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Abstract

This paper combines the standard incomplete markets model of uninsurable id-
iosyncratic risks and borrowing constraints with the Arrow/Romer approach to en-
dogenous growth to analyze the interaction of risk, growth, and inequality, the latter
also endogenously determined in equilibrium. We derive conditions on existence and
nonexistence of balanced growth paths. Major results include that growth, inequal-
ity, and risk are positively related in our model, but we also identify a hump-shaped
relationship between welfare and risk, indicating a tradeoff relationship between risk—
pooling and growth in the determination of welfare. We employ the prototypical pol-
icy implications of the underlying growth model (i.e. subsidizing capital returns) and
find that the tax—transfer scheme positively affects growth while simultaneously re-
ducing wealth inequality in the economy. The benefits and burdens of the underlying
policy are unequally distributed, which raises the issue of politico-economic equilib-
ria. We provide results on majority voting, finding that that the median voter prefers
less than optimal subsidies on investment. Interestingly, the society might even vote
against a policy providing full insurance against idiosyncratic risk, because welfare
losses of lower growth more than offset welfare gains from lower risk.
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1 Introduction

The question of how growth and inequality are related has been a matter of profound
interest for many economists over the last decades. The relation is considered to be an
ambivalent one, the traditional view emphasizing the famous ‘equity vs efficiency’ trade-
off, according to which greater income or wealth equality creates disincentives which
prove harmful to growth. Contrary, economic analysis has shown that in the presence
of market imperfections inequality actually may reduce the long-run growth rate of the
economy such that redistributive policies are rendered desirable. Empirical evidence
on the linkage between growth, inequality, and redistribution is ambiguous too, recent
research providing empirical support for both viewpoints; see e.g. Easterly and Rebelo
(1993), Persson and Tabellini (1994), Perotti (1994, 1996), Deininger and Squire (1998),
and Forbes (2000).

The development of endogenous growth theory has renewed the interest in the de-
pendencies between growth and inequality. The authors stress the importance of market
imperfections such as externalities, borrowing constraints, or the presence of uninsurable
idiosyncratic risk and address political economy aspects; see e.g. Banerjee and Newman
(1993), Bertola (1993), Galor and Zeira (1993), Aghion and Bolton (1997), Bénabou
(1996, 2000). The analysis regularly suffers from technical drawbacks. In fact, it is gen-
erally difficult to jointly and endogenously determine both, the balanced growth rate and
the equilibrium income and wealth distribution. Either assumptions have to be restrictive
to prevent models from eluding closed—form solutions or one has to rely on numerical
simulations, which is done in the present paper.

Our intend is to address old questions from a new angle by combining the simple
growth mechanism introduced by Romer (1986) with the neoclassical standard incom-
plete markets model with idiosyncratic risks and borrowing constraints in the spirit of
Aiyagari (1994, 1995). A special feature of our approach is that both, the equilibrium
income and wealth distribution as well as the long-run equilibrium growth rate are en-
dogenously determined in our model. We therefore are able to study possible feedback
effects between risk, growth, and inequality to gain a deeper understanding of the impli-
cations regarding the redistributive and growth consequences of public policy.

Previous work along this line, simultaneously and endogenously determining equi-
librium inequality and the growth rate of the economy, is rare. Aiyagari (1994) only
shortly refers to the possibility of including exogenous technical progress in the anal-
ysis (see Aiyagari, 1994, fn. 26) and pursues this in Aiyagari and McGrattan (1998).
Japelli and Pagano (1994, 1999) discuss the implications of liquidity constraints on en-
dogenous growth and welfare but do not consider distributional consequences. Bertola
(1993) assumes an exogenously given, time—invariant wealth distribution in his discussion
of the politico—economic implications of public policy in an endogenous growth context.
Bertola et al. (2006) briefly raise the issue of endogenous growth in their discussion of
the standard incomplete markets model. They neither provide existence results on equi-



librium growth paths nor an numerical assessment of the feedback effects between risk,
growth, inequality and borrowing constraints. They also do not address macroeconomic
effects of growth and redistributional policies.

We employ the standard incomplete markets model (cf. Huggett, 1993; Aiyagari,
1994) augmented with an endogenous growth mechanism. Agents are heterogeneous.
Income and wealth heterogeneity stems from serially correlated uninsurable shocks to la-
bor efficiency. Households are subject to borrowing constraints, restricting their means to
smooth the intertemporal consumption flow. We find that the presence of risk and credit
market imperfections unambiguously has a positive effect on the long-run growth rate of
the economy. Aggregate savings are larger compared to the complete markets economy
because of the desire of risk averse individuals to protect themselves against fluctuations
in their intertemporal consumption path and the limitation of not being able to borrow,
a phenomenon which is well-known from the literature as ‘buffer stock saving’ (Carroll,
1997).

