor-augmenting technical progress. However, in steady state
capital-augmenting technical progress vanishes. Hence, in the long run, the growth rate
of per-capita variables reflects only labor-augmenting technical change.2 The reason for
this finding is closely related to the extension of Uzawa’s steady-state growth theorem
devised in Irmen (2013b). Roughly speaking, in steady state technical progress must
be labor-augmenting since capital accumulates and the economy’s net output function

1By now it is well understood that endogenous technical change that results from innovation investments
may arise in a competitive economy even in steady state (see, e. g., Boldrin and Levine (2008), Hellwig and
Irmen (2001), or Zeira (1998)). However, none of these contributions addresses the issue of endogenous
capital- and labor-augmenting technical change.

2See, e. g., Klump, McAdam, and Willman (2007) for an empirical study of the US economy that confirms
this pattern of technical change for the period 1953 to 1998.
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exhibits constant returns to scale in capital and labor. Moreover, steady-state technical
progress has not even a representation as labor-augmenting because the net output func-
tion cannot be written in the Cobb-Douglas form.

The third set of results relates to the steady state and its comparative-static properties.
We show that the steady state is a “balanced growth path” that satisfies all of Kaldor’s
famous stylized facts (see, Kaldor (1961)). Moreover, the steady-state growth rate of all
per-capita variables is predicted to increase in parameters capturing the positive effect
of institutions, technical infrastructure, or geography on the efficiency of the production
sector. However, other parameters that often bring about steady-state growth effects
such as the discount factor of the representative household, the size of the population
or its growth rate have no impact on the steady-state growth rate.3 The mere feasibility
of capital-augmenting technical change is shown to be the reason for this. Due to its
presence, the steady-state growth rates of capital- and labor-augmenting technical change
are determined by the properties of the production sector alone.

Fourth, we analyze the local stability properties of the steady state and establish saddle-
path stability in the state space. Interestingly, this finding does not hinge on the elasticity
of substitution between efficient capital and efficient labor. The relative scarcity mea-
sured by the ratio of efficient capital with respect to efficient labor is a key stabilizing
force. In steady state, this ratio and, therewith, the direction of technical change are
constant. A small shock that lowers this ratio renders efficient capital relatively scarcer
and shifts the direction of technical change towards more capital-augmenting and less
labor-augmenting technical progress. This adjustment and the concomitant effect of cap-
ital accumulation tend to reduce the relative scarcity of efficient capital and to move the
economy back towards its steady state.

The fifth set of results concerns the determinants of the functional income distribution.
We first characterize the equilibrium elasticity of substitution (EES) that determines the
qualitative effect of changes in the capital-labor ratio on the (relative) factor shares that
accrue to capital owners and wage earners. In principle this elasticity is expected to reflect
induced technical change. However, we establish that technical change has no first-order
effect on equilibrium factor prices at a given capital-labor ratio.4 Second, in line with

3In contrast to many other endogenous growth models the economy studied in the present paper exhibits
steady-state growth without scale effects. Indeed, in the terminology of Jones (2005) and unlike the first-
generation models with endogenous technical change authored by Romer (1990), Grossman and Helpman
(1991), and Aghion and Howitt (1992), there are no “strong” scale effects as the steady-state growth rate
is independent of the size of the population. Moreover, unlike the “semi-endogenous” technical change
models of Jones (1995), Kortum (1997), or Segerstrom (1998) there are no “weak” scale effects either since the
level of steady-state per-capita income does not depend on population size.

4In the parlance of Acemoglu (see, Acemoglu (2007), Definitions 5 and 6) technical change has no relative
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common intuition, we show that a value of the EES equal to unity is critical. For greater
(smaller) values of the EES the labor share will fall (increase) in response to an increase
in the capital-labor ratio. However, our findings emphasize that the EES depends on the
state of the economy even if the production function of the final good exhibits a constant
elasticity of substitution. Moreover, depending on the economy’s state, the EES may fall
short of or exceed unity.

Our analysis also highlights the important distinction between factor shares and the func-
tional income distribution where the latter accounts for the depreciation of capital.5 This
distinction matters since parameters like the household’s discount factor do not affect
the former but the latter. More precisely, we find that due to the presence of capital-
augmenting technical change the steady-state factor shares are independent of household
characteristics. However, once the depreciation of capital is taken into account household
characteristics matter for the functional income distribution. In particular, we show that,
ceteris paribus, the relative income of capital owners in steady state is lower in a more pa-
tient economy. This reflects adjustments in the steady-state level of capital-augmenting
technological knowledge that increase the depreciation rate per efficiency unit of capital.

Sixth, we deal with three different fiscal policies and study their implications for the
steady-state growth rate of the economy and its functional income distribution. First, we
consider a linear tax on capital. We find that the steady-state growth rate of the econ-
omy is unaffected by the tax. This reflects the fact that this growth rate is determined
within the production sector. The tax on capital also reduces the relative income of cap-
ital owners. However, the direct effect of the tax is shown to be mitigated by a decline
in the depreciation rate per efficiency unit of capital. Second, we study the consequences
of a policy that pays a subsidy to innovation investments that increase the productivity
of capital. This policy is shown to increase the steady-state growth rate of the economy
whereas its impact on the functional income distribution is indeterminate in general.
Finally, we turn to a policy that subsidizes innovation investments that increase the pro-
ductivity of labor. We show that this policy increases the steady-state growth rate of the
economy. Moreover, independently of the EES, this policy moves the functional income
distribution in favor of capital owners.

Finally, we conduct a welfare analysis. We find that the equilibrium allocation is not

bias and, therefore, there is no weak relative equilibrium bias either. In Acemoglu’s framework this possibility
arises only if the production function of firms is Cobb-Douglas. In our framework, it is shown to arise as an
equilibrium phenomenon.

5See, Bridgman (2014) and Karabarbounis and Neiman (2014a) for two recent analyses inquiring the role
of capital depreciation for the functional income distribution. The theoretical arguments are, however, not
based on models where technical change arises endogenously.
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Pareto efficient. Innovation investments in a given period increase the stock of knowl-
edge that is available for subsequent innovative activity and create inter-temporal knowl-
edge spill-overs which are not taken into account by private firms. A benevolent social
planner may choose a policy of investment subsidies that implements the Pareto efficient
allocation. We fully characterize the policy that implements the efficient steady state. It
involves a subsidization of both kinds of innovation investments at different rates.

The remainder of this paper is organized as follows. Section 2 relates the paper to the
relevant literature. Section 3 presents the model. In particular, we detail the novel
micro-foundation of the competitive production sector. Section 4 studies the dynamic
competitive equilibrium, i. e., it defines the equilibrium (Section 4.1), sets up the canon-
ical dynamical system (Section 4.2), provides the steady state analysis (Section 4.3), and
clarifies the role of capital-augmenting technical change for our findings (Section 4.4).
The focus of Section 5 is on the positive implications of endogenous capital- and labor-
augmenting technical change. Section 5.1 studies the determinants of the functional in-
come distribution in this context. Section 5.2 derives the implications of fiscal policy for
long-run growth and for the functional income distribution. Policies considered involve
a linear taxation of capital (Section 5.2.1), a subsidy to capital-augmenting innovation
investments (Section 5.2.2), and a subsidy to labor-augmenting innovation investments
(Section 5.2.3). Section 6 discusses the normative implications of endogenous capital- and
labor-augmenting technical change. Here, we study the choices of a benevolent planner
(Section 6.1), solve for the optimal steady-state allocation (Section 6.2), and show that it
can be implemented with an appropriate choice of subsidies to innovation investments
(Section 6.3). Section 7 concludes. All proofs are contained in Section 8, the Appendix.

2 Related Literature

The present paper builds on and contributes to several strands of the modern literature
on endogenous technical change. Since its inception in the 1980s this literature has largely
focussed on models where - by design - endogenous technical change is confined to be
labor-augmenting. With the exception of Funk (2002), Acemoglu (2003b), and our own
work (Irmen (2011) and Irmen (2013a)), the analysis of the determinants and the con-
sequences of endogenous capital- and labor-augmenting technical change has received
little attention. These recent studies have their roots in the so-called induced innovations
literature of the 1960s. This literature constitutes the first attempt to systematically ad-
dress the question of endogenous capital- and labor-augmenting technical change.6 In

6Important articles of this literature include von Weizsäcker (1962), Kennedy (1964), Samuelson (1965),
Samuelson (1966), or Drandakis and Phelps (1966).
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light of these contributions it is the purpose of this section to clarify the main conceptual
differences of our approach and to highlight the new results we derive in the present
paper.

Arguably, there are three main reasons for which the induced innovations literature of the
1960s has been criticized: (i) the arbitrary optimization problem solved by firms to deter-
mine the endogenous growth rate, (ii) the ad hoc assumption of an exogenous Kennedy-
von Weizsäcker Innovation Possibilities Frontier (IPF), and (iii) the fact that technical
progress is costless.7 Our approach addresses all of these concerns while maintaining the
assumption of a competitive economy.

First, in our setting, capital- and labor-augmenting technical change results from a well-
defined profit-maximization problem solved by price-taking firms. Second, the resulting
choices give rise to an equilibrium innovation possibility frontier (EIPF). Hence, in equi-
librium our economy faces a similar trade-off as in the literature of the 1960s. However,
unlike the exogenous and concave IPF stipulated in the old literature the EIPF is endoge-
nous and typically a convex function.

Third, in our framework technical change has a cost in terms of current output. This
begs the question about how these costs are paid for in a competitive equilibrium. To
clarify this issue in a heuristic way consider a competitive representative firm with access
to an aggregate production function F(BK, AL) with constant returns to scale in both
arguments and strictly positive, yet declining marginal products. Here, B and A denote
the stocks of capital-augmenting and of labor-augmenting technological knowledge, K is
the capital stock, and L is employed labor. In addition, let R denote the price of capital,
w the price of labor, pB the price of capital-augmenting technological knowledge, and
pA the price of labor-augmenting technological knowledge. Then, for the competitive
representative firm that takes (R, w, pB, pA) ∈ R4

++ as given the problem

max
(K,L,B,A)∈R4

+

V = F(BK, AL)− RK− wL− pBB− pA A (2.1)

has no solution: with constant returns to scale, the remuneration of more than two of
the four factors of production will exceed aggregate output. The usual way to address

7See, e. g., Nordhaus (1973), Burmeister and Dobell (1970), Funk (2002), or Acemoglu (2003a). Funk (2002)
addresses the first concern. This author enriches the analytical framework of the induced innovations litera-
ture by providing a micro-foundation for the innovation process. Acemoglu (2003b) broadens the analytical
framework of Romer (1990) to allow for endogenous capital- and labor-augmenting technical change. This
approach addresses concern (i) with a micro-foundation of firm behavior involving imperfect competition.
As to concern (ii), the allocation of researchers is still subject to an exogenous innovation possibility frontier.
Moreover, - concerning (iii) - technical progress is only costly in terms of foregone current output if the man-
ufacturing sector and the research sector compete for labor which is not the case in the main setting studied
by Acemoglu.
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this problem involves monopolistic rents that redistribute total output in a way that all
factors of production receive a strictly positive remuneration (see, e. g., Romer (1990) or
Acemoglu (2003b)). In contrast, in the present paper we rely on a rent-sharing mechanism
that works under perfect competition.

The intuition for this mechanism comes in two steps. The first step derives the represen-
tative firm’s total cost for the use of the respective inputs in efficiency units, the second
step explains how an endogenous technology choice becomes feasible in the competitive
economy. To simplify we focus on efficient capital, BK. Mutatis mutandis, a similar line
of reasoning may be spelled out for efficient labor, AL.

As to step one, think of K as the total number of machines in the economy and of B as
an index of the quality of each of these machines. Then, the price of using BK reflects
two different components. First, there is the rental price, R, that the competitive firm
pays per machine, second there is the price pB per unit of B. The product pBB has then
an interpretation as the remuneration of the technological knowledge embodied in each
machine. Accordingly, the cost per machine is equal to R + pBB, and the total cost for the
firm working with K machines is (R + pBB)K. Similarly, the total cost of employing AL
units of efficient labor amounts to (w + pA A) L. Observe that these expressions of total
costs take prices and the level of B and A as exogenously given.

The second step adds features allowing for B and A to be treated as endogenous vari-
ables. Suppose the firm chooses B from a menu B ∈ [1, ∞) with corresponding prices
pB(B) where pB(1) = 0, p′B(B) > 0, and p′′B(B) > 0. Similarly, A may be chosen from a
menu A ∈ [1, ∞) with corresponding prices pA(A) where pA(1) = 0, p′A(A) > 0, and
p′′A(A) > 0. Then, the firm’s problem (2.1) becomes

max
(K,L,B,A)∈R4

+

V = F(BK, AL)− [R + pB(B)B]K− [w + pA(A)A] L, (2.2)

where V is jointly concave in (K, L, B, A) and strictly concave in (B, A). The correspond-
ing first-order (sufficient) conditions for an interior solution are

∂V
∂K

= BF1 − [R + pB(B)B] = 0, (2.3)

∂V
∂L

= AF2 − [w + pA(A)A] = 0, (2.4)

∂V
∂B

= F1 −
[
p′B(B) + pB(B)

]
= 0, (2.5)

∂V
∂A

= F2 −
[
p′A(A) + pA(A)

]
= 0, (2.6)

where F is evaluated at (BK, AL). Each condition equalizes the marginal benefit to the
marginal cost. The system (2.3) - (2.6) determines a unique solution involving R∗ =
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R (K, L), w∗ = w (K, L), B∗ = B (K, L), and A∗ = A (K, L). To see that this solution shifts
rents from capital and labor to remunerate capital- and labor-augmenting technological
knowledge use (2.3) and (2.4) to find

R∗ = B∗ [F1 − pB (B∗)] and w∗ = A∗ [F2 − pA (A∗)] , (2.7)

where here (and below) F is evaluated at (B∗K, A∗L). Hence, R∗ and w∗ are smaller than
the respective marginal product of capital and labor. Using (2.7) in (2.2) gives

V∗ = F− R∗K− w∗L− pB (B∗) B∗K− pA (A∗) A∗L

= F− B∗ [F1 − pB (B∗)]K− A∗ [F2 − pA (A∗)] L− pB (B∗) B∗K− pA (A∗) A∗L

= F− F1B∗K− F2A∗L = 0. (2.8)

The second line reveals that the remuneration of capital (labor) is reduced by the same
amount that capital-augmenting (labor-augmenting) technical knowledge earns. There-
fore, by Euler’s law, aggregate output is equal to the sum of all factor payments and
V∗ = 0. Hence, an endogenous choice of capital- and labor-augmenting technological
knowledge involving a cost of knowledge creation is feasible in a competitive environ-
ment. Section 3 below develops a complete micro-foundation along these lines.

Next, we relate our main findings to the contributions of the induced innovations lit-
erature that involve capital accumulation (e. g., von Weizsäcker (1962), Drandakis and
Phelps (1966), Samuelson (1966)), and to the more recent analysis of Acemoglu (2003b).

First, it is worth mentioning that these contributions exhibit a mechanism that links the
ratio of efficient capital to efficient labor to the direction of technical change. Moreover,
this link depends crucially on whether the elasticity of substitution between efficient cap-
ital and efficient labor is smaller or greater than unity. In particular, a decline of (increase
in) this ratio induces faster (slower) capital-augmenting technical progress only if the
elasticity of substitution falls short of unity. In contrast, in the present paper this response
of the direction of technical change obtains irrespective of the elasticity of substitution.

This difference can be traced back to the fact that in our setting the direction of technical
change is linked to the relative factor price ratio, R/w, whereas in the literature men-
tioned above the direction hinges on the ratio of the share of capital to the share of labor.
This distinction matters in the following way. If the relative scarcity of efficient capital
- measured by the ratio BK/AL - increases then the direction in which the ratio of the
factor shares moves hinges on the elasticity of substitution between efficient capital and
efficient labor. The same increase will, however, unequivocally lower the factor-price ra-
tio, R/w. In our analytical framework, this movement induces less capital- and more
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labor-augmenting technical change. To see this combine (2.3) with (2.5) and (2.4) with
(2.6). This gives

B · p′B(B) = R and A · p′A(A) = w,

where the left-hand sides increase in B and A, respectively. Hence, the conditions for a
profit-maximum deliver a functional relationship saying that an increase in R/w will al-
ways increases the ratio B/A. Hence, in our framework the direction of technical change
is linked to relative factor prices rather than to relative factor shares.

This latter property is not only intuitively appealing but also contributes to the local sta-
bility of the steady state of our dynamical system. This contrasts with the steady state in
the above-mentioned literature which is unstable if the elasticity of substitution exceeds
unity. Moreover, their off-steady-state dynamics exhibit fairly unreasonable properties.

Second, in line with the above-mentioned literature the steady state of our model exhibits
only labor-augmenting technical change. This is just as much due to the incentives that
competitive firms face as it is an artefact of the reduced form of the underlying model.8

Observe also that unlike the steady state in Acemoglu (2003b), there are no scale effects
in the present paper.

Third, we turn to the relationship between economic growth and the income distribu-
tion. We find that steady-state factor shares are invariant with respect to policies such
as the taxation of capital income. The corresponding finding in Acemoglu (2003b) is the
constancy of the ratio of factor shares that accrue in the production sector of his model.
However, it should be noted that - unlike Acemoglu (2003b) - our analysis incorporates
all incomes that accrue in the economy.9 Moreover, we emphasize that unlike factor
shares, the functional income distribution responds to policy changes and to changes in
inter-temporal preferences once the depreciation of capital is taken into account. We es-
tablish this finding for a linear tax on capital incomes and for a subsidy to innovation
investments that increases the productivity of capital or of labor.

Finally, it is worth mentioning that we contribute the first welfare analysis to the litera-
ture on endogenous capital- and labor-augmenting technical change. Due to two inter-
temporal externalities the competitive equilibrium allocation is not Pareto-efficient. In

8The same remark is true for the induced innovations literature and for Acemoglu (2003b). Indeed, as
shown in Irmen (2013b), the reduced form of each of these models satisfies the assumptions of Uzawa’s
steady-state growth theorem (Uzawa (1961)). Hence, steady-state growth must be labor-augmenting.