We also provide necessary and sufficient conditions for the existence of a balanced
growth path and demonstrate that these not necessarily have to be met, the results
crucially depending on the degree of risk aversion. Hence, for particular parametric
specifications of the model an equilibrium growth path might not exist.! Similar to
Aiyagari and McGrattan (1998) and Japelli and Pagano (1999) feasible equilibria in our
model economy may also be characterized by a growth rate larger than the equilibrium
interest rate.

Endogenous growth results from externalities in human capital accumulation. This en-
dogenous growth mechanism is known to generate allocations which fail Pareto—efficiency.
Altogether, our model displays three sources of inefficiency, (a) a positive human capital
externality in production, (b) absence of markets for pooling risks, and (c) credit mar-
ket imperfections, each of them calling for policy intervention. We pursue this line by
analyzing the effects of the prototypical policy recommendation for Romer (1986)-type
endogenous growth models, which is subsidizing capital accumulation (financed from a
non—distortionary consumption tax) in order to close the wedge between the private and
the social return to capital.

Although many implications of the representative agent endogenous growth model
regarding individual responses to public policy, distortionary effects, and the design of an
optimal policy straightforwardly extend to the incomplete markets context, our numerical
simulations come up with some interesting results for the interaction between growth,
risk, and inequality. First of all, we do not generally observe the ‘equity vs efficiency’ trade-
off. A growth policy aimed at improving efficiency of the underlying allocation simulta-
neously contributes to the equity goal by also lowering wealth inequality. Moreover, the
policy under consideration lowers the riskiness of disposable income, such that feedback
effects on growth additionally have to be taken into account.

ITo this end, our analysis completes the descriptive analysis of Bertola et al. (2006, ch. 9.3).



This is also important, when it comes to the evaluation of welfare effects. Usually we
expect welfare gains from either, larger growth and lower risk. In our model, however,
lower risk goes along with a disincentive to save out of precautionary motives. This leads
to a decline in the growth rate and generates associated welfare losses. We illustrate this
idea by considering a redistributive policy aimed at completely eliminating the individual
income risk. Because this stands at odds with the growth target it may turn out welfare—
deteriorating in the whole. Depending on the magnitude of risk, growth and risk—pooling
effects are offsetting each other, such that we observe an inverted U-shaped relationship
between welfare and risk.

The aggregate welfare implications of the underlying policy straightforwardly extend
from the representative agent complete markets economy to the heterogeneous agent
incomplete markets one. Because the optimal rate of subsidization is solely determined
by the production technology, aggregate welfare is maximized if the knowledge spillover is
fully internalized. But, as households are heterogeneous in our model due to the presence
of uninsurable shocks to labor efficiency, welfare gains are unequally distributed across
the society. This naturally raises the question of possible outcomes of majority voting
over alternative public policies. We find that the median voter prefers less than optimal
subsidies on investment, a point which was already raised by Bertola (1993) for the case of
an exogenously given time—-invariant wealth distribution. Interestingly, a majority might
even vote against a policy providing full insurance, because welfare losses due to lower
growth more than offset welfare gains from having lower risk.

The paper is organized as follows. We develop the model in section 2. For reference,
we first give a short sketch of the equilibrium allocation in the representative agent com-
plete markets economy before proceeding to the heterogeneous agent incomplete markets
setting. We determine the macroeconomic equilibrium, the stationary wealth distribution,
and state conditions on the existence of a balanced growth path. Section 3 is devoted to
the numerical analysis. We start with a description of calibration procedures, examine
the effects of a rise in idiosyncratic risk and shortly discuss the growth and distributional
implications of changes in debt limits. Section 4 presents the policy analysis. The sec-
tion covers the design of an optimal growth policy, deals with political economy issues
by determining the politico-economic equilibrium and concludes with a short analysis of
the growth and welfare effects of redistributive policies providing insurance against the
idiosyncratic risk. Section 5 concludes.

2  The Model

2.1 Overview: Equilibrium Growth and Complete Markets

We consider a production function with knowledge spillovers in the spirit of Romer (1986).
The labor force (population) is normalized to unity and there is no population growth.
We consider a continuum | € [0, 1] of identical firms who produce a homogeneous output



good y; according to the following Cobb-Douglas technology :
Yje = BK T 0K 1)

where B > 0, a € (0,1), both constant. Capital depreciates at the constant rate > 0. Out-
put is assumed to be generated from physical capital kj; and labor Ij;. If the individual
producer expands K;; by investment, the aggregate capital stock K; rises accordingly and
generates a positive externality by raising the productivity of all firms. The production
function of the individual firm is homogenous of degree one with respect to the privately—
owned inputs and twice continuously differentiable. Aggregate production is linear in the
aggregate capital stock K and displays increasing returns to scale, such that the require-
ments for ongoing growth of per capita incomes are met.

The optimization problem of the individual firm is standard. All markets are com-
petitive, and factor prices are determined by the usual marginal productivity conditions.
In market equilibrium K;j; equals K;, when additionally considering the normalization of
the labor force. The equilibrium real interest rate is determined by the private marginal
product of capital and falls short of the social return, because the productivity—enhancing
effect of investments is not taken into account in individual profit maximization. The
equilibrium private gross interest rate R= 1+r is time-invariant and given by:

The equilibrium wage rate equals marginal labor productivity and grows proportionally
to the aggregate capital stock:

W = (1—a)BK;. 3

Consumers are homogenous in an economy with complete markets, due to the possibility
of trading state—contingent securities which allow for perfect risk—sharing. The infinitely—
lived representative agent maximizes discounted intertemporal utility from consumption,
C, subject to the intertemporal budget constraint describing the dynamics of individual
wealth holdings a and taking prices as given:

_max V= %Btu(ct) s.t. &, 1+C=Ra+w,
{CtF—ops {@+1}—o t=
where 0 < 3 < 1 denotes the discount factor. Typically, the current period utility function
displays constant relative risk aversion (constant IES), measured by the parameter p > 0.
Optimal consumption growth is determined by the usual Euler equation. The growth
equilibrium in the economy with complete markets is characterized by factor and com-
modity market clearing. Individual asset holdings sum up to the aggregate capital stock.
Output, consumption, and the capital stock grow at a common and constant equilibrium
growth rate, yc, which follows as:

1+yc = (BRYP. @)



The basic Romer (1986)-model displays no transitional dynamics. The economy
immediately enters the balanced growth path. Due to the presence of technological
spillovers, the equilibrium growth rate is suboptimally low in the decentralized economy
if compared to the social optimum, which renders an appropriately chosen growth policy
effective. Policy recommendations aim at subsidizing capital accumulation to close the
wedge between the private and the social return to capital, with subsidies possibly being
financed from a non-distortionary tax. In an economy with complete markets and no
endogenous labor-leisure choice, taxing either consumption or labor income ultimately
amounts to a lump-sum tax.

2.2 Idiosyncratic Risks and Incomplete Markets

Consider an economy populated by a continuum [0, 1] of infinitely-lived households who
are ex ante identical and heterogeneous ex post. Each household is endowed with one unit
of labor which he supplies inelastically to the labor market. In each period of time, the
household is subject to an idiosyncratic shock to his labor productivity, which exposes him
to a labor income risk. Markets are incomplete, such that the individual risk cannot be
perfectly pooled (cf. Aiyagari, 1994, 1995). Households are risk-averse and can save or
borrow in order to smooth their intertemporal consumption flows. Borrowing, however,
is constrained up to a given limit. As a result, the agents self-insure by undertaking
precautionary savings to build a buffer against future losses or drops in income. There is
no aggregate risk and no risk on capital return.

Let 6;; denote agent i’s labor productivity of period t. We assume that 6;; evolves ac-
cording to a finite state first—order Markov—process with bounded support, lowest possible
realization Bmi, such that 6;; > Bmin > 0, Eg[6;¢] = 1 for all t, and the associated probability
transition matrix P(6,6;;1) = prob(6;,1/6;), where the expectation is formed with respect
to the stationary distribution of the underlying Markov process.

Let & denote agent i’s holdings of non-human wealth in period t. For given gross
factor prices R and w, the individual household’s intertemporal budget constraint is given
by:

gity1+Cit =Rar+wbi¢ .
The borrowing constraint requires a;; > —@ for all t, where @ either might stand for the
natural debt limit (Aiyagari, 1994, p. 666) or for some ad hoc limit.

The household derives utility from streams of consumption {Cjt};*,. Intertemporal
preferences are time-separable. Assuming CRRA preferences, the intertemporal problem
of agent i can be set up as follows:

o P
max EY g —
{Cithimo {ait1himo tZO 1-p
S.t. @itr1+Ct=Ra+wW0iy (5)

Q1= @y



In a next step, we transform problem (5) such that it corresponds to the associated prob-
lem of a stationary economy (cf. Aiyagari, 1994; Aiyagari and McGrattan, 1998). Lety
denote the equilibrium growth rate of the incomplete markets economy. Using the trans-
formations & = a1 /Ky, €t = Cit/Ks, @ = @ /Ki, W=w; /K; and [~3: B(1+Y)'P, we are able
to rewrite the agent’s intertemporal problem in a stationary form:

max Et - ﬁt&
tZO 1-p

(€0 {8t
st Gigp1(1+y)+ Gy = Ra ¢ + W0 (6)

Gitr1> —Qyr-

Note that, by (2) and (3), the equilibrium factor prices are completely determined by
the underlying technology and do not depend on the wealth distribution. The aggregate
capital stock, K; > 0, equals average capital holdings. From (6) also becomes obvious that
the labor income risk does not vanish in the long run, because the equilibrium wage rate,
w;, grows linearly in the capital stock.