9In fact, the analysis of the income distribution in Acemoglu (2003b) neglects the wage incomes of re-
searchers. Moreover, it treats the dividends paid by the monopolists of labor-intensive intermediates as
labor income and not as capital income. Finally, the distinction between factor shares and the functional
income distribution does not arise here since capital does not depreciate.
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spite of the intricate equilibrium interdependency between capital- and labor-augmenting
technical change, we establish the subsidy rates that implement the Pareto-efficient steady
state.

3 The Model

We consider a competitive closed economy in an infinite sequence of periods t = 0, 1, 2, . . ..
The economy consists of a household sector and a production sector. In each period there
is a single final good that can be consumed or invested. If invested, it may either become
future capital or an input in contemporaneous innovation investments that raise the pro-
ductivity of capital or labor. Households supply labor and capital. Each period has a
market for all three objects of exchange. The final good serves as numéraire.

3.1 The Household Sector

The household sector is populated by a single representative household comprising one
member.10 In each period, the household cares about the level of consumption, Ct, and
supplies inelastically the labor endowment, L.

The per-period utility function is logarithmic, i. e., u (Ct) = ln Ct. Moreover, the house-
hold evaluates sequences of consumption {Ct}∞

t=0 according to

∞

∑
t=0

βt ln Ct. (3.1)

The household owns all firms and the capital stock. Since profits, i. e., dividends, vanish
in equilibrium, we do not explicitly account for the profit distribution. Capital is the only
asset in the economy. Capital at t, Kt, is installed at t− 1, and firms pay a real rental rate,
Rt, per unit of capital they work with. After use the capital stock decays at rate δK ∈ [0, 1].
Accordingly, the household’s flow budget constraint at t is given by

Kt+1 =
(

Rt + 1− δK
)

Kt + wtL− Ct, (3.2)

where wt is the real wage.

10To simplify the exposition we make a few assumptions that are innocuous with respect to our main
qualitative results. They include a constant household size, i. e., there is no population growth, an inelastic
labor supply, and an inter-temporal elasticity of substitution equal to unity. We discuss the detailed role of
these simplifying assumptions for our findings in the concluding Section 7.
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Given K0 > 0 and L > 0, the representative household maximizes (3.1) subject to (3.2),
Ct ≥ 0, Kt+1 ≥ 0, and an appropriate No-Ponzi Game condition by choosing a sequence
{Ct}∞

t=0 . By standard arguments, the solution to this problem satisfies for all t the flow
budget constraint (3.2), the Euler condition,

Ct+1

Ct
= β

(
Rt+1 + 1− δK

)
, (3.3)

and the transversality condition

lim
t→∞

βtC−1
t Kt+1 = 0. (3.4)

3.2 The Production Sector

3.2.1 Technology

The production sector has a continuum of identical, competitive firms of measure one.
Without loss of generality, the analysis proceeds through the lens of a single representa-
tive firm.

To produce output two types of tasks need to be performed. The first type needs capital,
the second labor as the only input. Denote by m ∈ R+ a task performed by capital, and
let n ∈ R+ be a task performed by labor. Further, let Mt and Nt denote the measure of
all tasks of the respective type performed at time t so that m ∈ [0, Mt] and n ∈ [0, Nt].
Tasks of the respective type are identical. Therefore, total output hinges only on Mt and
Nt. The production function F : R2

+ → R+ assigns the maximum output, Yt, to each pair
(Mt, Nt) ∈ R2

+, i. e.,

Yt = F(Mt, Nt), (3.5)

where F has constant returns to scale in its arguments and is C2 on R++ with F1 > 0 > F11

and F2 > 0 > F22.11 Let κt denote the period-t task intensity,

κt =
Mt

Nt
. (3.6)

Then, output in intensive form is F(κt, 1) ≡ f (κt), where f : R+ → R+, with f ′(κt) >

0 > f ′′(κt) for all κt > 0.

11Throughout, we denote derivatives of functions with a single argument either by a prime or by a sub-
script. Hence, the first derivative of f (x) is either f ′(x) or fx(x), its second derivative is either f ′′(x) or
fxx(x), and so on.
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At t, a task m requires kt(m) = 1/bt(m) units of capital whereas a task n needs lt(n) =

1/at(n) units of labor. Hence, bt(m) and at(n) denote the productivity of capital and
labor in the respective task. The levels of productivity are given by

bt(m) = Bt−1

(
1− δB

)
(1 + qB

t (m)) and at(n) = At−1

(
1− δA

)
(1 + qA

t (n)). (3.7)

Here, Bt−1
(
1− δB) and At−1

(
1− δA) represent stocks of “surviving technological know-

ledge” that the firm inherits from the previous period. More precisely, Bt−1 and At−1

denote the respective stocks of technological knowledge used in the production sector
at period t − 1, and δj ∈ (0, 1), j = A, B, is the rate of depreciation of the respective
knowledge stock.12 Finally,

(
qB

t (m), qA
t (n)

)
∈ R2

+ are indicators of productivity growth
at t associated with task m and n, respectively.

To achieve positive productivity growth, i. e., qj > 0, j = A, B, the firm must engage in an
innovation investment. More precisely, at t it must invest i

(
qB

t (m)
)
> 0 units of the final

good to achieve qB
t (m) > 0 and, similarly, i

(
qA

t (n)
)
> 0 units of the final good to obtain

qA
t (n) > 0.

The function i : R+ → R+ is the same for all tasks, time invariant, C2 on R++, strictly in-
creasing and strictly convex in q. Moreover, it satisfies the following regularity conditions
for j = A, B:

i(0) = 0, lim
qj→0

i′
(

qj
)
= 0, lim

qj→∞
i′
(

qj
)
= lim

qj→∞
i
(

qj
)
= ∞. (3.8)

Any new piece of technological knowledge is proprietary knowledge of a particular firm
only in the period when it occurs. Subsequently, it becomes public and embodied in ag-
gregate economy-wide productivity indicators (At, Bt), (At+1, Bt+1), .... The details will
be specified below.13

3.2.2 Firm’s Optimization

The representative firm takes the sequence {Rt, wt, At−1, Bt−1}∞
t=0 of real wages, real rental

rates of capital, and aggregate productivity indicators as given. Its choice involves a pro-

12Suppose we represent the switch from sending and receiving printed pages or images via fax machines
to modern transfer via e-mail by an increase in the stock of labor-augmenting technological knowledge.
Then, δA > 0 may capture the fact that some specific knowledge required to master a fax machine will no
longer be useful once the e-mail technology is in place.

13If at t the firm makes no investment in a productivity enhancing technology, it nevertheless has access
to the economy-wide technology represented by Bt−1

(
1− δB) and At−1

(
1− δA). Then, its task-specific

productivity of capital and labor is given by bt(m) = Bt−1
(
1− δB) and at(n) = At−1

(
1− δA). However,

since limqj→0 i′
(

qj
)
= 0 the option not to invest will not be chosen in equilibrium.

11



duction plan comprising a sequence{
Mt, Nt, kt(m), lt(n), qB

t (m), qA
t (n)

}∞

t=0

for m ∈ [0, Mt] and n ∈ [0, Nt], respectively. This plan maximizes the sum of the present
discounted values of profits in all periods. Because an innovation investment generates
proprietary knowledge only in the period when it is made, the inter-temporal profit max-
imization problem of the firm boils down to the maximization of per-period profits given
by

F (Mt, Nt)− TCt, (3.9)

where TCt is the firm’s total cost, comprising factor costs and investment outlays for all
performed tasks, i. e.,

TCt =
∫ Mt

0

[
Rtkt(m) + i

(
qB

t (m)
)]

dm +
∫ Nt

0

[
wtlt(n) + i

(
qA

t (n)
)]

dn, (3.10)

where,

kt(m) =
1

Bt−1 (1− δB)
(
1 + qB

t (m)
) and lt(n) =

1
At−1 (1− δA)

(
1 + qA

t (n)
)

are the respective input coefficients.

The maximization of (3.9) can be split up into two parts. First, for each m ∈ [0, Mt] and
n ∈ [0, Nt] a choice of qB

t (m) and qA
t (n) must minimize TCt. This leads to the first-order

(sufficient) conditions

qB
t (m) :

−Rt

Bt−1 (1− δB) (1 + qB
t (m))2

+ i′(qB
t (m)) = 0, (3.11)

qA
t (n) :

−wt

At−1 (1− δA) (1 + qA
t (n))2

+ i′(qA
t (n)) = 0. (3.12)

For each task, faster productivity growth means lower factor costs. At the margin, this
advantage is equal to the required additional investment outlays. In light of (3.8), and
assuming Rt > 0 and wt > 0, the conditions (3.11) and (3.12) determine a unique
qB

t (m) = qB
t > 0 and qA

t (n) = qA
t > 0. In what follows we refer to

(
qB

t , qA
t
)

as the
cost-minimizing growth rates of productivity, and use bt ≡ Bt−1

(
1− δB) (1 + qB

t
)

and
at ≡ At−1

(
1− δA) (1 + qA

t
)

to denote the corresponding cost-minimizing productivity
levels of capital and labor.

At
(
qB

t , qA
t
)

the costs per task are minimized and the same for all tasks of the same type.
Let c

(
qB

t
)

and c
(
qA

t
)

denote these costs. Then, total cost, TCt, of (3.10) boils down to

TCt = Mtc
(

qB
t

)
+ Ntc

(
qA

t

)
. (3.13)

12



Second, the firm determines how many tasks of either type to perform. Using (3.13), it
solves

max
(Mt,Nt)∈R2

+

F(Mt, Nt)−Mtc
(

qB
t

)
− Ntc

(
qA

t

)
. (3.14)

The respective first-order (sufficient) conditions are

Mt : f ′ (κt) = c
(

qB
t

)
, (3.15)

Nt : f (κt)− κt f ′ (κt) = c
(

qA
t

)
. (3.16)

Hence, for the marginal task of each type the marginal value product is equal to the
minimized marginal cost (= investment cost plus wage, respectively, capital cost).

Equations (3.11), (3.12), (3.15), and (3.16) fully characterize the equilibrium behavior of
the representative firm at all t. Observe that profits of (3.14) exhibit constant returns to
scale in (Mt, Nt). This has two (related) implications. First, equations (3.15) and (3.16)
will only pin down the task intensity κt = Mt/Nt. The number of tasks performed in
equilibrium will be determined by market clearing conditions. Second, by Euler’s law,
firm profits are zero.

The following proposition shows that the profit-maximizing conditions allow us to ex-
press in an intuitive way the productivity growth rates

(
qB

t , qA
t
)

and the factor prices
(Rt, wt) in terms of κt, Bt−1, and At−1.

Proposition 1 Suppose equations (3.11), (3.12), (3.15), and (3.16) are satisfied. Then, the fol-
lowing holds:

1. There are maps gA : R2
++ → R++ and gB : R2

++ → R++ such that for all κt > 0

qB
t = gB(κt), with gB

κ (κt) < 0, (3.17)

qA
t = gA(κt), with gA

κ (κt) > 0. (3.18)

2. There are maps w : R2
++ → R++ and R : R2

++ → R++ such that the real rental rate of
capital and the real wage satisfy

Rt = R(κt, Bt−1) with Rκ (κt, Bt−1) < 0 and RB (κt, Bt−1) > 0, (3.19)

wt = w(κt, At−1) with wκ (κt, At−1) > 0 and wA (κt, At−1) > 0. (3.20)

13



To gain intuition for these findings consider conditions (3.11) and (3.15) for tasks per-
formed by capital. The latter condition requires f ′ (κt) to equal the minimized costs of
all Mt tasks. Then, the necessary adjustments for some κ′t > κt are as follows. Obvi-
ously, we have f ′ (κt) > f ′ (κ′t) so that the cost minimum must fall. Given Bt−1, this
requires R′t < Rt, hence Rκ (κt, Bt−1) < 0. Moreover, at R′t the marginal advantage
of faster productivity growth is smaller. Therefore, the cost-minimizing productivity
growth rate is reached at some

(
qB

t
)′

< qB
t , hence, gB

κ (κt) < 0. Finally, to support some
given qB

t = gB (κt), (3.11) requires Rt to increase in Bt−1, hence RB (κt, Bt−1) > 0. Mu-
tatis mutandis, the same arguments apply to (3.12) and (3.16) and show that, indeed,
gA

κ (κt) > 0, wκ (κt, At−1) > 0, and wA (κt, At−1) > 0.

Proposition 1 will play a crucial role in the setup and the analysis of the dynamical system
below. The following proposition highlights an important second perspective on the
firm’s optimal behavior that leads to the notion of an equilibrium innovation possibility
frontier and of an equilibrium factor price frontier.

Proposition 2 Suppose equations (3.11), (3.12), (3.15), and (3.16) are satisfied. Then, the fol-
lowing holds:

1. There is an equilibrium innovation possibility frontier g : R++ → R++ such that

qA
t = g

(
qB

t

)
, with g′

(
qB

t

)
< 0. (3.21)

2. There is an equilibrium factor price frontier h : R3
++ → R++ such that

Rt = h (wt, At−1, Bt−1) with hw (wt, At−1, Bt−1) < 0. (3.22)

According to Statement 1 of Proposition 2 profit-maximization implies a functional re-
lationship between both cost-minimizing productivity growth rates. We refer to this
relationship as the equilibrium innovation possibility frontier (EIPF). The qualification
”equilibrium” distinguishes this concept from the exogenous innovation possibility fron-
tier stipulated by the induced innovations literature of the 1960s: in the present model,
this frontier is endogenous and results from the profit-maximizing choices of firms.

As illustrated in Example 1 below, the position and the shape of the EIPF will be deter-
mined by parameters that capture geographical, technical, or institutional properties of
the economy in which firms operate. Moreover, in the example the EIPF is convex (see
Figure 3.1 for an illustration). This also contrasts with the (strictly) concave innovation
possibility frontier stipulated by the induced innovation literature of the 1960s.14

14Concavity is necessary in this literature to turn the frontier into a suitable constraint for the maximization
of the instantaneous rate of output growth (see, e. g., Burmeister and Dobell (1970), Chapter 3), for details.
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To develop an intuition for the existence of the EIPF it proves useful to take a look at the
dual of the profit-maximization problem (3.14). Accordingly, suppose the firm seeks to
find the pair (Mt, Nt) that minimizes total costs of (3.13) for a given quantity of output,
Yt, i. e., let the firm solve

min
(Mt,Nt)∈R2

+

TCt = Mtc
(

qB
t

)
+ Ntc

(
qA

t

)
s.t. F (Mt, Nt) ≥ Yt. (3.23)

This problem delivers “conditional demand functions”, Mt = M
(
c
(
qB

t
)

, c
(
qA

t
))

Yt and
Nt = N

(
c
(
qB

t
)

, c
(
qA

t
))

Yt. Linearity in Yt follows since F has constant returns to scale.
Plugging these functions into the objective function of (3.23) delivers the cost function

TC
(

c
(

qB
t

)
, c
(

qA
t

)
, Yt

)
= tc

(
c
(

qB
t

)
, c
(

qA
t

))
Yt, (3.24)

where tc
(
c
(
qB

t
)

, c
(
qA

t
))

is the minimum cost per unit of Yt. From Euler’s law, we know
that firms earn zero-profits. Hence, it must hold that

tc
(

c
(

qB
t

)
, c
(

qA
t

))
= 1. (3.25)

The latter condition defines the EIPF implicitly. Hence, the EIPF may be seen as an equi-
librium constraint on

(
qB

t , qA
t
)

resulting from the zero-profit condition of a cost-efficient
firm operating under constant returns to scale. As tc (·, ·) as well as c

(
qB

t
)

and c
(
qA

t
)

are time-invariant, so is the EIPF. Moreover, as tc (·, ·) is strictly increasing in both argu-
ments, c′

(
qB

t
)
> 0, and c′

(
qA

t
)
> 0, it follows that the slope of the EIPF is negative, i. e.,

g′
(
qB

t
)
< 0.

The flip side of the EIPF is the equilibrium factor price frontier (EFPF) of Statement 2
of Proposition 2, Rt = h (wt, At−1, Bt−1). It also reflects the firm’s zero-profit condi-
tion (3.25), however, now in the space of factor prices.15 To see this, consider condition
(3.11) which pins down qB

t as a function of
(

Rt, Bt−1
(
1− δB)). Let us call this function

zB
t = zB (Rt, Bt−1

(
1− δB)). Similarly, condition (3.12) pins down qA

t as a function of(
wt, At−1

(
1− δA)), and we call this relationship zA

t = zA (wt, At−1
(
1− δA)). Substitu-

tion of qB
t by zB

t and of qA
t by zA

t in (3.25) delivers the EFPF. As the relevant partial deriva-
tives are strictly positive, i. e., zB

R
(

Rt, Bt−1
(
1− δB)) > 0 and zA

w
(
wt, At−1

(
1− δA)) > 0,

it follows that hw (wt, At−1, Bt−1) < 0. Pairs of factor prices consistent with the EFPF
hinge on At−1 and Bt−1 and, therefore, will change over time.

To strengthen our intuition about the determinants of the equilibrium innovation possi-
bility frontier consider the following example.

15This line of reasoning is familiar from the factor price frontier introduced by Samuelson (1962).
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Example 1 Suppress time arguments and let

F (M, N) = Γ ·Mα · N1−α and ij
(

qj
)
= γj ·

(
qj)2

2
, γj > 0, j = A, B.

Here, Γ > 0 may reflect cross-country differences in geography, technical and social infrastructure
that affect the transformation of tasks into the final good. In this example, we allow for innovation
outlays to differ across task types, i. e., to achieve qB(m) > 0 the firm must invest γB (qB(m)

)2 /2
units of the final good whereas to achieve qA(n) > 0 the firm must invest γA (qA(n)

)2 /2 units
and γA 6= γB is permissible.