We generally assume that the borrowing limit, @, grows proportionally to the aggre-
gate capital stock. The detrended constraint then is time—invariant, that is ¢ = ¢ for all t.
Because the labor income risk is multiplicatively related to the wage rate, the borrowing
constraint does not cease to be binding in the long-run in a growing economy. In order
to rule out Ponzi games, it is necessary to impose an ad hoc limit @a > O for the case of
R < 1+Yv. For the opposite case of R> 1+, the optimization problem (9) implies that no
agent will ever go into debt beyond the so—called ‘natural debt limit’, @, which is given by
the worst—case scenario discounted value of labor income allowing (a.s.) for nonnegative
consumption levels, that is

~ WOrmin
® =R (1+y)
An arbitrarily fixed ad hoc debt limit @y will only be binding if @an < @n. Therefore,

()

the effective debt limit appearing in the optimization problem (9) below is implicitly
determined by the wage rate, the interest rate, and the growth rate y, all to be determined
in equilibrium.

A ~ ~ ~ ~h7 R<l+
&.1>0 @n=0 o= (pa_ . Y (8)
min[@an, @] , R>1+y,

where & =&+ (~p We are now able to write down the Bellman equation describing the
agent’s intertemporal problem:2

V(4,0) = max{u(e)+BE’V(a’, e’)}
: ) )
s.t. &(l+y)+E=Ra+[(1+y)—R @+Wo,

2For notational convenience, we drop the explicit time notation and the index i related to individual
decisions.



where primes denote variables of the next period. As long as B < 1, the optimization
problem is bounded and structurally equivalent to the one discussed in Aiyagari (1994).
However, it is important to bear in mind that B crucially depends on p and y. The condition
[~3 < 1is not trivially satisfied by assuming a time discount factor B in the unit interval.3
We will return to this issue when discussing existence and feasibility of a balanced growth
path.

Let & = g(4, 6;y,,W,R) denote the associated policy function solving problem (9).
Following Aiyagari (1994), we employ the individual policy functions to derive aggregate
(average) wealth holdings. Given the properties of the stochastic process underlying the
idiosyncratic shocks to labor efficiency, the stationary distribution of wealth levels & across
agents is represented by the stationary probability measure p(&,6;y,,W,R), such that
aggregate detrended wealth holdings are given by:

E.9(46;Y,@W,R) = A(y,0,W,R) = A(y,,W,R) + @.

where E, denotes the expectation with respect to the stationary distribution. Recall that
the equilibrium factor prices W and R do not depend on the wealth distribution, due to the
properties of the production technology (1).

2.3 Balanced Growth and General Equilibrium

Balanced growth in the Romer (1986)—economy is characterized by consumption, output
and the capital stock growing at a common rate. The equilibrium growth rate is constant
along the balanced growth path due to the time-invariant capital return. The production
of aggregate output is nonstochastic, but indirectly affected by individual saving decisions
via the aggregate capital stock. The equilibrium factor prices coincide with the expressions
(2) and (3) derived for the representative agent economy.

Given the production technology (1), profit maximization implies the following factor
demands of the individual firm, which we express as functions of the detrended variables
Wy = w; /K¢ and RJ- t = Kj /K¢ for notational convenience:

~ —1/a -1/(1-a)
Wi ” & R—-1+90
Ij,t - <(1—G)B> kj,t and kj}t - <GB> Ij,t .

Aggregating individual factor demands yields:

Vvt —1/0(~
/l,th_L W) = <(1 G)B> R (R, ) (10)
1, . _ —1/(1-0)
/k,-,tdjzwa,vvt):(W) L(Re) an
0 oB

3This is a standard result in intertemporal modeling and usually covered by the transversality condition in
representative agent economies, which rules out unlimited borrowing and unbounded welfare. Ponzi games
are ruled out in the present model by (8). For existence of a balanced growth, see Proposition 1 below.



Definition 1 A decentralized recursive competitive stationary equilibrium in detrended vari-
ables is defined by a detrended wage rate W, a gross interest rate R, a growth rate y, and a
policy function g(&,8;y, ®,W, R) with associated value function V (&,8) such that the following
conditions hold:

(i) The policy function g(&,6;y, oW, R) solves the consumer’s optimization problem, such
that the aggregate detrended asset supply is given by A(y, @, R, W).

(ii) The economy-wide capital stock K; equals the aggregation of firm—specific capital stocks,
which in detrended variables is equivalent to

RRw) = [ Kitgj_q (12)
o Ky -

(iii) Factor markets clear at given (detrended) prices W= (1—0a)B and R=0B+ 1— 0 and
aggregate detrended factor employment is given by

L(R, W) =Eg[Bi¢] =1 (13)

K(RW) = A(y, @, R, W) . (14)

Capital demand equals aggregate wealth holdings. In detrended variables, this is equiv-
alent to

AV, QW,R =1 < AY,oW,R) =1—¢.

(iv) The stationary distribution Y(&,6;Yy, O W, R) of agents over individual wealth holdings
and associated productivities is the fixed point of the law of motion which is consistent
with the individual decision rules and equilibrium prices.

The equilibrium growth rate, consistent with a balanced growth path, follows from (14).

Proposition 1 An unique balanced growth path with growth rate y exists in the presence of
idiosyncratic shocks and incomplete markets, if 3 < RP~L. The necessary condition is sufficient

() forallp>1
(ii) for p < 1, if the natural debt limit @, applies.

The equilibrium growth rate Yy is always larger than the associated growth rate of the economy
with complete markets, that is y > Yc. The equilibrium growth rate is strictly smaller than
the equilibrium interest rate, that is R—1 >y > Yc, if the natural debt limit ¢, applies.

Proof: see Appendix A.1.

A major implication of Proposition 1 is that a balanced growth path might not exist for
an arbitrarily chosen ad hoc limit, @up, if the degree of risk aversion is sufficiently small.
Appendix A.2 gives an example for this case. Another implication is that for some given



Figure 1: Equilibrium growth rate, borrowing limits, and asset supply

ad hoc debt limit the equilibrium growth rate may well exceed the equilibrium interest
rate, implying dynamic inefficiency (see also Aiyagari and McGrattan, 1998).

We find that the presence of uninsurable idiosyncratic labor income risk has an unam-
biguously positive effect on the aggregate growth rate of the economy by raising capital
accumulation due to precautionary motives. This extends the results well-known from
the standard (stationary) incomplete markets model to an endogenous growth context.
Existence of a balanced growth path is tied to restrictions on the real interest rate and the
intertemporal discount rate which closely resemble the key property BR < 1 for existence
of an equilibrium in stationary Bewley (1983)/Aiyagari (1994)-type models.

To illustrate the analogy of results, consider Figure 1 which plots the growth rate
against aggregate (detrended) asset supply A for both, some ad hoc debt limit @ = O
(red) and the natural debt limit (an (blue) as defined in (7). The figure also depicts (~pn
as endogenously determined lower natural bound to asset holdings (grey). From (8) we
know that the effective debt limit is determined by the size of the interest rate relative
to the growth rate. Figure 1 also shows that any ad hoc debt limit, @, smaller than
the natural debt limit at the lowest possible growth rate, @,(yc), sustaining non-negative
consumption in the incomplete markets economy definitely is binding for all y > yc. Obvi-
ously, any ad hoc debt limit acts more restrictive on intertemporal consumption smoothing
than the natural debt limit, resulting in relatively increased asset holdings and a compa-
rably larger equilibrium growth rate y; > Y ; the respective equilibria for the two debt
limits are represented by P and Q in Figure 1.
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The existence condition BR < 1 for stationary economies modifies to BR < (1+Y)P
in a growing incomplete markets economy, which is equivalent to BR< 1+vy.* Hence,
we have a result similar to Aiyagari (1994) that wealth holdings grow to infinity, if the
interest rate approaches the (growth—adjusted) discount rate from below, or, likewise, if
1+ vy approaches fSR from above. Consequently, the growth rate of the complete markets
economy, Yc, where in equilibrium 1+ yc = BR, constitutes a lower bound for a balanced
growth path.

Feasibility of the allocation also requires lifetime utility to be bounded, i.e. [3 < 1. This
condition is satisfied if § < RP~, which is the condition given in Proposition 1. As can be
seen, the requirements for bounded welfare are trivially met for any p > 1. For the case
of p < 1, the restriction < 1 imposes an upper bound on feasible growth rates, such that
B < RP~1 constitutes a necessary condition.

The aggregate growth rate is non—stochastic. All households experience identical con-
sumption and income growth, although heterogeneity prevails, because the labor income
risk does not vanish in the long run. Individual wealth levels grow at the constant rate y
and are distributed in accordance with the limiting distribution of the labor productivity
shocks, which is stationary in the detrended variables.