If we transcend the analytical framework of the model and admit that the final good and the re-
sources needed for innovation investments are different goods then the parameters γA and γB

have an interpretation as the price of the respective investment good in terms of the final good.
Moreover, a fall in either price may be the consequence of some exogenous technical progress.

For this setting, the cost-minimizing productivity growth rates (3.17) and (3.18) of Proposition 1
are equal to

qB = gB (κ) =
1
3

(
−1 +

√
1 +

6Γα

γB κα−1

)
,

qA = gA (κ) =
1
3

(
−1 +

√
1 +

6Γ(1− α)

γA κα

)
.

As expected, gA
κ (κ) > 0 > gB

κ (κ). Moreover, both productivity growth rates increase in Γ and
decline in γB or γA.

The time-invariant equilibrium innovation possibility frontier is given by

qA =
1
3

−1 +

√
1 +

6Γ(1− α)

γA

(
2Γα

γBqB (3qB + 2)

) α
1−α

 .

Hence, given qB, a greater Γ and lower values for γB and γA imply a greater qA. Figure 3.1 shows
that the EIPF is indeed convex.16

16Figure 3.1 uses the following values for the parameters that show up in Example 1: α = 1/2, γA = γB =

Γ = 1, and Γ′ = 2. The mathematica notebook is available upon request.
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Figure 3.1: Two Convex Equilibrium Innovation Possibility Frontiers for Γ′ > Γ.

3.3 The Evolution of Technological Knowledge

The evolution of the technological knowledge to which firms have access is given by the
evolution of the aggregate task-specific productivity indicators At and Bt. We stipulate
that At and Bt correspond to the highest level of labor productivity and capital produc-
tivity attained across all tasks of the respective type at t, i. e.,

At = max
{

at(n) = At−1

(
1− δA

) (
1 + qA

t (n)
)
| n ∈ [0, nt]

}
,

(3.26)

Bt = max
{

bt(m) = Bt−1

(
1− δB

) (
1 + qB

t (m)
)
| m ∈ [0, mt]

}
.

Firm’s optimization implies qB
t (m) = qB

t and qA
t (n) = qA

t , as well as at(n) = at and
bt(m) = bt so that

At = at = At−1

(
1− δA

) (
1 + qA

t

)
,

(3.27)

Bt = bt = Bt−1

(
1− δB

) (
1 + qB

t

)
,

for all t = 0, 1, 2, · · · with A−1 > 0 and B−1 > 0 given.

17



4 Dynamic Competitive Equilibrium

4.1 Definition

The dynamic competitive equilibrium is defined as follows.

Definition 1 Given Lt = L, initial values of the capital stock, K0 > 0, and of technological
knowledge, A−1 > 0 and B−1 > 0, a dynamic competitive equilibrium is a sequence{

Mt, Nt, kt(m), lt(n), qB
t (m), qA

t (n), At, Bt, wt, Rt, Ct, Kt+1, Yt

}∞

t=0
,

for all m ∈ [0, Mt] and n ∈ [0, Nt], such that

(E1) the behavior of the representative household is described by (3.2), (3.3), (3.4), and K0 > 0.

(E2) the production sector satisfies Proposition 1,

(E3) for all t, both factor markets clear, i. e.,∫ Mt

0
kt(m)dm ≤ Kt and

∫ Nt

0
lt(n)dn ≤ L,

each holding as equality if the corresponding factor price is strictly positive,

(E4) for all t, the market for the final good clears,

(E5) the productivity indicators At and Bt evolve according to equation (3.27).

Condition (E1) requires household optimization while (E2) ensures optimal behavior of
firms and zero profits. Since profit-maximization implies kt(m) = kt = 1/bt = 1/Bt

and lt(n) = lt = 1/at = 1/At, and equilibrium factor prices will be strictly positive
(E3) requires full employment of capital and labor. This condition determines the total
number of each task type to be equal to the amount of the respective production factor in
efficiency units, i. e.,

Mt = BtKt and Nt = AtLt. (4.1)

Market clearing in the market for the final good, (E4), requires

Kt+1 = F(Mt, Nt)−Mti
(

qB
t

)
− Nti

(
qA

t

)
− Ct +

(
1− δK

)
Kt, (4.2)

i. e., next period’s capital stock is equal to the surviving capital and the difference be-
tween total output of the final good and the investment outlays for all tasks performed
by capital, Mti

(
qB

t
)
, the investment outlays for all tasks performed by labor, Nti

(
qA

t
)
,

and consumption, Ct.
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For further reference, let us define the notion of the economy’s net output at t as the differ-
ence between total output of the final good and total investment outlays for all tasks and
denote it by Vt. Depending on where this difference is evaluated we distinguish the fol-
lowing refinements. First, net output at cost-minimizing productivity growth rates evaluates
this difference at

(
qB

t , qA
t
)
, i. e.,

Vt = V
(

Mt, Nt, qB
t , qA

t

)
≡ F(Mt, Nt)−Mti

(
qB

t

)
− Nti

(
qA

t

)
, (4.3)

where V : R4
++ → R++. Second, net output at clearing factor markets adds the two factor

market clearing conditions of (4.1) so that

Vt = V
(

BtKt, AtL, qB
t , qA

t

)
≡ F (BtKt, AtL)− BtKti

(
qB

t

)
− AtLi

(
qA

t

)
, (4.4)

where V : R4
++ → R++. Third, there is the notion of equilibrium net output where (4.4)

is evaluated at
(
qB

t , qA
t
)
=
(

gB (κt) , gA (κt)
)
. In other words, equilibrium net output

evaluates the economy’s net output at Proposition 1 and (4.1). This gives

Vt = V (BtKt, AtL, κt) ≡ F (BtKt, AtL)− BtKti
(

gB (κt)
)
− AtLi

(
gA (κt)

)
, (4.5)

where V : R3
++ → R++. Since V (BtKt, AtL, κt) exhibits constant returns to scale in

(BtKt, AtL), we may also define the equilibrium net output per unit of efficient labor, vt =

Vt/(AtLt), as

vt = v (κt) ≡ f (κt)− κti
(

gB
t (κt)

)
− i
(

gA
t (κt)

)
, (4.6)

where v (κt) = V (κt, 1, κt) and v : R++ → R++.

Finally, observe that (E2), (E3), and (E5), imply that in equilibrium the task intensity of
equation (3.6), may be expressed as

κt =
BtKt

AtL
=

Bt−1
(
1− δB) (1 + gB(κt))Kt

At−1 (1− δA) (1 + gA(κt))L
. (4.7)

Thus, in equilibrium the task intensity is equal to the ratio of efficient capital to efficient
labor, or, for short, to the efficient capital intensity. Since innovations are induced, the
respective efficiency units depend on the task intensity. The following proposition estab-
lishes that there is a unique value κt > 0 that satisfies (4.7). We refer to this value as the
equilibrium task intensity.

Proposition 3 There is a unique equilibrium task intensity κt > 0 that satisfies (4.7). More-
over, there is a function κ : R++ → R++ such that

κt = κ

(
Bt−1

(
1− δB)Kt

At−1 (1− δA) L

)
with κ′

(
Bt−1

(
1− δB)Kt

At−1 (1− δA) L

)
> 0.
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The ratio Bt−1
(
1− δB)Kt/

(
At−1

(
1− δA) L

)
has an interpretation as the efficient capital

intensity of period t before any investment activity is undertaken. It is the correct measure
of the relative scarcity of factors of production at t to which firms’ investment behavior
responds. In line with Hicks’ famous assertion (Hicks (1932), p. 124) this ratio induces the
degree to which firms will engage in capital- and labor-augmenting technical change. To
see this, suppose the economy enters period t with Bt−1

(
1− δB)Kt/At−1

(
1− δA) L >

Bt−2
(
1− δB)Kt−1/At−2

(
1− δA) L. Then, (efficient) labor has become scarcer between

period t− 1 and t. Moreover, as κ′ (·) > 0 we have κt > κt−1, and, in accordance with
Proposition 1, qA

t > qA
t−1, qB

t < qB
t−1, wt > wt−1, and Rt < Rt−1.

4.2 The Canonical Dynamical System

The canonical dynamical system comprises two state variables, the equilibrium task in-
tensity, κt, and the stock of capital-augmenting technological knowledge, Bt, and one
control variable, the level of consumption per unit of efficient labor, ct ≡ Ct/ (AtL). The
following proposition has the complete description of this system.

Proposition 4 (Canonical Dynamical System)

Given L > 0 and initial conditions (A−1, B−1, K0) > 0, the transitional dynamics of the dynamic
competitive equilibrium is given by a unique sequence {κt, ct, Bt}∞

t=0 that satisfies

κt+1 =

(
1− δB) (1 + gB(κt+1)

)
(1− δA) (1 + gA(κt+1))

·
[

Bt (v (κt)− ct) +
(

1− δK
)

κt

]
, (4.8)

ct+1

ct
= β ·

Bt
(
1− δB) (1 + gB(κt+1)

) (
f ′ (κt+1)− i

(
gB (κt+1)

))
+
(
1− δK)

(1− δA) (1 + gA(κt+1))
, (4.9)

Bt = Bt−1

(
1− δB

) (
1 + gB (κt)

)
, (4.10)

the transversality condition

lim
t→∞

βt κt+1
(
1 + gA (κt+1)

)
ctBt+1

= 0, (4.11)

and for t = 0,

κ0 = κ

(
B−1

(
1− δB)K0

A−1 (1− δA) L

)
. (4.12)
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Intuitively, equation (4.8) reflects the economy’s resource constraint. It is obtained from
the household’s budget constraint, (3.2), using (3.15), (3.16), and Claim 1 of Proposi-
tion 1. Equation (4.9) is the Euler equation. It results from (3.3) in conjunction with
Claim 1 of Proposition 1 and (3.15). Finally, equation (4.10) states the evolution of capital-
augmenting technological knowledge. It obtains from (3.27) and Claim 1 of Proposition 1.
In conjunction with the transversality condition and the set of initial conditions, these
equations form a three-dimensional system of first-order, non-linear difference equations
and characterize a unique sequence {κt, ct, Bt}∞

t=0 .17

4.3 Steady State Analysis

Definition 2 A steady state is a path along which all variables grow at constant, but possibly
different rates.

We use an asterisk to denote steady-state variables, e. g., g∗ is the steady-state growth
rate of the economy. To guarantee the existence of a steady state with strictly positive
and finite state variables we make the following two assumptions:

Assumption 1 It holds that

lim
κ→0

f ′(κ) > c
(

δB

1− δB

)
> lim

κ→∞
f ′(κ). (4.13)

Assumption 2 It holds that

1− δA > β
(

1− δK
)

. (4.14)

The discussion of the following proposition will reveal the significance of these assump-
tions.

Proposition 5 (Steady State)

17To develop an intuitive understanding of the mechanics of the dynamical system start with the initial
conditions. They deliver κ0 from equation (4.12). Using this and B−1 > 0 in (4.10) gives a unique B0 > 0.
The resource constraint describes a relation between c0 and κ1 for any given pair (κ0, B0) ∈ R2

++. For any
such pair the transversality condition pins down the initial choice of consumption c0. Then, the resource
constraint delivers a unique κ1 > 0, whereas the Euler equation determines a unique c1. Mutatis mutandis,
the same reasoning applies to all periods t > 0.
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1. The dynamical system of Proposition 4 has a unique steady state involving (κ∗, B∗, c∗) ∈
R3

++ if Assumptions 1 and 2 hold. The steady state is a solution to

c∗ = v (κ∗)− κ∗

B∗
(

g∗ + δK
)

, (4.15)

B∗ =
(1 + g∗)− β

(
1− δK)

β ( f ′ (κ∗)− i (gB (κ∗)))
, (4.16)

gB (κ∗) =
δB

1− δB . (4.17)

2. The steady-state growth rate of the economy is

g∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 + gA (κ∗)

)
− 1.

Moreover, along the steady-state path, it holds that

a)
Yt+1

Yt
=

Vt+1

Vt
=

Kt+1

Kt
=

Ct+1

Ct
=

Mt+1

Mt
=

Nt+1

Nt
=

wt+1

wt
= 1 + g∗,

b) R∗ = B∗
(

f ′ (κ∗)− i
(

δB

1− δB

))
, k∗ =

1
B∗

,
lt+1

lt
=

1
1 + g∗

.

According to Statement 1 of Proposition 5 there is a unique steady state if Assump-
tion 1 and 2 hold. To develop the explanation for this finding, start with the evolution of
capital-augmenting technological knowledge of (4.10). Accordingly, any trajectory with
Bt/Bt−1− 1 = const. requires κt = κt+1 = κ∗. Intuitively, the level of κ∗ must be such that
profit-maximizing firms undertake innovation investments that generate new capital-
augmenting technological knowledge just enough to offset its depreciation. Invoking
Proposition 1 this is the case if

(
qB)∗ = gB (κ∗) = δB/(1− δB) as stated in (4.17).

Assumption 1 assures that (4.17) has a solution κ∗ ∈ R++. To see this, observe that a
choice of

(
qB)∗ means that (minimized) costs per task performed by capital are equal to

c
((

qB)∗) = c
(
δB/(1− δB)

)
. Hence, for tasks m < Mt the marginal value product, f ′(κ),

must exceed, for m > Mt it must fall short of these costs. This is what condition (4.13)
guarantees.18

In steady state, the Euler equation makes sure that the household’s desired consump-
tion growth rate is equal to the growth rate of the economy. As discussed below, the
latter satisfies (1 + g∗) =

(
1− δA) (1 + gA (κ∗)

)
. Then, using (3.19) and the fact that κ∗

is pinned down by (4.17), the Euler equation determines B∗ as a solution to (1 + g∗) =

18Notice that a value κ∗ ∈ (0, ∞) would always exist if we had imposed the usual Inada conditions on F.
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β
(

R (κ∗, B) + 1− δK). Assumption 2 provides a sufficient condition for a solution B∗ > 0
to exist. Intuitively, it assures that the numerator in (4.16) is strictly positive even if κ∗

and gA (κ∗) are very small which is the case if δB is very large.

Finally, given (κ∗, B∗), the resource constraint (4.15) determines a finite c∗ > 0 as the dif-
ference between net output per unit of efficient labor and the required capital investment
per unit of efficient labor needed to keep κ∗ constant.

Statement 2 of Proposition 5 establishes that the steady-state growth rate of the econ-
omy is given by the growth rate of labor-augmenting technological knowledge. Absent
population growth, this is the growth rate of final-good output, net output, consump-
tion, capital, the respective total number of tasks, and of the real wage. The steady-state
rental rate of capital is constant. Moreover, the input coefficients of capital are constant,
whereas the one of labor hinges on g∗.

Why is it that in steady state only the stock of labor-augmenting technological knowledge
evolves whereas the one of capital-augmenting technological knowledge stagnates? The
conceptual answer to this question provides the “Generalized Steady-State Growth The-
orem” developed in Irmen (2013b). This theorem generalizes Uzawa’s Theorem (Uzawa
(1961)) to settings where technical change has a cost in terms of current final-good out-
put. Roughly speaking, it says that an economy where capital accumulates and the equi-
librium net output function has constant returns to scale in capital and labor, technical
change must be labor-augmenting in steady state whereas capital-augmenting technical
change must vanish. We have seen that the equilibrium net output function of (4.5) has
this property. Hence, in steady state, Bt = B∗ and At evolves at rate g∗.

Observe that the steady-state growth rate of the economy may be negative, i. e., g∗ ≤ 0.
Intuitively, this is the case if gA (κ∗) ≤ δA/

(
1− δA) which may be satisfied if κ∗ is small

due to a large δB. However, as B∗ > 0 is required, the Euler equation (4.16) implies a
lower bound on steady-state growth rate, i. e., g∗ > β(1− δK)− 1.

Next, we turn to the comparative static properties of the steady state.

Proposition 6 (Comparative Statics of the Steady State)

1. Consider two economies that differ only with respect to their discount factor such that β′ >

β. Then, their steady states satisfy

(κ∗)′ = κ∗, (g∗)′ = g∗, (B∗)′ < B∗, (R∗)′ < R∗, and (c∗)′ < c∗. (4.18)
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2. Consider two economies that differ only with respect to their depreciation rate of the stock
of capital-augmenting technological knowledge such that

(
δB)′ > δB. Then, their steady

states satisfy

(κ∗)′ < κ∗, (g∗)′ < g∗, (B∗)′ < B∗, (R∗)′ < R∗, and (c∗)′ Q c∗. (4.19)

3. Consider two economies that differ only with respect to their depreciation rate of the stock of
labor-augmenting technological knowledge such that

(
δA)′ > δA. Then, their steady states

satisfy

(κ∗)′ = κ∗, (g∗)′ < g∗, (B∗)′ < B∗, (R∗)′ < R∗, and (c∗)′ > c∗. (4.20)

Arguably, Statement 1 has the most important result of Proposition 5. The steady-state
growth rate of the economy, g∗, does not hinge on characteristics of the household sector.
Intuitively, this is so since the discount factor neither interferes with the incentives to
engage in innovation investments as summarized by the function gB nor does it directly
affect the evolution of the stocks of technological knowledge. However, differences in
the discount factor have level effects. The more patient economy is predicted to have the
lower steady-state level of capital-augmenting technological knowledge, or, equivalently,
a lower rental rate of capital. This follows from the steady-state Euler equation (4.16) that
requires both economies to have consumption grow at the same rate (g∗)′ = g∗. Then,
a greater discount factor must be entirely offset by a decline in the rental rate of capital.
This is accomplished through a decline in capital-augmenting technological knowledge.
Finally, with (B∗)′ < B∗ the resource constraint (4.15) requires the more patient economy
to reduce its consumption per unit of efficient labor. Intuitively, since κ∗ is the same in
both economies it must be that

(
(Kt/AtL)

∗)′ > (Kt/AtL)
∗, i. e., capital per efficient labor

is greater in the more patient economy. Therefore, more current output is needed to keep
this ratio constant. Accordingly, (c∗)′ < c∗.

Statements 2 and 3 highlight that differences in the depreciation rate of the stock of factor-
augmenting technological knowledge generate growth effects. First, consider the steady-
state effects of changing δB. A higher depreciation rate of capital-augmenting technolog-
ical knowledge requires stronger private incentives to engage in innovation investments
that raise the productivity of capital. Hence, in line with Proposition 1 and (4.17) the ef-
ficient capital intensity must fall, i. e., (κ∗)′ < κ∗. This weakens the private incentives to
engage in innovation investments that raise the productivity of labor so that (g∗)′ < g∗.
As consumption must grow at the latter rate the Euler condition requires (R∗)′ < R∗.
This adjustment implies (B∗)′ < B∗. Finally, the effect on the steady-state consumption
per unit of efficient labor remains indeterminate in general.
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Second, consider changes in δA of Statement 3. As these changes leave (4.17) unaffected,
we have (κ∗)′ = κ∗, and (g∗)′ < g∗ is due to faster depreciation of the stock of labor-
augmenting technological knowledge. As above, slower growth of consumption requires
adjustments in the Euler equation and the resource constraint. They lead to (B∗)′ < B∗,
(R∗)′ < R∗, and (c∗)′ > c∗.

Additional and intuitive comparative static results are obtained if we impose more struc-
ture.

Example 2 Reconsider the setup of Example 1, and suppose that Assumption 2 holds. Then, a
unique steady state exists and involves

κ∗ =

(
2Γαδ̃B

γB

) 1
1−α

, (4.21)

where δ̃B =
(
1− δB)2 /

(
δB (2 + δB)).

To interpret this equation recall that κ∗ is the task intensity necessary to sustain innovation in-
vestments such that

(
qB)∗ = δB/

(
1− δB). Moreover, from Proposition 1 a higher κ reduces qB.

Then, it is straightforward to see why κ∗ increases in the productivity parameter Γ and decreases
in the cost parameter γB or in the depreciation rate δB. Since g∗ =

(
1− δA) (1 + gA (κ∗)

)
− 1

we arrive at

g∗ =
(
1− δA)

3

2 +

√
1 +

6Γ(1− α)

γA

(
2Γαδ̃B

γB

) α
1−α

− 1. (4.22)

Here, Γ exerts two positive effects on g∗. First, there is a direct effect since innovation incentives
are higher the more productive the aggregate production function is. Second, there is a general
equilibrium effect since κ∗ also increases. A greater γA or δA has a direct negative effect on g∗,
greater values for γB or δB reduce g∗ through negative general equilibrium effects on κ∗.

Finally, consider the numerical reference case where Γ = γA = γB = 1, α = 1/2, δB = 1/4,
and δA = 1/4− ε. Then, δ̃B = 1,

(
qA)∗ = (qB)∗ = 1/3, κ∗ = 1 and

g∗ =
4
3

ε. (4.23)

Hence, if ε = 0.015 then g∗ = 0.02.

Finally, let us note that the steady state of Proposition 5 is consistent with Kaldor’s facts
if g∗ > 0 (see, Kaldor (1961)). Indeed, one readily verifies that the productivity of labor,
measured either by at, Vt/L, or Yt/L and capital per worker, Kt/L, grow at rate g∗ > 0.
Moreover, the capital coefficient in aggregate output, Kt/Yt, or in aggregate net output,
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Kt/Vt, and the return on capital are stable. What remains to be shown is that the func-
tional income distribution is also stable in steady state. We defer this proof to Section 5
and turn now to the local stability properties of the steady state.

Proposition 7 (Local Stability of the Steady State)

The steady-state equilibrium of Proposition 5 is asymptotically locally stable in the state space.

To establish Proposition 7 the nonlinear dynamical system of Proposition 4 is linearly
approximated around its steady-state equilibrium (κ∗, c∗, B∗). Given L > 0 and initial
values (A−1, B−1, K0) > 0 the state of the economy in period t is fully described by the
two state variables κt and Bt, so that ct is the only control variable. Hence, given the two
state variables we need a stable eigenspace of dimension two for the dynamical system
to exhibit a unique convergent path toward the steady state. The proof of Proposition 7
shows that the linearized dynamical system has two stable eigenvalues and one unstable
eigenvalue. Observe that the convergence toward the steady state may be monotonic or
oscillatory.

To gain intuition for Proposition 7 consider the case of a possible monotonous conver-
gence. Initially, the economy is in its steady-state equilibrium (κ∗, c∗, B∗). At the be-
ginning of some period t an exogenous event destroys a part of its capital-augmenting
technological knowledge so that B′t−1 < B∗. Then, compared to the steady state the ef-
ficient capital intensity before any investment activity is undertaken at t falls. In other
words, at the beginning of period t efficient capital is relatively scarcer than along the
steady-state path. Accordingly, form Proposition 3 we have κ′t < κ∗, and with Proposi-
tion 1 it follows that

(
qB

t
)′

>
(
qB)∗ and

(
qA

t
)′

<
(
qA)∗. This leads to B′t−1 < B′t < B∗

and A′t < A∗t . Hence, the immediate effect of induced technical change is to partly offset
the initial loss of capital-augmenting technical knowledge. For the periods that follow,
κ′t < κ∗ triggers a process of capital accumulation so that the sequences

{
κ′t+i

}∞
i=1 and{

B′t+i
}∞

i=1 monotonically converge to κ∗ and B∗, respectively.

Contrary to the existing literature on endogenous capital- and labor-augmenting techni-
cal change, the local stability of the steady-state equilibrium does not require the elastic-
ity of substitution of the production function to be less than unity. Indeed, Proposition 7
holds irrespective of the elasticity of substitution.19 To highlight this point consider the
following numerical example. Notice in passing that here the elasticity of substitution

19We show in Section 5.1.1 that there is an important distinction between the elasticity of substitution
of the production function and the one of the net output function. None of these two concepts bears on
Proposition 7.
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plays not only a role for the type of convergence to the steady-state equilibrium but also
for the steady-state growth rate.

Example 3 Reconsider the economy described in Example 1. We now choose the following pa-
rameter values: Γ = γA = γB = 1, α = 1/3, δB = 1/4, δA = 1/4, β = 0.99, and δK = 0.06.
Furthermore, we allow for the production function to be of the CES-type, i. e.,

F(M, N) =


Γ
(

αM
σ−1

σ + (1− α)N
σ−1

σ

) σ
σ−1 if σ 6= 1,

Γ ·Mα · N1−α if σ = 1,

where σ > 0 is the elasticity of substitution between the two types of tasks.

Table 1 shows the eigenvalues of the dynamical system of Proposition 4 linearized around the
steady state of Proposition 5 for various values of the elasticity of substitution. For different values
of σ the convergence to the steady-state equilibrium may be monotonic or oscillatory. Notice also
that the variables do not need to converge at the same speed to their steady-state levels.

Finally, observe that the steady-state growth rate increases with the elasticity of substitution thus
confirming the analytical finding established in Irmen (2011).We emphasize that the aim of our
numerical example is not to calibrate the model, but rather to show the qualitative results.

Table 1: Elasticity of Substitution of the Production Function, Local Stability of the
Steady State, and Steady-State Growth.

σ eigenvalues g∗(%)

0.25 1.07941, 0.949732, 0.561591 0.51
0.5 1.09029, 0.939364, 0.71533 0.94
0.75 1.10048, 0.926904, 0.790202 1.31

1 1.11007, 0.908942, 0.841108 1.64
1.25 1.11917, 0.884550 ± 0.0280296i 1.92
1.5 1.12791, 0.890272 ± 0.0448385i 2.18
1.75 1.13637, 0.893694 ± 0.0535632i 2.41

2 1.14464, 0.895618 ± 0.0593213i 2.61

4.4 The Role of Capital-Augmenting Technical Change

What is the role of capital-augmenting technical change for the results derived so far?
To address this question we contrast the model of the previous sections with a version
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that altogether dispenses with capital-augmenting technical change. To accomplish this,
reconsider the model of Section 3 for Bt = bt = kt = 1, qB

t = δB = i
(
qB

t
)
= 0, and

Mt = Kt. Then, the “efficient capital intensity” of (4.7) becomes κt = Kt/ (AtL), and we
refer to it as the capital-labor ratio in efficiency units. Mutatis mutandis, the latter ratio also
satisfies Proposition 3.

With these changes, the dynamical system of Proposition 4 reduces to a two-dimensional
system of non-linear first-order difference equations involving one state variable, κt, and
one control variable, ct. These difference equations include the resource constraint and
the Euler condition.

Proposition 8 (Canonical Dynamical System without Capital-Augmenting Technical Change)

Given L > 0 and initial conditions (A−1, K0) > 0, the transitional dynamics of the dynamic
competitive equilibrium is given by a unique sequence {κt, ct}∞

t=0 that satisfies

κt+1 =
v(κt)− ct +

(
1− δK) κt

(1− δA) (1 + gA(κt+1))
, (4.24)

ct+1

ct
= β · f ′(κt+1) + 1− δK

(1− δA) (1 + gA(κt+1))
, (4.25)

the transversality condition

lim
t→∞

βt κt+1
(
1 + gA (κt+1)

)
ct

= 0, (4.26)

and for t = 0,

κ0 = κ

(
K0

A−1 (1− δA) L

)
. (4.27)

From Definition 2 a steady state involves At+1/At − 1 = const. Hence, with (3.27) and
Proposition 1 we have κt = κt+1 = κ∗ and

(
qA)∗ = gA (κ∗). Moreover, from (4.24)

we obtain ct = ct+1 = c∗. To guarantee the existence of a steady state with κ∗ ∈ R++,
Assumptions 1 and 2 must be replaced by

Assumption 3 It holds that

lim
κ→0

f ′(κ) >
1− δA

β
−
(

1− δK
)
> lim

κ→∞
f ′(κ). (4.28)

The significance of Assumption 3 will become clear below.
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Proposition 9 (Steady State without Capital-Augmenting Technical Change)

1. The dynamical system of Proposition 8 has a unique steady state involving (κ∗, c∗) ∈ R2
++

if Assumption 3 holds. The steady state is a solution to

c∗ = v(κ∗)− κ∗
(

g∗ + δK
)

, (4.29)

1 + g∗ = β
(

f ′ (κ∗) + 1− δK
)

. (4.30)

2. The steady-state growth rate of the economy is

g∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 + gA (κ∗)

)
− 1.

Moreover, along the steady-state path, it holds that

a)
Yt+1

Yt
=

Vt+1

Vt
=

Kt+1

Kt
=

Ct+1

Ct
=

Nt+1

Nt
=

wt+1

wt
= 1 + g∗,

b) R∗ = f ′ (κ∗) ,
lt+1

lt
=

1
1 + g∗

.

The comparison of the steady state with and without capital-augmenting technical change
(Proposition 5 versus Proposition 9) reveals two important structural differences. First, in
a world without capital-augmenting technical change the steady-state capital-labor ratio
in efficiency units is pinned down by the Euler condition (4.30). Hence, κ∗ is such that the
desired growth rate of consumption (and of the economy as a whole), g∗, is supported by
the steady-state rental rate of capital, R∗ = f ′ (κ∗). This alignment gives rise to a solution
κ∗ > 0 if Assumption 3 holds and will naturally depend on β.

On the contrary, in the world with capital-augmenting technical change, the role of κ∗ is
to induce innovation investments so that the stock of capital-augmenting technological
knowledge remains constant over time. The necessary adjustments to meet this require-
ment reflect only the characteristics of the production sector including the way how tech-
nological knowledge accumulates. As a consequence condition (4.17) is independent of
β.

Second, the comparative statics with respect to β and δA of the steady state of Proposi-
tion 9 involve adjustments in κ∗. In contrast, for the steady state with capital-augmenting
technical change of Proposition 5 changes in the same parameters induce adjustments in
B∗. The following proposition documents the resulting differences.

Proposition 10 (Comparative Statics of the Steady State without Capital-Augmenting Technical
Change)

29



1. Consider two economies that differ only with respect to their discount factor such that β′ >

β. Then, their steady states satisfy

(κ∗)′ > κ∗, (g∗)′ > g∗, (R∗)′ < R∗, and (c∗)′ R c∗. (4.31)

2. Consider two economies that differ only with respect to their depreciation rate of the stock
of capital-augmenting technological knowledge such that

(
δA)′ > δA. Then, their steady

states satisfy

(κ∗)′ > κ∗, (g∗)′ < g∗, (R∗)′ < R∗, and (c∗)′ R c∗. (4.32)

Hence, compared to Statements 1 and 3 of Proposition 6 there are two main differences.
First, the more patient economy grows faster in steady state. Second, a the negative effect
on the steady-state growth rate of the economy associated with a greater depreciation
rate of labor-augmenting technological knowledge is partly offset by an increase in κ∗.20

5 Positive Implications: Functional Income Distribution and Fis-
cal Policy

This section establishes important positive implications of fiscal policy measures on the
functional income distribution and on economic growth. The focus is on three different
policy measures. First, we study the effects of a linear tax on the return to capital. Second,
we analyze the role of subsidies for innovation investments that increase the productiv-
ity of capital. Finally, we turn to subsidies for innovation investments that increase the
productivity of labor. For all three policies, the focus is on the long run, i. e., on the
steady state. Throughout, we assume that the government redistributes its tax revenues
in a lump-sum fashion to balance its budget. With the same purpose, the government
finances its subsidies through a lump-sum tax.

5.1 Functional Income Distribution

5.1.1 Preliminary Remark on the Elasticity of Substitution

It is well known that the elasticity of substitution is a key variable in the analysis of
changes in the functional income distribution. In a neoclassical competitive environment

20It is not difficult to see that the steady state of Proposition 9 satisfies all Kaldor’s facts including the
stability of the functional income distribution.
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with a given technology the marginal rate of technical substitution (MRTS) is equal to the
ratio of factor prices. Accordingly, if relative factor endowments change the concomitant
change in the MRTS gives the effect on the factor price ratio, and the total effect on the
relative factor shares, RK/wL, depends on the elasticity of substitution.

Since the technology is endogenous in our framework we need to clarify both the notion
of the marginal rate of technical substitution and the notion of the elasticity of substitu-
tion that applies in the analysis of the functional income distribution. To accomplish this
consider net output at clearing factor markets as defined in equation (4.4). Then, it is not
difficult to see that in equilibrium factor prices are equal to the respective marginal net
output at clearing factor markets

Rt =
∂V
(

BtKt, AtL, qB
t , qA

t
)

∂Kt
= Bt

(
f ′ (κt)− i

(
qB

t

))
,

wt =
∂V
(

BtKt, AtL, qB
t , qA

t
)

∂L
= At

(
f (κt)− κt f ′ (κt)− i

(
qA

t

))
.

Accordingly, the marginal rate of technical substitution is

MRTSK,L

(
κt, qB

t , qA
t

)
≡

Bt−1
(
1− δB) (1 + qB

t
) [

f ′(κt)− i(qB
t )
]

At−1 (1− δA)
(
1 + qA

t
) [

f (κt)− κt f ′(κt)− i(qA
t )
] = Rt

wt
. (5.1)

To capture the overall effect of changing factor endowments on (relative) factor prices we
have to account for induced technical change. This requires two additional steps. First,
we use Proposition 1 to express the MRTS as a function of κt, i. e.,

MRTSK,L (κt) ≡ MRTSK,L

(
κt, qB

t , qA
t

)∣∣∣
(qB

t ,qA
t )=(gB(κt),gA(κt))

. (5.2)

Second, we know from Proposition 3 that the equilibrium task intensity, κt, increases in
Kt/L. More precisely, one readily verifies that

d ln κt

d ln (Kt/L)
=

1
1 + εA

κ (κt) + εB
κ (κt)

, (5.3)

where

εA
κ (κt) ≡

κtgA
κ (κt)

1 + gA (κt)
> 0 and εB

κ (κt) ≡
−κtgB

κ (κt)

1 + gB (κt)
> 0

denote the respective elasticity of productivity growth with respect to κt.

Then, the relevant elasticity of substitution is defined as

σ(κt) ≡ −
[

d ln MRTSK,L (κt)

d ln κt

d ln κt

d ln (Kt/L)

]−1

. (5.4)

We refer to σ(κt) as the equilibrium elasticity of substitution.
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Proposition 11 (Equilibrium Elasticity of Substitution)

The equilibrium elasticity of substitution is equal to

σ(κt) =

[
f ′(κt)− i(gB(κt))

] [
f (κt)− κt f ′(κt)− i(gA(κt))

]
−κt f ′′(κt) [ f (κt)− κti(gB(κt))− i(gA(κt))]

(
1 + εA

κ (κt) + εB
κ (κt)

)
. (5.5)

The equilibrium elasticity of substitution looks surprisingly simple. The main reason for
this is that in equilibrium

∂MRTSK,L
(
κt, qB

t , qA
t
)

∂qB
t

=
∂MRTSK,L

(
κt, qB

t , qA
t
)

∂qA
t

= 0. (5.6)

In the parlance of Acemoglu (see, Acemoglu (2007), Definition 5 and 6), the technology
represented by qB

t and qA
t does not give rise to a weak equilibrium bias since it does not

induce a relative bias. Accordingly, the first factor in σ(κt) reflects only the effects of
changing κt on MRTSK,L

(
κt, qB

t , qA
t
)

of (5.1). Intuitively, it differs from the standard ex-
pression of the elasticity of substitution in three respects.21 In the numerator the rental
rate and the wage per efficiency unit are now f ′− i(gB) and f − κ f ′− i(gA), respectively,
and take investment outlays into account. In the denominator, f is replaced by the ex-
pression for the equilibrium net output per unit of efficient labor, f − κi(gB)− i(gA).

The second factor picks up the strength with which changes in the capital-labor ratio
impinge on the equilibrium task intensity κt. The following example reveals that σ(κt)

may change in a non-monotonous way to changes in κt. Moreover, depending on κt,
σ(κt) may exceed or fall short of unity.

Example 4 Let F exhibit a constant elasticity of substitution equal to .95, i. e.,

F (M, N) = Γ ·
[
αM

−1
19 + (1− α) N

−1
19

]19

Moreover, let α = 1/2 and Γ = 1 and Γ′ = 2. Then, the equilibrium elasticity of substitution is
continuous on R+ with

σ(κ) > 0.95 for all κ ∈ (0, ∞) and lim
κ→0

σ (κ) = lim
κ→∞

σ (κ) = .95 < 1. (5.7)

Moreover, as shown in Figure 5.1 for intermediate values of κ it holds that σ(κ) > 1.