3 Numerical Simulations

3.1 Calibration

In what follows, we want to provide a numerical assessment of the growth and welfare
effects a change in risk and of the tax—subsidy scheme of section 4. Regarding the pa-
rameters related to preferences and technology, we use standard calibrations from the
literature. The production technology is Cobb-Douglas. We set the capital share to 0.33,
which is in line with estimates of Prescott (1986). Capital depreciation is fixed at 0.08.
We set the discount factor B to 0.985 and simulate our model for different values of the
coefficient of relative risk aversion p ranging from 1.5 to 5. The productivity parameter
B is a free parameter and set to 0.33, which is chosen to target an annual equilibrium
(riskless) real interest rate of around 3%. We assume a lognormal AR(1) process for labor
efficiency with normalized mean, E[] = 1, which in continuous space is given by

2
In® = —(1+po) = +pg In B+,

where € ~ A( (0,02) and Var(In6) = Var(In(WB)) = 62/(1—p3). The stochastic process for the
underlying labor productivity shocks is specified such as to display a serial correlation in
log labor incomes of 0.9 and a standard deviation of 0.3, which matches empirical evidence
for the U.S. provided by Storesletten et al. (2004) or Guvenen (2009). The AR(1) process
is approximated in discrete state-space by a five—state Markov chain using the method

4See the proof of Proposition 1 in the Appendix and footnote 26 in Aiyagari (1994).
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Table 1: Numerical specification of the baseline model

parameter calibration target

a 0.33 capital share=0.33
o 0.08

B 0.33 rc =0.03

o 1.5,3,5 vc = 0.0048

B 0.985

a? 0.0171 | Var[ln(w8)] =0.09
Po 0.9 Pinwe) = 0.9
Pan 0

proposed by Rouwenhorst (1995).> The implied income distribution also matches recent
estimates for the actual distribution in the U.S., the simulations broadly generating Gini
coefficients ranging between 0.3 and 0.4.

The lognormal theoretical distribution underlying the labor income process implies a
lowest possible realization for 8 infinitesimally close to naught. By (7), a narrow inter-
pretation of the model in our numerical simulations would also imply a zero natural debt
limit.® Taking account of this, most of our numerical simulations are based on assuming
a zero debt limit ad hoc, that is @an = 0. In the more general setting discussed in section
3.4, we relax this assumption. In order to explore the question of how debt limits affect
long-run growth, we also allow for @, > 0.

We report results for three alternative settings, (a) the complete markets economy
(indicated by subscript C), (b) the case of an exogenously fixed ad hoc debt limit, where
(Npah =0, and (c), in section 3.4 for the endogenously determined natural debt limit (an
Table 1 reports the parameter values applied in our numerical simulations.

3.2 Measuring Welfare

Besides the growth and distributional effects of a change in risk or of the adoption of
some public policy respectively, our aim is to qualitatively and quantitatively assess the
associated welfare consequences. To this end, we employ a utilitarian welfare mea-
sure, aggregating individual welfare gains (or losses) over all agents in the economy (cf.
Aiyagari and McGrattan, 1998). The welfare measure is consumption-related, computing
the aggregate amount of consumption necessary to leave each consumer indifferent be-
tween the original allocation vis-a-vis the allocation resulting from a change in parameters
or from the introduction of some policy (i.e. the compensating variation). We calculate
the change in consumption, A(4,0) x €(4,0), for an individual with wealth 4 and produc-

5As documented by Kopecky and Suen (2010), this method is more reliable than others for the approxi-
mation of highly persistent processes.

%The numerical simulations, of course, are capable of generating nonzero natural debt limits, as the
stochastic process is simulated by a discrete five—state Markov chain.
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tivity O that equates discounted lifetime utility V (&,0) under the two different steady state
allocations (‘0’ and ‘1”) under consideration’

1
) Vo4 e)) =
( ) (Vl(a7 )
Consumption of an individual characterized by wealth & and productivity 6 along the
original path is given by

Co(8,6) = R+ [1+Y— R @+ W8 — (1+Y)do(4,6).

where go(4,0) denotes the optimal policy function in the original situation. The amount
A(&4,0)€y(4,0) leaves the consumer indifferent between the two allocations under com-
parison. We then employ the stationary probability measure | to compute the aggregate
percentage increase in consumption, Weons leaving all agents indifferent

EPO [A(é—v 9) C (éa e)}
Ewo [Co(8,6)]

A positive value of W;onsidentifies a welfare gain associated with moving from the baseline

Wcons: X 100 (15)

to the new allocation.

3.3 Macroeconomic Effects of Rising Idiosyncratic Risk

We now proceed with quantifying the macroeconomic effects of a mean preserving spread
in shocks to labor efficiency. Our baseline specification assumes a standard variation of
log labor incomes of sd(InB) = 0.3; for reference see Table 1. The results from our numer-
ical simulations are summarized in Figure 2 and Table 2, which lists the response of the
equilibrium growth rate to an increase in the standard deviation of log labor incomes for
three different degrees of risk aversion, p = {1.5,3,5}. For comparison, we also report the
associated growth rate of the complete markets economy, yc. Table 2 also presents results
on how income and wealth inequality (measured by the Gini coefficient) are affected by
a change in risk.