21Recall that the elasticity of substitution of the (gross) production function F (BtKt, AtL) at a given tech-
nology

(
qB

t , qA
t
)

gives rise to the standard expression f ′(κt) [ f (κt)− κt f ′(κt)] / [−κt f ′′(κt) f (κt)].
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Figure 5.1: Example 4: The equilibrium elasticity of substitution may be smaller or greater
than unity as κ varies.

5.1.2 Functional Income Distribution and Relative Factor Endowments

The focus of this subsection is on the role of relative factor endowments for the functional
income distribution. To derive this distribution, we interpret net output as the economy’s
gross domestic product, GDP. In equilibrium, GDP is equal to the sum of (gross) capital
income, RtKt, and wage income, wtL. To see this, recall that the final-good sector earns
zero profits. With (3.9) this implies

F (Mt, Nt)−Mti
(

qB
t

)
− Nti

(
qA

t

)
= Mt

Rt

bt
+ Nt

wt

at
.

Clearly, the left-hand side is net output. Moreover, with full employment of capital
and labor we have Mt/bt = Kt and Nt/at = Lt which turns the right-hand side into
RtKt + wtLt. Absent of indirect taxes or subsidies, we obtain net national income, NNIt
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as NNIt = GDPt − δKKt, hence,22

NNIt = Kt

(
Rt − δK

)
+ wtLt. (5.8)

Thus, in equilibrium, aggregate income in absolute terms is equal to the sum of wage
income of workers and net capital income of capital owners. In what follows we assume
that net capital income is strictly positive, i. e., Rt > δK. In the presence of physical capital
depreciation it is important to distinguish between factor shares, i. e., the expenditure for
production factors that accrues at the level of the firm, and the functional income distribu-
tion, i. e., the income that capital owners and workers actually receive.23

Therefore, we study the determinants of factor shares through the lens of labor’s share,
i. e., LSt = wtL/GDPt. Upon dividing the numerator and the denominator by AtL the
latter becomes LSt = (wt/At)/vt, or

LSt =
f (κt)− κt f ′(κt)− i

(
gA(κt)

)
f (κt)− κti (gB(κt))− i (gA(κt))

, (5.9)

The determinants of the functional income distribution are analyzed through the lens of the
relative income of capital owners

st =

(
Rt − δK)Kt

wtLt
. (5.10)

Using (5.1) the latter may be expressed as

st =
κt

[
f ′(κt)− i

(
gB(κt)

)
− δK

Bt

]
f (κt)− κt f ′(κt)− i (gA(κt))

. (5.11)

Since in steady state we have κt = κ∗ and Bt = B∗, the steady-state factor shares as well
as the functional income distribution are stable, and the steady state of Proposition 5 is
shown to be consistent with Kaldor’s facts.

An interesting question is then how the relative endowment with the production factors
affects the distribution of these income streams.

22Observe that NNIt may also be written as NNIt = F (Mt, Nt)−Mti
(
qB

t
)
−Nti

(
qA

t
)
− δKKt. This reveals

two possible interpretations of our setup that turn out to be equivalent for the analysis of the functional
income distribution. The first interpretation views Mti

(
qB

t
)

and Nti
(
qA

t
)

as machines (capital) that fully
depreciate after use whereas Kt is capital that depreciates slower at rate δK . Then, Yt is the total value
added at t, i. e., GDPt, and subtracting all forms of depreciation delivers net national income. The second
interpretation views Mti

(
qB

t
)

and Nti
(
qA

t
)

as intermediates. Then, GDPt is equal to net output, and net
national income is net output minus capital allowances.

23See, e. g., Bertola, Foellmi, and Zweimüller (2006), Chapter 4, for a discussion of these concepts.
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Proposition 12 (Functional Income Distribution)

Consider two economies that differ only with respect to their capital-labor ratio such that (Kt/L)′ >
(Kt/L). Then, in steady state the following holds.

1. The labor share in GDP satisfies

(LS∗)′ R LS∗ if and only if σ(κ∗) Q 1. (5.12)

2. The relative income of capital owners satisfies

(s∗)′ R s∗ if and only if σ(κ∗) R σc

where

σc =

f ′−i(gB)
f−κ∗i(gB)−i(gA)

f ′−i(gB)−(δK/B∗)
f−κi(gB)−i(gA)−(κ∗δK/B∗)

> 1, (5.13)

and f , gB and gA are evaluated at κ∗.

Statement 1 is in line with the well-known intuition that a higher capital-labor ratio in-
creases the share of labor in GDP if and only if the elasticity of substitution between capi-
tal and labor is smaller than one. However, here what matters is the equilibrium elasticity
of substitution. Constant returns to scale in the net output function then implies that the
opposite is true for capital’s share in GDP.

Statement 2 emphasizes the distinction between factor shares and the functional income
distribution when depreciation of the capital stock is allowed for. For capital owners what
matters is their net factor income,

(
Rt − δK)Kt. Moreover, whether the latter increases

in response to a higher capital-labor ratio depends on a critical value of the elasticity of
substitution that exceeds unity for δK > 0. In fact,

sc =
RtKt
GDPt

(Rt−δK)Kt
NNIt

≥ 1 with strict inequality whenever δK > 0.

Clearly, the fraction in the denominator necessarily falls as δK increases above zero. Hence,
the share of gross capital income in GDP is greater than the share of net capital income in
NNI.24

24Notice that this property of the functional income distribution is not specific to our framework with
endogenous technical change.
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In what follows we focus our analysis on the steady-state functional income distribution
and emphasize the potential role of capital depreciation at rate δK > 0. We show next
that unlike the economy’s steady-state growth rate, its functional income distribution
depends on the discount factor.

Proposition 13 (Functional Income Distribution and the Discount Factor)

Consider two economies that differ only with respect to their discount factor such that β′ > β.
Then, in steady state, the relative income of their capital owners satisfies

(s∗)′ < s∗. (5.14)

Hence, the more patient economy is predicted to have a lower capital share in the long
run. The intuition for (and the proof) of this finding are closely linked to Proposition 6
stating that β′ > β implies (B∗)′ < B∗. Then, it is immediate from (5.11) that (s∗)′ < s∗.
Hence, contrary to what Acemoglu (2003b) claims the presence of endogenous capital-
augmenting technical change does not cut off the link between the steady-state functional
income distribution and the household side of the economy.

The intuition for this finding is straightforward. From (5.11) it is obvious that depreci-
ation rate per efficiency unit of capital, δK/Bt matters for the relative income of capital
owners. Then, Proposition 13 just says that in the more patient economy this rate will be
lower since the steady-state efficiency units of capital are greater.25

5.2 Fiscal Policy

5.2.1 A Linear Tax on Capital

Suppose the government levies a tax on capital such that the net after-tax rate of return
per unit of capital at t is (1 − τ)

(
Rt − δK) , τ ∈ [0, 1).Then, the Euler condition (3.3)

becomes Ct+1/Ct = β
(
(1− τ)

(
Rt+1 − δK)+ 1

)
, i. e., from the household’s point of view,

25An alternative interpretation highlights that technological knowledge is disembodied. Indeed, write the
steady-state net capital income as R∗Kt − δKKt = B∗

(
f ′ (κ∗)− i

(
δB/

(
1− δB)))Kt − δKKt. Disembodied

technological knowledge, B∗, is a determinant of the marginal value product of capital, i. e., of the rental
rate of capital, R∗. However, B∗ survives if capital decays. If capital depreciation was proportionate to
the amount of efficient capital, e. g., if δ̃K (BtKt), then the steady-state relative share of capital would only
depend on κ∗ and no longer on β. However, such a specification runs counter to the idea of disembodied
technological knowledge that has a life (and a death) of its own.
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the relative price of consumption tomorrow increases with the tax. Due to the lump-sum
transfer of the government’s tax receipts the household’s flow budget constraint (3.2)
remains unchanged.

How does this policy affect the economy’s growth rate and its functional income distri-
bution in steady state? First, observe that the tax does not affect the steady-state growth
rate of the economy. According to Proposition 5, the latter is equal to the growth rate of
labor-augmenting technological knowledge and hinges on

(
qA)∗ = gA (κ∗). As κ∗ is de-

termined by (4.17) and reflects only the production side of the economy, the tax on capital
leaves the economy’s steady-state growth rate unchanged.

However, there are steady-state level effects that also matter for the functional income
distribution.

Next, consider the relative income of capital owners. In the presence of a tax on capital it
is the net after-tax rate of return on capital that matters for capital owners so that (5.10)
becomes26

st =
(1− τ)

(
Rt − δK)Kt

wtL
. (5.15)

One readily verifies that in steady state we have

s∗τ =
(1− τ)κ∗

f (κ∗)− κ∗ f ′ (κ∗)− i (gA (κ∗))

(
f ′ (κ∗)− i

(
δB

1− δB

)
− δK

B∗τ

)
(5.16)

which generalizes (5.11) to τ > 0. Hence, there are two channels through which the tax
affects the steady-state functional income distribution. First, there is the direct effect on
the net after-tax rate of return on capital which is negative. Second, there is an indirect ef-
fect of opposite sign through B∗τ . It captures the necessary adjustment of the depreciation
rate per unit of efficient capital. Indeed, the same steps that lead to (4.16) deliver now

B∗τ =
(1 + g∗)− β

(
1− (1− τ)δK)

β(1− τ)
(

f ′ (κ∗)− i
(

δB

1−δB

)) , (5.17)

with B∗τ = B∗ for τ = 0. Observe that B∗τ increases in τ. To see why, consider the steady-
state Euler condition 1 + g∗ = β

(
(1− τ)

(
R∗τ − δK)+ 1

)
. It requires that any pair (τ, R∗τ)

is such that the household’s desired consumption growth rate is g∗. Accordingly, changes
in τ and R∗τ must satisfy

dR∗τ
dτ

=
R∗τ − δK

1− τ
> 0. (5.18)

26Observe that the redistribution of the government’s tax receipts gives rise to a third kind of household
income which is neither capital nor labor income. In what follows we neglect this aspect. Mutatis mutandis,
the same remark applies to the two policies of subsidizing innovation investments studied below.
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Hence, the rental rate of capital increases in τ since the net rate of return on capital,
R∗τ − δK, is strictly positive. Intuitively, the tax reduces the net rate of return on capital so
that R∗ must increase. As R∗τ = B∗τ

(
f ′ (κ∗)− i

(
δB/

(
1− δB))) we have sign [dB∗τ/dτ] =

sign [dR∗τ/dτ] > 0. However, the direct effect can be shown to dominate. Hence, the
relative income of capital owners unequivocally falls in τ.

The following proposition summarizes the above results.

Proposition 14 (Linear Tax on Capital, Steady-State Growth and Functional Income Distribu-
tion)

Consider two economies that differ only with respect to their linear tax on capital such that 1 >

τ′ > τ ≥ 0. Then, in steady state the following holds:

(g∗τ)
′ = g∗τ, (5.19)

(R∗τ)
′ > R∗τ, (5.20)

(s∗τ)
′ < s∗τ. (5.21)

5.2.2 A Subsidy to Capital-Augmenting Innovation Investments

Suppose the government pays a subsidy σBi
(
qB

t (m)
)

for all innovation investments that
raise the productivity of capital at t, where σB ∈ [0, 1) is the subsidy rate. Such a sub-
sidy reduces the (minimized) cost per task performed by capital and, therefore, renders
innovation investments more attractive. This shows up in the conditions for profit-
maximization that now involve

f ′ (κt) =
(

1− σB
)

c
(

qB
t

)
. (5.22)
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The latter generalizes (3.15) to the case where σB > 0 and leads to changes in Proposi-
tion 1. In fact, we now have27

qB
t = gB(κt, σB), with gB

κ (κt, σB) < 0 and gB
σB(κt, σB) > 0, (5.23)

Rt = R
(

κt, Bt−1, σB
)

with RσB

(
κt, Bt−1, σB

)
> 0. (5.24)

How does the policy of subsidizing capital-augmenting innovation investments affect
the economy’s growth rate and its functional income distribution in steady state? First,
observe that the subsidy increases the steady-state growth rate of the economy. Again,
the latter is equal to the growth rate of labor-augmenting technological knowledge and
hinges on

(
qA)∗ = gA (κ∗). However, here κ∗ increases in σB. Indeed, in light of (5.23)

condition (4.17) must be replaced by

gB(κ∗σB , σB) =
δB

1− δB , (5.25)

where κ∗
σB is the steady-state equilibrium task intensity consistent with a subsidy rate

σB > 0. Implicit differentiation reveals that the steady-state equilibrium task intensity,
κ∗

σB , increases in σB, i. e.,

dκ∗
σB

dσB = −
gB

σ

(
κ∗

σB , σB)
gB

κ

(
κ∗

σB , σB
) > 0. (5.26)

The intuition for this is straightforward. In steady state qB must be equal to δB/
(
1− δB).

A subsidy rate σB > 0 reduces the cost of each task performed by capital at any given
level of the equilibrium task intensity and makes it worthwhile to acquire a higher value
of qB. To offset this effect κ∗

σB must increase.

Through this channel a higher subsidy rate also induces faster steady state growth. To
see this formally, observe that the steady-state growth rate of the economy is now

g∗σB =
(

1− δA
) (

1 + gA (κ∗σB

))
− 1. (5.27)

Then, with (5.26) we have

dg∗
σB

dσB =
(

1− δA
)

gA
κ

(
κ∗σB

) dκ∗
σB

dσB > 0. (5.28)

27Total differentiation of (5.22) delivers (5.23). Moreover, observe that due to the sub-
sidy the rental rate of capital consistent with profit-maximizing behavior becomes Rt =

Bt−1
(
1− δB) (1 + gB(κt, σB)

) [
f ′ (κt)−

(
1− σB) i

(
gB(κt, σB)

)]
. Then, one readily verifies that

RσB
(
κt, Bt−1, σB) > 0.
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Next, consider the relative income of capital owners (5.11). In the presence of σB we
obtain in a steady state

s∗σB =

κ∗
σB

(
f ′
(
κ∗

σB

)
−
(
1− σB) i

(
δB

1−δB

)
− δK

B∗
σB

)
f
(
κ∗

σB

)
− κ∗

σB f ′
(
κ∗

σB

)
− i
(

gA
(
κ∗

σB

)) . (5.29)

A change in σB affects the relative share of capital in an intricate way by changing both
the income that accrues to capital owners and the wage income. Let us start with the
effect on capital income, i. e., on the numerator of s∗

σB . First, there is a direct effect that
increases net capital income. Intuitively, the subsidy allows for a higher rental rate of
capital. Second, there is an indirect effect through an adjustment in B∗

σB which is also
strictly positive. Intuitively, the depreciation rate of efficient capital declines. Finally,
there is an indirect effect through κ∗

σB which is indeterminate. As a result the effect of
changing σB on the numerator of (5.29) remains undeterminate. The effect of a greater σB

on the steady-state wage income in efficiency units, i. e., on the denominator of (5.29), is
strictly positive. The positive effect of a higher marginal product of tasks performed by
labor dominates the negative effect arising from greater investment outlays. However,
the total effect of increasing σB on s∗

σB remains undecided in general.

The following proposition summarizes the main results on long-run effects of a subsidy
to capital-augmenting innovation investments.

Proposition 15 (Subsidy to Capital-Augmenting Innovation Investments, Steady-State Growth
and Functional Income Distribution)

Consider two economies that differ only with respect to the subsidy rate to capital-augmenting
innovation investments such that 1 >

(
σB)′ > σB ≥ 0. Then, in steady state the following

holds: (
g∗σB

)′
> g∗σB , (5.30)

(
R∗σB

)′
> R∗σB and

((
wt

At

)∗)′
>

(
wt

At

)∗
, (5.31)

(
s∗σB

)′ R s∗σB . (5.32)

5.2.3 A Subsidy to Labor-Augmenting Innovation Investments

Suppose the government pays a subsidy σAi
(
qA

t (n)
)

for all innovation investments that
raise the productivity of labor at t, where σA ∈ [0, 1) denotes the subsidy rate. Such a
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subsidy reduces the cost per task performed by labor and, therefore, renders innovation
investments more attractive. This shows up in the conditions for profit-maximization
that now involve

f (κt)− κt f ′ (κt) =
(

1− σA
)

c
(

qA
t

)
. (5.33)

The latter generalizes (3.16) to the case where σA > 0. The concomitant changes to Propo-
sition 1 are as follows. In fact, we now have28

qA
t = gA(κt, σA), with gA

κ (κt, σA) > 0 and gA
σA(κt, σA) > 0, (5.34)

wt = w
(

κt, At−1, σA
)

with wA
σA

(
κt, At−1, σA

)
> 0. (5.35)

How does the policy of subsidizing labor-augmenting innovation investments affect the
steady-state growth rate of the economy and its functional income distribution? First,
observe that the subsidy leaves the equilibrium task intensity κ∗ unchanged. Neverthe-
less, it increases the steady-state growth rate of the economy through its direct effect on
qA

t = gA(κt, σA). Notice that the steady state requires κ∗ to be determined by (4.17). But
the subsidy has made innovation investments in tasks performed by labor more attrac-
tive at any level of equilibrium task intensity. In view of Proposition 5, the steady-state
growth rate of the economy may now be written as

g∗σA =
(

1− δA
) (

1 + gA
(

κ∗, σA
))
− 1. (5.36)

Then, using (5.34) we have indeed that

dg∗
σA

dσA =
(

1− δA
)

gA
σ

(
κ∗, σA

)
> 0. (5.37)

Next, consider the relative income of capital owners (5.11). In the presence of σA we
obtain in steady state

s∗σA =

κ∗
(

f ′ (κ∗)− i
(

δB

1−δB

)
− δK

B∗
σA

)
f (κ∗)− κ∗ f ′ (κ∗)− (1− σA) i (gA (κ∗, σA))

. (5.38)

A subsidy to labor-augmenting innovation investments affects the relative share of cap-
ital by changing both the income that accrues to capital owners and the wage income.

28Total differentiation of (5.33) delivers (5.34). Moreover, observe that due to the sub-
sidy the real wage consistent with profit-maximizing behavior becomes wt = At−1

(
1− δA) ×(

1 + gA(κt, σA)
) [

f (κt)− κt f ′ (κt)−
(
1− σA) i

(
gA(κt, σA)

)]
. Then, we have wA

σA

(
κt, At−1, σA) > 0.

41



Capital owners gain from the subsidy as it increases the net rate of return to capital. The
intuition for this finding comes from the Euler condition in steady state,

1 + g∗σA = β
(

R∗σA + 1− δK
)

. (5.39)

As g∗
σA increases in response to a higher subsidy rate, R∗

σA must also rise. More precisely,
as the steady-state rental rate of capital is R∗

σA = B∗
σA

[
f ′ (κ∗)− i

(
δB/

(
1− δB))] it is im-

mediate that dR∗
σA /dσA = dB∗

σA /dσA > 0. Since the steady-state value of the equilibrium
task intensity remains unchanged neither the marginal product of tasks performed by
capital nor the investment outlays for tasks performed by capital are affected. Hence, the
subsidy only affects the steady-state level of capital-augmenting technological knowl-
edge.

At the same time the subsidy affects the denominator of (5.38), i. e., the steady-state wage
income in efficiency units. Two effects must be considered. First, there is a direct effect
that unequivocally increases the wage in efficiency units. Second, there is an offsetting
indirect effect since a greater subsidy induces higher investment outlays per task. In gen-
eral this tension cannot be signed. However, with a little more structure it is possible to
show that the denominator falls in response to a greater σA. For this to hold it is suffi-
cient for the investment requirement function i

(
qA) to be a power function as assumed

in Example 1. Hence, suppose that, i
(
qA) = γ

(
qA)ν with ν > 1, γ > 0. Then, a greater

subsidy σA will reduce the wage rate per efficiency unit. In this case, a higher subsidy
rate unequivocally benefits the owners of capital.

The following proposition summarizes the main results about the long-run effects of a
subsidy to labor-augmenting innovation investments.

Proposition 16 (Subsidy to Labor-Augmenting Innovation Investments, Steady-State Growth
and Functional Income Distribution)

Consider two economies that differ only with respect to the subsidy rate for labor-augmenting
innovation investments such that 1 >

(
σA)′ > σA ≥ 0. Moreover, let the innovation investment

function be of the form i
(
qA) = γ

(
qA)ν , ν > 1, γ > 0. Then, in steady state the following holds:(

g∗σA

)′
> g∗σA , (5.40)

(
R∗σA

)′
> R∗σA and

((
wt

At

)∗)′
<

(
wt

At

)∗
, (5.41)

(
s∗σA

)′
> s∗σA . (5.42)
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It is worth mentioning that the effect of a higher subsidy, σA, on
(
1− σA) i

(
qA

t (n)
)

is
identical to the effect of a decline in the parameter γA in the specification of Example 1
where a productivity growth rate of qA

t requires investment outlays of γA (qA
t
)2 /2. In

the latter case, we may interpret γA as the price in units of the final good that firms
have to pay for an investment good that generates productivity growth at rate qA

t . A
decline in γA is then tantamount to a decline in the relative price of investment goods.
Moreover, Proposition 16 predicts a lower price of investment goods to induce a decline
in the labor share. Recently, Karabarbounis and Neiman (2014b) use this reasoning to
explain the global decline of the labor share observed since the early 1980s. In line with,
e. g., Greenwood, Hercowitz, and Huffman (1988), these authors attribute the decline in
the relative price of investment goods to investment-specific technical change.

6 Normative Implications: Optimal Growth

The purpose of this section is to elicit the welfare properties of the dynamic competi-
tive equilibrium. We derive two main results. First, we show that the equilibrium is
not Pareto optimal. Second, we establish that the Pareto-efficient steady state may be
implemented with an appropriate policy of investment subsidies.

6.1 The Planner’s Problem

To derive the Pareto-efficient allocation, we assess allocations with regard to their effects
on the overall utility of the representative household of (3.1). Moreover, we focus on al-
locations with the same structural properties as the decentralized equilibrium allocation.
In particular, we restrict attention to symmetric configurations that involve qB

t (m) = qB
t

and qA
t (n) = qA

t .29 To save space, we directly take capital and labor as fully employed.

Then, given L > 0, initial values of the capital stock, K0 > 0, and of technological knowl-
edge, A−1 > 0 and B−1 > 0, the planner solves

max
{qB

t ,qA
t ,Ct}∞

t=0
∈R3

+

∞

∑
t=0

βt ln Ct, (6.1)

29This excludes, e. g., asymmetric patterns where the planner chooses, say, qB
t (m) > 0 for a small subset

of tasks m ∈ [0, m̄t], m̄t < Mt, and does not undertake innovation investments in all other tasks performed
by capital. This strategy reduces current outlays for innovation investments and, at the same time, allows
to start period t + 1 with a high level of Bt

(
1− δB) as knowledge accumulates according to (3.26). Of

course, such a strategy also has a downside since the productivity of capital at t in all tasks m ∈ [m̄t, Mt]

is Bt−1
(
1− δB). At all events, in a decentralized economy such patterns cannot arise in equilibrium and

would even be very difficult to implement by a planning authority.
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subject to the resource constraint

Ct + Kt+1 = F (BtKt, AtL)− BtKti(qB
t )− AtLi(qA

t ) +
(

1− δK
)

Kt, (6.2)

the evolution of the two stocks of technological knowledge of (3.27) and a set of appro-
priate non-negativity constraints.

Besides these constraints and three transversality constraints,30 the planner’s problem
satisfies the following first-order conditions for Kt+1, qB

t , and qA
t :

Kt+1 :
Ct+1

Ct
= β

[
Bt(1− δB)(1 + qB

t+1)
(

f ′ (κt+1)− i
(

qB
t+1

))
+
(

1− δK
)]

, (6.3)

qB
t : 0 =

Kt

Ct

[
f ′ (κt)− i

(
qB

t

)
−
(

1 + qB
t

)
i′
(

qB
t

)]
,

(6.4)

+ β · Kt+1

Ct+1

(
1− δB

) (
1 + qB

t+1

)2
i′
(

qB
t+1

)

qA
t : 0 =

Kt

Ct

[
f (κt)− κt f ′ (κt)− i

(
qA

t

)
−
(

1 + qA
t

)
i′
(

qA
t

)]
(6.5)

+ β · Kt+1

Ct+1

(
1− δA

) (
1 + qA

t+1

)2
i′
(

qA
t+1

)
.

Condition (6.3) is the Euler condition of the planner’s problem. The comparison with
the Euler condition (4.9) of the competitive equilibrium reveals that the inter-temporal
equilibrium allocation of capital is the efficient one. This, however, is not the case for the
equilibrium choices of qB

t and qA
t . To see this compare (6.4) and (6.5) to their respective

equilibrium counterparts (3.15) and (3.16). The decentralized equilibrium has productiv-
ity growth rates such that the minimum costs per task are equal to the respective value
product of the marginal task. If these conditions hold for t and t + 1 then the first lines
of (6.4) and (6.5) vanish whereas the second remain positive.31 In other words, evaluated
at the equilibrium allocation the (marginal) value of qB

t and qA
t is strictly positive for the

planner. The presence of β suggests that the additional advantage is of an inter-temporal

30The transversality constraints are limt→∞ βtµK
t Kt+1 = 0, limt→∞ βtµA

t At = 0, and limt→∞ βt
tµ

B
t Bt = 0,

respectively, where µK
t , µA

t , µB
t are the Lagranage multipliers associated with the resource constraint and the

appropriate technological constraint, respectively.

31Equations (8.1) and (8.2) in the proof of proposition 1 make this fully obvious.
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nature. To see this more clearly, consider the following variational argument applied to
the first-order condition (6.4) that describes the social planner’s choice of qB

t . Mutatis
mutandis, an analogous argument applies to (6.5).

Suppose the economy evolves along an optimal path
{

At, Bt, Kt+1, Ct, qB
t , qA

t
}∞

t=0. Now,
the planner considers an increase in qB

t at some period t ≥ 0 in conjunction with a de-
crease in qB

t+1 such that the sequence
{

Aτ−1, Bτ, Kτ, qB
τ+1, qA

τ−1

}∞
τ=t+1 remains unchanged.

To study the effects of such variation, consider the planner’s net output at t

Vt = F (BtKt, AtL)− AtLi
(

qA
t

)
− BtKti

(
qB

t

)
(6.6)

in conjunction with the evolution of the two stocks of technological knowledge of (3.27).
Then, a small increase in qB

t implies

dVt = Bt−1

(
1− δB

)
Kt

[
f ′ (κt)− i

(
qB

t

)
−
(

1 + qB
t

)
i′
(

qB
t

)]
dqB

t , (6.7)

where the first term in the bracketed expression represents the increase in net output
due to a greater productivity of capital. The second term captures the additional invest-
ment outlays that arise since a greater productivity of capital increases the number of
tasks performed by capital under full employment. The third term represents the addi-
tional investment outlays that arise since the investment outlays of each performed task
increase.

Since Bt+1 is unaffected by the variation in qB
t and qB

t+1, the changes in these variables
must satisfy dqB

t+1 = −
(
1 + qB

t+1

)
/
(
1 + qB

t
)

dqB
t . Then, the effect of dqB

t on net output in
t + 1 is

dVt+1 = −Bt+1Kt+1i′
(

qB
t+1

)
dqB

t+1

= Bt+1Kt+1i′
(

qB
t+1

)(1 + qB
t+1

1 + qB
t

)
dqB

t

= Bt−1

(
1− δB

)2
Kt+1

(
1 + qB

t+1

)2
i′
(

qB
t+1

)
dqB

t . (6.8)

Hence, net output in t + 1 increases since dqB
t > 0 and the concomitant decline in qB

t+1

reduces the investment outlays for all Mt+1 = Bt+1Kt+1 tasks performed by capital. To
link these findings to the first-order condition (6.4) observe that the latter may be written
as

0 =
dVt

Ct
+ β

dVt+1

Ct+1
. (6.9)

Hence, along the optimal path the sum of the contemporaneous and the inter-temporal
effect of a variation in dqB

t vanishes when compared in “utils” of period t. In other words,
the respective second terms in conditions (6.4) and (6.5) represent the inter-temporal ad-
vantage of greater values for qB

t and qA
t that are not taken into account in the dynamic

competitive equilibrium.

45



6.2 Steady State Analysis

The economy of the planner involves the net output function (6.6) with constant returns
to scale in capital and labor and the resource constraint (6.2). Therefore, the generalized
steady state growth theorem of Irmen (2013b) applies, i. e., a steady state has Bt = B∗∗

and the growth rate of the economy given by the growth rate of labor-augmenting tech-
nological knowledge, g∗∗ = g∗∗A . Moreover, g∗∗V = g∗∗Y = g∗∗C = g∗∗K = g∗∗. The evolution
of technological knowledge (3.27) is consistent with this pattern. The task of this section
is to establish the existence of such a steady state and to compare it to the steady state of
the dynamic competitive economy.

To support Bt = B∗∗, the evolution of the stock of capital-augmenting technological
knowledge of (3.27) requires(

qB
)∗∗

=
δB

1− δB =
(

qB
)∗

. (6.10)

Hence, the steady state of the planner’s problem involves the same qB as the competitive
equilibrium. This is so, even though the planner internalizes the inter-temporal knowl-
edge spill-over associated with innovation investments that increase the productivity of
capital.

Constant consumption growth in (6.3) and (6.10) imply κt = κ∗∗. Then, in steady state
conditions (6.4) and (6.5) boil down to

c
(

δB

1− δB

)
= f ′ (κ∗∗) + β ·

i′
(

δB

1−δB

)
1− δB , (6.11)

c
((

qA
)∗∗)

= f (κ∗∗)− κ∗∗ f ′ (κ∗∗) + β
(

1− δA
) (

1 +
(

qA
)∗∗)2

i′
((

qA
)∗∗)

.(6.12)

Hence, the planner’s steady-state choice of qB and qA is such that the minimized costs per
task are equal to the sum of the contemporaneous marginal product of the respective task
and the inter-temporal advantage arising from the knowledge spill-over. The comparison
with (3.15) and (3.16) of the competitive equilibrium shows that the inter-temporal effect
is neglected by the competitive production sector. The reason for this is straightforward.
While innovation investments give rise to new technological knowledge that increases
the productivity of the factors of production, this advantage is confined to the period in
which the innovation investment is made. For all subsequent periods the newly created
technological knowledge becomes publicly available and can be used by any firm free of
charge. Hence, the investment behavior of firms does not reflect the future.32

32In other words, newly created technological knowledge is partially excludable, i. e., for one period, and

46



Condition (6.11) determines κ∗∗ > 0. The comparison with (3.15) evaluated at the steady
state reveals immediately that κ∗∗ > κ∗. This reflects the presence of the inter-temporal
effect that forces the marginal product of tasks performed by capital must fall. Condition
(6.12) determines

(
qA)∗∗ > (

qA)∗. There are two reinforcing reasons for this inequality.
First, κ∗∗ > κ∗ means that the marginal product of tasks performed by labor increases.
Therefore, the cost-minimizing level of qA will be higher. Second, the inter-temporal ad-
vantage is itself increasing in qA. In steady state, the Euler condition, (6.3), pins down B∗∗

such that consumption grows at the same rate as the economy. The following proposition
summarizes our results.

Proposition 17 (Planner’s Steady-State Allocation)

1. Suppose Assumptions (1) and (2) hold. Then, the planner’s problem has a unique steady
state involving

(
κ∗∗,

(
qB)∗∗ ,

(
qA)∗∗) ∈ R3

++, and

c∗∗ = f (κ∗∗)− κ∗∗i
(

δB

1− δB

)
− i
((

qA
)∗∗)

− κ∗∗

B∗∗
(

g∗∗ + δK
)

, (6.13)

B∗∗ =

(
1− δA) (1 +

(
qA)∗∗)− β

(
1− δK)

β
(

f ′ (κ∗∗)− i
(

δB

1−δB

)) > B∗, (6.14)

2. The welfare-maximizing steady-state growth rate of the economy is

g∗∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 +

(
qA
)∗∗)

− 1 > g∗.

Moreover, along the planner’s steady-state path, it holds that

a)
Yt+1

Yt
=

Vt+1

Vt
=

Kt+1

Kt
=

Ct+1

Ct
=

Mt+1

Mt
=

Nt+1

Nt
= 1 + g∗∗,

b) k∗ =
1

B∗∗
,

lt+1

lt
=

1
1 + g∗∗

6.3 Pareto-Improving Fiscal Policy

The discrepancy between the steady-state growth rates of the dynamic competitive equi-
librium and the planner’s solution suggests the possibility of introducing Pareto-improving

non-rival. One may contrast this with a dynamic competitive economy where knowledge is perfectly ex-
cludable, i. e., excludable forever. Then, the knowledge accumulation equation of (3.26) become firm specific
and are taken into account when firms maximize profits. In this scenario, the dynamic competitive equilib-
rium chooses the efficient steady-state levels of qB and qA as characterized by (6.11) and (6.12). However, a
deviation from perfect excludability implies the same qualitative results as derived above.
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policy measures. The following proposition establishes that an appropriately chosen in-
vestment subsidy accompanied by a lump-sum tax to balance the government’s budget
may close the gap between the allocation chosen by the planner and the one obtained
under laissez-faire.

Proposition 18 Suppose the government subsidizes innovation investments that increase the
productivity of capital at rate σB ∈ (0, 1) and those that increase the productivity of labor at rate
σA ∈ (0, 1). Then, the pair

((
σB)∗∗ ,

(
σA)∗∗) implements the planner’s allocation, where

(
σB
)∗∗

=
βi′

i′ + (1− δB) i
(6.15)

and i is evaluated at qB = δB/
(
1− δB) , and

(
σA
)∗∗

=
β
(
1− δA) (1 +

(
qA)∗∗) i′

((
qA)∗∗)

c
(
(qA)

∗∗) . (6.16)

Notice that the two subsidies differ. The reason for this is that they fulfill different pur-
poses. The subsidy to innovation investments that increase the productivity of capital
induces a higher steady-state value of the equilibrium task intensity. Since qB is pinned
down in the steady state by the requirement to offset depreciation of the stock of capital-
augmenting knowledge, the subsidy rate σB has to be exactly such that the inter-temporal
spill-over yields κ∗∗. Since the equilibrium task intensity has already been pushed up to
κ∗∗ the subsidy to innovation investments that increase the productivity of labor makes
firms to internalize the inter-temporal effect of qA .

7 Concluding Remarks

The idea that the rate and direction of technical change result from costly and purposeful
activities, motivated by economic forces, is an old one and even predates the analytic
representation of exogenous technical change. This paper drafts an original competitive
growth model to derive new insights both for the positive and the normative implications
of endogenous capital- and labor-augmenting technical change.

The reader may recall that our results are obtained for a logarithmic per-period utility
function of the representative household. This begs the question of whether our qualita-
tive findings are different under a more general utility function allowing for a constant
inter-temporal elasticity of substitution (CIES) different from unity. In fact, little will
change. To see this, remember that neither the steady-state efficient capital intensity nor
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the steady-state growth rate hinge on household preferences. Both are entirely deter-
mined by the production sector of the economy. The CIES will only affect steady-state
levels as well as the transition while leaving the local stability property of the steady state
intact.

For an CIES exceeding unity an additional restriction on permissible parameter constel-
lations is called for. This condition assures that the steady-state growth rate is not too
large so that the household’s problem remains well-defined. The presence of a CIES also
introduces an additional parameter for comparative static exercises. However, since the
household becomes less willing to accept deviations from a uniform consumption profile
the smaller the CIES, the comparative-static effect of a decline in the CIES delivers the
same sign as a decline in the discount factor, β.