Our numerical findings confirm the growth implications of uninsurable labor income
risk stated in Proposition 1 that balanced growth in the presence of incomplete insurance
markets and borrowing constraints exceeds growth in the complete markets economy
due to precautionary motives. The equilibrium growth rate rises monotonically with an
increase in labor income risk, which reflects that households raise their savings in order
to protect themselves against a higher earnings risk. Figure 2 illustrates this result by
plotting the growth differential y— yc against the standard deviation of log labor incomes.

’Implementing a policy in time t gives rise to transitory dynamics in our model. While technology-driven
factor prices immediately adjust to their new equilibrium values, the wealth distribution and consequently
the growth rate of the economy do not. Additionally taking account of welfare changes along the transitory
adjustment path towards the new stationary wealth distribution and the associated equilibrium growth rate
only affects welfare results quantitatively, the magnitude of effects being rather small.
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Figure 2: Growth rate and labor income risk
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The underlying relationship is positive and convex, meaning that the individual desire
to self-insure by undertaking buffer—stock savings even gains importance for higher risk.
The growth differential and therefore the growth effect of risk also is larger the more risk
averse households are. Altogether, the growth effect is rather small for low degrees of
risk aversion, on average approximately amounting to only 1/10 of the associated rise in
the standard deviation of log labor income. This factor increases to 1/4 for p =3 and 2/5
for p = 5. Given the ad hoc debt limit of @, = 0, the equilibrium growth rate even rises
beyond the equilibrium interest rate (by (2), r = 0.0289 for sufficiently large values of
the standard deviation of labor efficiency.

A rise in idiosyncratic labor income risk naturally increases income inequality. This
also conveys into higher wealth inequality, although the rise is less pronounced for the lat-
ter, which indicates the leveling effect of precautionary motives in individual asset hold-
ings and intertemporal consumption smoothing; see Table 2. We observe the standard
result that income and wealth inequality is declining for higher degrees of risk aversion,
reflecting the related increase in inequality aversion associated with CRRA preferences.

Combining our numerical results, our findings establish a positive correlation between
growth and inequality. For two countries, which differ only with respect to the amount of
idiosyncratic risk agents have to bear, the one with higher risk grows at a larger rate and
displays a more unequal distribution of income and wealth.

We now turn towards the welfare effects of a change in risk. As outlined above, the
welfare measure (15) expresses welfare gains (losses) as the aggregate percentage change
in consumption necessary to keep each and all agents indifferent between the original and
the new situation. Figure 3 plots the welfare measure against the standard deviation of
the labor efficiency shock. As before, we provide results for three different degrees of
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Table 2: Idiosyncratic risk, growth and inequality

p=15 p=30 p=>50
Yc = 0.0097 Yc = 0.0048 Yc = 0.0029
of sd(In®) y G@ Gy y G@E Gy y G@ Gy

0.005 0.162 | 0.0106 0.481 0.186 | 0.0060 0.468 0.182 | 0.0043 0.445 0.175
0.0171 0.300 | 0.0129 0.512 0.239 | 0.0091 0.485 0.231 | 0.0084 0.450 0.222
0.03 0.397 | 0.0155 0.533 0.278 | 0.0126 0.497 0.269 | 0.0132 0.456 0.259
0.05 0.513 | 0.0195 0.554 0.325 | 0.0181 0.511 0.315 | 0.0207 0.469 0.305
0.07 0.607 | 0.0234 0.569 0.362 | 0.0236 0.522 0.351 | 0.0279 0.482 0.341
0.09 0.688 | 0.0272 0.582 0.393 | 0.0289 0.533 0.381 | 0.0347 0.495 0.373
0.11 0.761 | 0.0309 0.592 0.420 | 0.0340 0.542 0.407 | 0.0410 0.507 0.401
0.13 0.827 | 0.0345 0.602 0.443 | 0.0388 0.551 0.430 | 0.0470 0.518 0.425
0.15 0.889 | 0.0380 0.611 0.464 | 0.0435 0.560 0.452 | 0.0527 0.529 0.446

risk aversion. The vertical dashed line indicates the baseline model as starting point for
welfare comparisons, where sd(In8) = 0.3.

We find that the relationship between idiosyncratic risk and welfare is non-monotonic
and inverted-U shaped.® Compared to the standard neoclassical incomplete markets
model, welfare gains (and losses) in our model result from a combination of two, a direct
and an indirect effect associated with a rise in risk. The direct effect is well-known and
straightforward, with welfare unambiguously decreasing for higher levels of risk due to
concavity of the underlying utility function. The indirect effect is related to the positive
change in the equilibrium growth rate of the economy. A rise in risk enforces buffer—stock
saving, which translates into higher growth and hence higher welfare. By increasing
savings, households not only self-insure against fluctuations in their intertemporal con-
sumption profile but also shift additional resources into the riskless income source. The
positive growth effect first dominates in the determination of welfare, but finally the risk
effect takes over and welfare declines for higher levels of risk.