In the main text we also abstract from population growth. Let us now consider the main
consequences of a constant population growth rate, gL, where β (1 + gL) < 1. Again,
since the steady-state growth rate is determined within the production sector it will not
depend on gL or the size of the population. Moreover, from (4.6) evaluated at the steady
state it becomes apparent that in steady state the equilibrium net output per capita does
not depend on gL or the size of the population either. Hence, as suggested in Footnote 3
there are neither “strong” nor “weak” scale effects. Clearly, there will be level effects
along the transition associated with gL that, however, do not affect the local stability
property of the steady state.

It is worth noting that the respective roles of the CIES and of gL are quite different in the
model variant of Section 4.4 where only labor-augmenting technical change is feasible.
For instance, changing either parameter will change the steady-state growth rate. This
suggests that the analysis of the present paper may be interpreted as a robustness check
for the qualitative results of the more “standard setting” with labor-augmenting technical
change only. Our analysis highlights several new circumstances where the presence of
capital-augmenting technical change leads to predictions that substantially differ from
the standard setting.

Our analysis also contributes the discussion about why technical change is eventually
only labor-augmenting. As in the models of von Weizsäcker (1962), Drandakis and
Phelps (1966), Samuelson (1966), and Acemoglu (2003b) we deduce labor-augmenting
technical change instead of assuming it, i. e., in the neighborhood of the steady state it
results from the equilibrium incentives faced by innovating firms. However, contrary to
these four contributions, the forces that push the economy towards its steady state with
labor-augmenting technical change only are independent of the elasticity of substitution
between capital and labor.33

33Drandakis and Phelps (1966) show that their dynamical system exhibits a saddle path if the elasticity of
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Our paper leaves some important issues unresolved. They include the plausibility of
a time-invariant equilibrium innovation possibility frontier (EIPF). Should this frontier
move over time? Empirical studies such as Caselli and Coleman (2006) suggest the ex-
istence of country-specific frontiers which may actually change over time. One way to
think about this is in terms of investment-specific technical change that lowers the rela-
tive price of the resources used as innovation investments. This route may also open the
door to a new mechanism that links the empirically observed decline of labor shares to
the relative price of investment goods (see, e. g., Karabarbounis and Neiman (2014b)).

Another desirable feature would be a more flexible role for tasks. So far, we restrict atten-
tion to time-invariant factor-specific tasks. However, in practice the boundary between
tasks performed by labor and those performed by capital shifts over time. Technical
change may tend to transfer tasks from one factor of production to another. Moreover,
history shows that technical change may make certain tasks redundant altogether and
eliminate them from the production process. We leave these challenging questions for
future research.

substitution exceeds unity. However, with their assumption of an exogenous savings behavior there is no
mechanism leading the economy onto the saddle path.
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8 Appendix: Proofs

8.1 Proof of Proposition 1

We consider each claim of Proposition 1 in turn. Without loss of generality, we suppress the time argument.

1. Recall that c
(
qB) and c

(
qA) denote the minimum cost per task performed by capital and labor, re-

spectively, i. e.,

c
(

qB
)

= min
qB≥0

[
i
(

qB
)
+

R
B−1 (1− δB) (1 + qB)

]
(8.1)

= i
(

qB
)
+
(

1 + qB
)

i′
(

qB
)

,

c
(

qA
)

= min
qA≥0

[
i
(

qA
)
+

w
A−1

(
1− δA

) (
1 + qA

) ]
(8.2)

= i
(

qA
)
+
(

1 + qA
)

i′
(

qA
)

,

where use is made of (3.11) and (3.12).

The properties of f (κ) and i(qj) ensure the existence of some function gj : R++ → R++, j = A, B.
Implicit differentiation of (3.15) and (3.16) reveals that gA

κ (κt) > 0 > gB
κ (κt) as claimed in (3.17) and

(3.18).

2. Solving (3.11) and (3.12) for the respective factor price R and w and using Claim 1 delivers

R = B−1

(
1− δB

) (
1 + gB (κ)

)2
i′
(

gB (κ)
)
≡ R (κ, B−1) ,

w = A−1

(
1− δA

) (
1 + gA (κ)

)2
i′
(

gA (κ)
)
≡ w(κ, A−1),

where R : R2
++ → R++ and w : R2

++ → R++. The partial derivatives indicated in (3.19) and (3.20)
follow immediately from Claim 1 and the properties of the function i. �

8.2 Proof of Proposition 2

We consider each claim of Proposition 2 in turn. Without loss of generality, we suppress the time argument.

1. Consider equations (3.17) and (3.18). Since gB is strictly increasing on its domain it is invertible. Let
GB : R++ → R++ denote the inverse of gB. Then, from (3.17), κ = GB (qB) . Hence, with (3.18), we
may write

qA = gA
(

GB
(

qB
))
≡ g

(
qB
)

.

The slope of the function g(qB) is given by

g′
(

qB
)
≡ dqA

dqB =
dgA (κ)

dκ

dGB (qB)
dqB =

gA
κ (κ)

gB
κ (κ)

< 0. (8.3)
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2. Consider equations (3.19) and (3.20). From equation (3.20), the function w (κ, A−1) is strictly increas-
ing in κ on its domain. Hence, given A−1, this function is invertible in κ. Let W : R2

++ → R++ denote
this inverse. Then, κ = W(w : A−1). Hence, with (3.19), we may write

R = R(W(w : A−1), B−1) ≡ h(w, A−1, B−1),

where h : R3
++ → R++. The partial derivative of h(w, A−1, B−1) with respect to w is given by

hw(w, A−1, B−1) ≡
dR
dw

=
dR(κ, B−1)

dκ

dW(w : A−1)

dw
=

Rκ(κ, B−1)

wκ(κ, A−1)
< 0. (8.4)

�

8.3 Proof of Proposition 3

Without loss of generality, we suppress the time argument.

Consider equation (4.7). Given
(

B−1
(
1− δB)K/A−1(1− δA)L

)
> 0, its right-hand side defines a continu-

ous function RHS
(
κ, B−1

(
1− δB)K/A−1

(
1− δA) L

)
> 0 for all κ > 0. Moreover, following Proposition 1,

the properties of gA (κ) and gB (κ) imply that RHS
(
κ, B−1

(
1− δB)K/A−1(1− δA)L

)
is continuous and

strictly decreasing in κ > 0. Hence, limκ→0 RHS
(
κ, B−1

(
1− δB)K/A−1(1− δA)

)
> 0. By continuity, there

is a unique κ > 0 that satisfies κ = RHS
(
κ, B−1

(
1− δB)K/A−1(1− δA)

)
. Implicit differentiation delivers

that this value increases whenever Bt−1
(
1− δB)Kt/

[
At−1

(
1− δA) L

]
increases. �

8.4 Proof of Proposition 4

Proposition 4 claims that for given L > 0 and initial values (A−1, B−1, K0) > 0 the transitional dynamics of
the dynamic competitive equilibrium is given by a unique sequence {κt, ct, Bt}∞

t=0 . To prove this we pursue
the following steps. First, we derive the three-dimensional system of Proposition 4. Second, we establish
that κt and Bt describe the state of the economy at t. Finally, we show that for any admissible (κt, Bt, ct) > 0
there is a corresponding unique {κt+1, ct+1, Bt+1} for all t.

1. To obtain the three-dimensional system we proceed as follows. To derive (4.8) use equations 8.1, 8.2 and
Claim 1 of Proposition (1) in (3.15) and (3.16) to substitute for Rt and wt in the household’s budget constraint.
We may then write the latter as

Kt+1 = Bt

(
f ′(κt)− i(gB(κt))

)
Kt + AtL

(
f (κt)− κt f ′(κt)− i(gA(κt))

)
− Ct + (1− δK)Kt.

By definition we have Kt = (AtL/Bt) κt and Ct = AtLct. Together with equation (4.6) above equation may
be written in terms of efficiency units as

At+1Bt
AtBt+1

κt+1 = Bt (v (κt)− ct) + (1− δK)κt.

Equation 4.9 is obtained upon employing equations (3.17) and (3.15) in (3.3).

52



Now, the system describing the evolution of the economy is four-dimensional and given by

At+1Bt
AtBt+1

κt+1 = Bt (v(κt)− ct) + (1− δK)κt, (8.5)

At+1
At

ct+1
ct

= β
(

Bt+1

[
f ′(κt+1)− i(gB(κt+1))

]
+ (1− δK)

)
, (8.6)

At = At−1

(
1− δA

)
(1 + gA(κt)), (8.7)

Bt = Bt−1

(
1− δB

)
(1 + gB(κt)). (8.8)

Observe that this system of four first-order, non-linear difference equations may be reduced to a system
of three equations. Forwarding (8.7) and (8.8) and substituting in (8.5) and (8.6) we obtain the three-
dimensional system of Proposition 4.

2. Notice that given (A−1, B−1, K0, L) > 0 the state of the economy in period t is fully characterized by two
variables, the two state variables κt and Bt. In period t = 0 κ0 is determined by (4.12) in accordance with
Proposition 3. Having κ0 pins down the value of the other state variable B0 in accordance with (4.10).

3. To show that for any initial values (A−1, B−1, K0, L) the transitional dynmaics is given by a unique se-
quence {κt, ct, Bt}∞

t=0 we introduce

Ωκ(κt+1) ≡

(
1 + gA(κt+1)

)
(

1 + gB(κt+1)
) κt+1. (8.9)

Then, equation (4.8) may be rewritten as

Ωκ(κt+1) =
(1− δB)(
1− δA

) [Bt

(
v(κt)− ct

)
+ (1− δK)κt

]
. (8.10)

For any triple (κt, Bt, ct) ∈ R3
++ such that the right-hand side of (8.10) is strictly positive, there will be a

unique value of κt+1 > 0 satisfying equation (8.10) if Ωκ(κt+1) is strictly positive, continuous and monotone
in κt+1 > 0 and may take any value in R++.

Observe first that Ωκ(κt+1) > 0 indeed holds for all κt+1 > 0 and is a consequence of the properties of the
functions gA and gB, as established in Proposition 1. It remains to be shown that limκ→0 Ωκ(κt+1) = 0 and
limκ→∞ Ωκ(κt+1) = ∞. To show this, consider the right-hand side of (8.9). Recall from Proposition 1 that
gB(κ) is decreasing on R++ and bounded below by zero. Hence, limκ→∞ gB(κ) is finite, while limκ→0 gB(κ)

is either finite or infinite. Moreover, Proposition 1 implies that limκ→0 gA(κ) is finite and bounded below by
zero while limκ→∞ gA(κ) is finite or infinite since gA is increasing on R++. Consequently, as κ tends to zero
we have limκ→0 Ωκ(κt+1) = 0 and as κ tends to infinity we have limκ→∞ Ωκ(κt+1) = ∞.

It follows that Ωκ(κt+1) is increasing in κt+1 > 0, approaches zero as κ → 0 and approaches infinity as
κ → ∞. Therefore, there is a unique κt+1 > 0 that satisfies eq. (4.8) for given (κt, Bt, ct) ∈ R3

++.

Given a unique κt+1 > 0 equation (4.9) delivers a unique ct+1 > 0 and equation 4.10 a unique Bt+1 > 0. �

8.5 Proof of Proposition 5

We consider both claims of Proposition 5 in turn.
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1. Equations (4.15) - (4.17) follow immediately from the corresponding equations (4.8) - (4.10) of the dy-
namical system for the reasons discussed in the main text. Obviously, in steady state the transversality
condition (4.11) is also satisfied. As explained in the main text, Assumption 1 and Assumption 2 guar-
antee a strictly positive solution to (4.17) and (4.16), respectively. It remains to be shown that c∗ > 0
or B∗v∗ (κ∗) > κ∗

(
g∗ + δK). Using (4.16) the latter inequality may be written as[

(1 + g∗)− β
(

1− δK
)]

v∗ (κ∗) > β
(

f ′ (κ∗)− i
(

gB (κ∗)
))

κ∗
(

g∗ + δK
)

(8.11)

A sufficient condition for this to hold is obtained for β = 1 on both sides of the inequality. This gives

v∗ (κ∗) >
(

f ′ (κ∗)− i
(

gB (κ∗)
))

κ∗. (8.12)

Finally, observe that due to constant returns to scale of F it holds in equilibrium that f (κ) = c
(
qA)+

κc
(
qB). Using the latter for the steady state delivers v∗ (κ∗) =

(
1 + gA (κ)∗

)
i′
(

gA (κ)∗
)
+ κ∗

(
1 + gB (κ)∗

)
i′
(

gB (κ)∗
)
.

Then, with the understanding that both gA and gB are evaluated at κ∗, inequality (8.12) becomes(
1 + gA

)
i′
(

gA
)
+ κ∗

(
1 + gB

)
i′
(

gB
)

>
(

f ′ (κ∗)− i
(

gB
))

κ∗,

(
1 + gA

)
i′
(

gA
)

>
[

f ′ (κ∗)− i
(

gB
)
−
(

1 + gB
)

i′
(

gB
)]

κ∗,

(
1 + gA

)
i′
(

gA
)

> 0,

as f ′ (κ∗)− c
((

qB)∗) = 0.

2. The expression for the steady-state growth rate, g∗, follows from (3.27) and Proposition 1. The deriva-
tion of the remaining findings is explained in the main text. �

8.6 Proof of Proposition 6

1. From (4.17), κ∗ is independent of β. Therefore, g∗ does not depend on β either. From (4.16) it is
immediate that a higher β requires a lower B∗. According to the expression for R∗ in Claim 2 of
Proposition 5 the rental rate of capital must also fall. From (4.15) the same is true for c∗.

2. Implicit differentiation of (4.17) delivers

dκ∗

dδB =
1

(1− δB)2gB
κ (κ∗)

< 0 (8.13)

as gB
κ < 0. Hence, (κ∗)′ < κ∗. The concomitant effect on the steady-state growth rate, g∗, is

dg∗

dδB =
dg∗

dκ

dκ∗

dδB < 0.

The sign follows since dg∗/dκ =
(
∂g∗/∂qA) (dgA (κ∗) /dκ

)
> 0. Hence, (g∗)′ < g∗.

To obtain the effect of δB on B∗ consider (4.16). Then,

dB∗

dδB =
dB∗

dκ

dκ∗

dδB

=
1

β ( f ′ − i (gB))

[
dg∗

dκ
−
(

g∗ + δK) ( f ′′ − i′
(

gB) gB
κ

)
f ′ − i (gB)

]
dκ∗

dδB < 0, (8.14)

where f and gB are evaluated at κ∗. To verify the sign of this expression note from (8.1) that

gB
κ (κ) ≡

dqB

dκ
=

f ′′(κ)
2i′ (qB) + (1 + qB) i′′ (qB)

. (8.15)
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Hence, f ′′(κ∗)− i′
(

gB(κ∗)
)

gB
κ (κ
∗) < 0 and (B∗)′ < B∗.

Using (4.16) the steady-state rental rate of capital may be written as R∗ = (1 + g∗) /β −
(
1− δK)).

Following dg∗/dδB < 0 it is immediate that (R∗)′ < R∗.

Finally, consider the effect of δB on c∗ of (4.15). It is given by

dc∗

dδB =
dc∗

dκ

dκ∗
dδB

=

v′(κ∗)−

(
g∗ + δK + κ∗ dg∗

dκ

)
B∗ − dB∗

dκ

(
g∗ + δK) κ∗

(B∗)2

 dκ∗
dδB (8.16)

and is indeterminate in general.

3. From (4.17), κ∗ is independent of δA. Therefore, (κ′)∗ = κ∗. Since g∗ =
(
1− δA) (1 + gA (κ∗)

)
− 1 it

is immediate that
(
δA)′ > δA ⇒ (g∗)′ < g∗.

From (4.16) it is immediate that sign[dB∗/dδA] = sign[dg∗/dδA] < 0. Hence, (B∗)′ < B∗. Invoking
R∗ = (1 + g∗) /β −

(
1− δK)) and (4.15) one also finds that sign[dR∗/dδA] = −sign[dc∗/dδA] =

sign[dg∗/dδA] < 0. Hence, (R∗)′ < R∗ and (c∗)′ > c∗. �

8.7 Proof of Proposition 7

We characterize the local stability of the dynamical system of Proposition 4 in the proximity of its steady-
state equilibrium, (κ∗, c∗, B∗).34

Consider first the system of autonomous, nonlinear, first-order difference equations (4.8), (4.9) and (4.10),
and notice that equations (4.8) and (4.9) define continuously differentiable functions, Φi : R3

++ → R++,
where i = κ, c, such that

κt+1 = Φκ(κt, ct, Bt), ct+1 = Φc(κt, ct, Bt).

Next, forward equation (4.10) one period and substitute κt+1 ≡ Φκ(κt, ct, Bt) to obtain

Bt+1 = Bt(1− δ)(1 + gB(Φκ(κt, ct, Bt))) ≡ ΦB(κt, ct, Bt),

where ΦB is also a continuously differentiable function.

Thus, with this notation, the dynamic system may be rewritten as

κt+1 = Φκ(κt, ct, Bt)

ct+1 = Φc(κt, ct, Bt)

Bt+1 = ΦB(κt, ct, Bt)

The above nonlinear dynamical system is approximated locally around its steady-state equilibrium, (κ∗, c∗, B∗)
by the following linear system: κt+1

ct+1

Bt+1

 = J

κt

ct

Bt

+ X,

34See Tabaković (2014) for a general discussion of the local stability analysis for three-dimensional discrete
dynamical systems.
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where

J ≡

Φκ
κ(κ
∗, c∗, B∗) Φκ

c (κ
∗, c∗, B∗) Φκ

B(κ
∗, c∗, B∗)

Φc
κ(κ
∗, c∗, B∗) Φc

c(κ
∗, c∗, B∗) Φc

B(κ
∗, c∗, B∗)

ΦB
κ (κ
∗, c∗, B∗) ΦB

c (κ
∗, c∗, B∗) ΦB

B(κ
∗, c∗, B∗)

 (8.17)

is the Jacobian matrix of the dynamical system evaluated at (κ∗, c∗, B∗), and

X ≡

 κ∗ −Φκ
κ(κ
∗, c∗, B∗)κ∗ −Φκ

c (κ
∗, c∗, B∗)c∗ −Φκ

B(κ
∗, c∗, B∗)B∗

c∗ −Φc
κ(κ
∗, c∗, B∗)κ∗ −Φc

c(κ
∗, c∗, B∗)c∗ −Φc

B(κ
∗, c∗, B∗)B∗

B∗ −ΦB
κ (κ
∗, c∗, B∗)κ∗ −ΦB

c (κ
∗, c∗, B∗)c∗ −ΦB

B(κ
∗, c∗, B∗)B∗


is a constant column vector.

To obtain the elements of J take the total differential of

(1− δA)
(
1 + gA(κt+1)

)
(1− δB) (1 + gB(κt+1))

κt+1 ≡ Ω(κt+1) = Bt (v(κt)− ct) + (1− δK)κt,

ct+1 = β

[
Bt+1

(
f ′(κt+1)− i

(
gB(κt+1)

))
+ (1− δK)

]
ct

(1− δA)
(
1 + gA(κt+1)

) ,

Bt+1 = Bt(1− δB)
(

1 + gB(κt+1)
)

,

which gives:

Φκ
κ =

B∗v′(κ∗) + 1− δK

(1 + g∗)
(
1 + εA

κ + εB
κ

) > 0,

Φκ
c = − B∗

(1 + g∗)
(
1 + εA

κ + εB
κ

) < 0,

Φκ
B =

v(κ∗)− c∗

(1 + g∗)
(
1 + εA

κ + εB
κ

) > 0,

Φc
κ =

βB∗
[(

f ′′(κ∗)− i′gB
κ

)
+
(

f ′(κ∗)− i(gB(κ∗))
)
(1− δB)gB

κ

]
− (1− δA)gA

κ

1 + g∗
c∗Φκ

κ < 0,

Φc
c = 1 +

Φc
κΦκ

c
Φκ

κ
> 1,

Φc
B =

β
(

f ′(κ∗)− i(gB(κ∗))
)

c∗

(1 + g∗)
+

Φc
κΦκ

B
Φκ

κ
(sign indeterminate),

ΦB
κ = B∗(1− δB)gB

κ Φκ
κ < 0,

ΦB
c = B∗(1− δB)gB

κ Φκ
c > 0,

ΦB
B = 1 + B∗(1− δB)gB

κ Φκ
B = 1 +

ΦB
κ Φκ

B
Φκ

κ
∈ (0, 1).
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The local stability properties of our three-dimensional system are fully determined by the eigenvalues λ1, λ2

and λ3 of the Jacobian matrix. To find the eigenvalues obtain the solution to

det(J − λI) = 0,

which gives rise to the following characteristic polynomial:

c(λ) ≡ λ3 − tr(J)λ2 + ∑ M2(J)λ− det(J), (8.18)

where tr(J) denotes the trace, ∑ M2(J) the sum of principal minors of order two and det(J) the determinant
of the Jacobian matrix. One can show that

tr(J) = λ1 + λ2 + λ3 = Φκ
κ + Φc

c + ΦB
B > 0 (8.19)

∑ M2(J) = λ1λ2 + λ1λ3 + λ2λ3 = 2Φκ
κ + Φc

cΦB
B −Φc

BΦB
c > 0 (8.20)

det(J) = λ1λ2λ3 = Φκ
κ > 0 (8.21)

By Descartes’ rule of signs we know that if the terms of a polynomial with real coefficients are ordered by
descending variable exponent, then the number of positive roots of the polynomial is either equal to the
number of sign differences between consecutive nonzero coefficients, or is less than it by an even number.
Moreover, the number of negative roots is at most equal to the number of continuations in the signs of the
coefficients. Inspection of equation (8.18) reveals that it has

(α) either three real positive roots,

(β) or one real positive root and one pair of complex conjugate roots.

Next, evaluate the characteristic polynomial at λ = 1 to obtain c(1) = −ΦB
c

c∗
B∗ < 0, implying that one

eigenvalue is of magnitude greater than 1, say λ1 > 1. If the remaining two eigenvalues are real,

(α1) either both have magnitude greater than one,

(α2) or both have magnitude smaller than one.

Otherwise, the remaining two eigenvalues are complex and

(β1) either have modulus greater than one, i. e., | x±ωi |> 1,

(β2) or have modulus smaller than one, i. e., | x±ωi |< 1.

To determine the magnitude of the remaining two eigenvalues use equations (8.19)− (8.21) to obtain

C(λpλq) = (λpλq)
3 −∑ M2(J)(λpλq)

2 + tr(J)det(J)(λpλq)− det(J)2 = 0, (8.22)

where (λpλq) represents any of the three product pairs of the eigenvalues of c(λ). Moreover, we have that, by
construction, the three roots of C(λpλq) are the three product pairs of the eigenvalues of c(λ) and therefore
all roots of C(λpλq) are greater than zero.

(α) Consider the case in which all eigenvalues are real. Without loss of generality, let λ1 > 1. We can
determine the magnitude of the remaining eigenvalues by evaluating C(λpλq) at λpλq = 1. Some
algebra delivers

C(1) = B∗
(

1− δB
)

gB
κ︸ ︷︷ ︸

<0

[
β ( f ′ − i)

1 + g∗
c∗Φκ

c

]
︸ ︷︷ ︸

<0

+ Φκ
B︸︷︷︸

>0

[
ΦB

κ − B∗
(

1− δB
)

gB
κ

]
︸ ︷︷ ︸

>0

> 0,
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which implies that either all three roots of C are smaller than one or that one is smaller than one and
two are greater than one. Since the three roots of C(λpλq) are given by the three product pairs of the
eigenvalues of c(λ) it follows that only alternative (α2) is compatible with c(1) < 0 and C(1) > 0.
Therefore, we may conclude that if all eigenvalues are real and positive, the system is asymptotically
locally stable in the state space.

(β) Consider now the case of one real eigenvalue and a pair of complex eigenvalues. Without loss of
generality let λ1 > 1 be the real eigenvalue and let λ2, λ3 be the complex conjugate pair. First notice
that in this case only one root of C(λpλq) is real, namely, the product of the two complex conjugate
eigenvalues of c(λ). Then the fact that C(1) > 0 implies that the only real root of C must be smaller
than one which is only possible if | λ2,3 |=| x±ωi |< 1. Therefore, we may conclude that if the system
features one real eigenvalue and a pair of complex conjugate eigenvalues, it will be asymptotically
locally stable in the state space. �

8.8 Proof of Proposition 8

Proposition 4 claims that for given L > 0 and initial values (A−1, K0) > 0 the transitional dynamics of the
dynamic competitive equilibrium is given by a unique sequence {κt, ct}∞

t=0 . To prove this we first derive
the two-dimensional system of Proposition 4. Then, we show that for any admissible (κt, ct) > 0 there is a
corresponding unique value {κt+1, ct+1} for all t.

1. To obtain the two-dimensional system we proceed as follows. To derive (4.24) use equations 8.1 and 3.18
in (3.16) to substitute for wt in the household’s budget constraint. We may then write the latter as

Kt+1 = f ′(κt)Kt + AtL
(

f (κt)− κt f ′(κt)− i(gA(κt))
)
− Ct + (1− δK)Kt.

By definition we have Kt = (AtL) κt and Ct = AtLct so that above equation may be written in terms of
efficiency units as

At+1
At

κt+1 = f (κt)− i
(

gA(κt)
)
− ct + (1− δK)κt.

Equation 4.25 is obtained upon employing (3.15) in (3.3).

Now, the system describing the evolution of the economy is three-dimensional and given by

At+1
At

κt+1 = v(κt)− ct + (1− δK)κt, (8.23)

At+1
At

ct+1
ct

= β
(

f ′(κt+1) +
(

1− δK
))

, (8.24)

At = At−1

(
1− δA

)
(1 + gA(κt)), (8.25)

where v(κt) = f (κt)− i
(

gA(κt)
)

. Observe that this system of three first-order, non-linear difference equa-
tions may be reduced to a system of two equations. Forwarding (8.25) and substituting in (8.23) and (8.24)
one obtains the two-dimensional system of Proposition 8.

Given L > 0 and initial values
(

A−1, K0

)
> 0, eq. (4.27) admits a unique solution κ0 > 0. To show

uniqueness of the equilibrium sequence {ct, κt}∞
t=0 consider first equation (4.24) and define

Ψ(κt+1) ≡ (1 + λ)(1− δ)
(

1 + gA(κt+1)
)

κt+1 (8.26)
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For any (κt, ct) ∈ R2
++ such that the right-hand side of (4.24) is strictly positive, there will be a unique value

of κt+1 > 0 satisfying equation (4.24) if Ψ(κt+1) is strictly positive, continuous and monotone in κt+1 > 0
and may take any value in R++.

Observe that gA has the same properties as established in Proposition 1 for the economy with capital-
augmenting technical change, so that indeed Ψ(κt+1) > 0 for all κt+1 > 0.

It remains to be shown that limκ→0 Ψκ(κt+1) = 0 and limκ→∞ Ψκ(κt+1) = ∞. Since gA is bounded below by
zero and may be finite or infinite for κ → ∞ we have that limκ→0 Ψκ(κt+1) = 0 and limκ→∞ Ψκ(κt+1) = ∞.

It follows that the left hand side of (4.24) is increasing in κt+1 > 0, approaches zero as κ → 0 and approaches
infinity as κ → ∞. Therefore, there is a unique κt+1 > 0 that satisfies eq. (4.24) for any (κt, ct) ∈ R++ such
that the right-hand side of (4.24) is strictly positive.

Given this value of κt+1 and ct > 0, (4.25) delivers a unique ct+1 > 0. �

8.9 Proof of Proposition 9

We consider both claims of Proposition 9 in turn.

1. Equations (4.29) and (4.30) follow immediately from the corresponding equations (4.24)-(4.25) of the dy-
namical system for reasons discussed in the main text. Obviously, in the steady state the transversality
condition (4.26) is also satisfied. Assumption 3 ensures a strictly positive solution to (??). It remains to be
shown that c∗ > 0, i. e., v(κ∗) > κ∗(g∗ + δK). A sufficient condition for this to hold may be obtained for
β = 1. Using β = 1 in (4.30) the latter inequality may be expressed as

v(κ∗) > κ∗ f ′(κ∗). (8.27)

Since F has constant returns to scale it holds in equilibrium that f (κ) = κ f ′(κ) + c(qA). Evaluating the
latter for the steady state yields v(κ∗) = κ∗ f ′(κ∗) +

(
1 + (gA)∗

)
i′(gA), where gA is evaluated at κ∗. Then,

inequality (8.27) becomes

κ∗ f ′(κ∗) +
(

1 +
(

gA
)∗)

i′
((

gA
)∗)

>κ∗ f ′(κ∗),(
1 +

(
gA
)∗)

i′
((

gA
)∗)

>0.

2. The expression for the steady-state growth rate follows from (3.27) and Proposition 1. The explanation of
the other findings is contained in the main text. �

8.10 Proof of Proposition 10

1. Implicit differentiation of (4.30) reveals that dκ∗/dβ > 0, hence (κ∗)′ > κ∗. Moreover, dg∗/dβ =(
dg∗/dqA) (dgA (κ∗) /dκ

)
(dκ∗/dβ) > 0 as all three derivatives are strictly positive. Hence, (g∗)′ >

g∗. Diminishing returns to capital and dκ∗/dβ > 0 deliver (R∗)′ < R∗. Since v′ (κ∗) cannot be signed
in general, the effect of the discount factor on c∗ is indeterminate in general.

2. Implicit differentiation of the Euler equation (4.30) delivers dκ∗/dδA > 0, hence (κ∗)′ > κ∗. In
conjunction with diminishing returns to capital, we have (R∗)′ < R∗. The effect of δA on g∗ is
immediate from

∂g∗

∂δA = −
(

1 + gA (κ∗)
)
< 0.

Again, the effect on c∗ through equation (4.29) remains indeterminate in general. �
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8.11 Proof of Proposition 11

To prove Proposition 11 apply the definition of the elasticity of substitution given in (5.4) to

MRTSK,L (κt) =
Bt−1

(
1− δB) (1 + gB (κt)

) [
f ′(κt)− i

(
gB (κt)

)]
At−1

(
1− δA

) (
1 + gA (κt)

) [
f (κt)− κt f ′(κt)− i

(
gA (κt)

)] .

�

8.12 Proof of Proposition 12

Statements 1 and 2 of Proposition 12 are obtained by taking respectively the partial derivative of (5.9) and of
(5.11) with respect to Kt/L. �

8.13 Proof of Proposition 13

To be found in the main text. �

8.14 Proof of Proposition 14

The proof of equations (5.19) and (5.20) are to be found in the main text. As to equation (5.21) consider the
effect of τ on s∗τ ,

ds∗τ
dτ

=
−κ∗B∗τ

(
f ′ − i(gB)

) (
B∗τ
(

f ′ − i(gB)
)
− δK)+ κ∗δK (B∗τ ( f ′ − i(gB)

)
− δK)

(B∗τ)
2 ( f ′ − i(gB))

(
f − κ∗ f ′ − i(gA)

) ,

where it is understood that f , gB, gA are evaluated at κ∗. Then, it is straightforward to see that ds∗τ/dτ < 0
since R∗τ = B∗τ

(
f ′ − i(gB)

)
> δK . �

8.15 Proof of Proposition 15

The proof of equation (5.30) may be found in the main text.

To prove (5.31) consider first the Euler equation in steady state which is

1 + g∗σB = β
(

R∗σB + 1− δK
)

,

Taking the derivative with respect to σB on both sides it is clear that dR∗
σB /dσB > 0 must hold to match

dg∗
σB /dσB > 0. To prove that the steady-state wage rate in efficiency units is also increasing in σB consider(

wt
At

)∗
= f
(
κ∗σB

)
− κ∗σB f ′

(
κ∗σB

)
− i
(

gA (κ∗σB

))
,

=
(

1 + gA (κ∗σB

))
i′
(
κ∗σB

)
.

Implicit differentiation reveals the effect of an increase in σB on (wt/At)
∗ is given by(

i′
(

gA(κ∗σB )
)
+
(

1 + gA(κ∗σB )
)

i′′
(

gA(κ∗σB )
)) dκ∗

σB

dσB gA
κ

(
κ∗σB

)
> 0.

As to equation (5.32) we note that all effects of σB on s∗
σB are identified and signed in the main text. The

algebra necessary to determine the overall effect is straightforward but quite involved. Moreover, it does
not reveal clear-cut results. We therefore abstain from presenting it here. �
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8.16 Proof of Proposition 16

The proof of (5.40) as well as the one of
(

R∗
σA

)′
> R∗

σA as claimed in (5.41) can be found in the main text.

The proof of the second claim in (5.41) needs the assumed functional form of the innovation investment
function i

(
qA) = γ

(
qA)ν with γ > 0 and ν > 1. To see this, consider(

wt
At

)∗
= f (κ∗)− κ∗ f ′ (κ∗)−

(
1− σA

)
i
(

gA
(

κ∗, σA
))

.

Implicit differentiation reveals that

d
(

wt
At

)∗
dσA = i

(
gA
(

κ∗, σA
))
−
(

1− σA
) (

gA
σA

(
κ∗, σA

)
i′
(

gA
(

κ∗, σA
)))

.

Hence, the wage rate in efficiency units is increasing, remains constant, or, decreasing in σA if and only if

i
(

gA
)
R
(

1− σA
)

gA
σA i′

(
gA
)

. (8.28)

The first-order condition (5.33) delivers

gA
σA =

dqA

dσA =

(
1 + qA) i′

(
qA)+ i

(
qA)(

1− σA
) ((

1 + qA
)

i′′
(
qA
)
+ 2i′

(
qA
)) .

Evaluating the latter in steady state and substituting into (8.28) yields

d
(

wt
At

)∗
dσA R0 if and only if

1
1 + gA R

i′

i
− i′′

i′
,

where it is understood that gA is evaluated at
(
κ∗, σA) and i is evaluated at gA. Now, observe that the left-

hand side of the above inequality is smaller than one. It is then straightforward to show that the right-hand
side is always greater than the left-hand side provided i

(
qA) = γ

(
qA)ν , with ν > 1, γ > 0.

Turning to (5.42) observe that the effect of changing σB on s∗
σB of equation (5.29) is indeterminate in general.

However, if i
(
qA) = γ

(
qA)ν , with ν > 1, γ > 0, then some tedious but straightforward algebra using (5.42)

reveals that
(

s∗
σA

)′
> s∗

σA . �

8.17 Proof of Proposition 17

We consider each claim of Proposition 17 in turn.

1. Equations (6.13) and (6.14) follow immediately from equations (6.2) and (6.3) for reasons given in the
main text. Moreover, the tranversality conditions are satisfied. Assumption 1 and Assumption 2 guarantee
a strictly positive solution to (6.11) and (6.14). Showing that c∗∗ > 0 is analogous to showing that c∗ > 0 in
the competitive equilibrium.

2. The expression for the steady-state growth rate, g∗∗, follows from (3.27) and Proposition 1. The remaining
results follow from the discussion in the main text. �
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8.18 Proof of Proposition 18

With σB ∈ (0, 1) the first-order condition (3.15) is replaced by (5.22). In steady state, the latter gives rise to a
function κ

(
σB) with κ′

(
σB) > 0 that satisfies

f ′
(

κ
(

σB
))

=
(

1− σB
)

c
(

δB

1− δB

)
. (8.29)

Hence, the desired value for σB is such that κ
(
σB) = κ∗∗. Using (6.4) gives

(
σB)∗∗ of (6.15).

With σA ∈ (0, 1) the first-order condition (3.16) becomes

f (κt)− κt f ′ (κt) =
(

1− σA
)

c
(

qA
t

)
. (8.30)

Using (6.5) at κt = κ∗∗ and qA
t =

(
qA)∗∗, the latter determines

(
σA)∗∗ as stated in (6.16). �
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