In terms of the results presented in figure 3 for p = 5, moving from sd(In6) = 0.3 to
sd(In®) = 0.9 amounts to an equivalent welfare loss resulting from a five percent decrease
in aggregate consumption. The overall welfare effect is more pronounced for lower de-
grees of risk aversion. Consider the case of p = 3.0. Although the positive growth effect
is smaller in magnitude too (see figure 2), this more than compensates for the negative
welfare effect from increased risk, such that altogether, the welfare effect from switching
between the baseline scenario and, say for instance, sd(In8) = 0.9 is larger.

Given that insurance and credit markets are incomplete, we identify a tradeoff rela-
tionship between risk and growth in the determination of welfare. A cautious interpreta-
tion of our results suggests that a policy targeted at the reduction of risk not necessarily

8This is also true for the lower degree of risk aversion, p = 1.5, where the turning points are associated
with levels of risk outside the range depicted in figure 3.
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Figure 3: Welfare and labor income risk
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generates welfare improvements, if it is not capable of completely eliminating the idiosyn-
cratic risk. Redistributive measures, for instance, reduce the risk associated with after—tax
labor incomes. The resulting negative growth effect from a decline in savings can proba-
bly dominate the positive effect stemming from the reduction in individual risk. We will
return to this issue in section 4.4.

3.4 Debt Limits and Growth

So far, we have assumed an ad hoc debt limit of zero in our numerical simulations. We
now relax this assumption. By allowing for nonzero debt limits, we examine the growth
and distributional effects of raising ad hoc debt limits up to the natural debt limit (7),
which reflects the endogenously determined upper bound beyond which no household
would be willing to increase debt. Given the Markov—chain approximation of the AR(1)
process for the baseline parameterization of Table 1, we determine the lowest possible
realization for labor efficiency as Onin = 0.52475for the case of p = 3. The associated nat-
ural debt limit can then be determined as @, = 4.935 which amounts to almost five times
detrended average wealth (see also Definition 1). Pushing the ad hoc debt limit further
beyond this limit implies that the natural debt limit is binding by (8), and the associated
growth rate is bounded from above by the real interest rate as stated in Proposition 1.
Knowing that a narrow interpretation of our model theoretically implies labor incomes
to be lognormally distributed and hence a By, infinitesimally close to naught, for the sake
of the argument, we momentarily would like to interpret our approximation as describing
the ‘true’ process driving labor productivity. From this we expect some more general
insights into the question of how borrowing constraints affect growth and inequality.
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Table 3: Debt limits, growth and inequality (p = 3)

Q y G@ Gy
0.00 | 0.0091 0.485 0.231
0.50 | 0.0078 0.643 0.280
1.00 | 0.0072 0.742 0.328
2.00 | 0.0067 0.841 0.412
3.00 | 0.0064 0.883 0.474
4.00 | 0.0063 0.902 0.512
4.935 | 0.0062 0.911 0.536

The results are reported in Table 3 for the case of p = 3. The simulation results extend
our conclusions for the two cases @, and @an = 0 drawn earlier in section 2.3 and illustrated
in Figure 1. Tightening borrowing constraints (¢ — 0) has a positive impact on growth.
The risk averse agents increase wealth holdings, which solely reflects an effect in buffer—
stock saving, because the equilibrium interest rate is not affected by the magnitude of debt
limits. Intuitively, higher debt limits allow households to ‘stretch’ their budget constraint
by allowing for a higher level of consumption to be financed from debt. The demand for
intertemporal self-insurance is comparably smaller.

Table 3 shows that the overall growth effect of tightening borrowing constraints is
rather modest from a quantitative viewpoint. For instance, doubling the borrowing limit
from @=1 to =2 only lowers the equilibrium growth rate by 1/20 of a percentage point.
Looking at the entire range of admissible borrowing limits, the difference in equilibrium
growth rates is less than one third of a percentage point.

Regarding the distributional consequences we find that relaxing borrowing constraints
has a marked effect on income and wealth inequality. The results are reported in Table 3.
One implication of generally permitting nonzero debt limits is that we observe negative
wealth holdings under the stationary distribution. The reported Gini coefficients are nor-
malized as described in Chen et al. (1982) to take account of these negative wealth and
income levels. The Gini of wealth rises from 0.48 to 0.91 over the range of admissible debt
limits. Of course, individual income is more equally distributed than individual wealth,
but still the Gini rises from 0.23 to 0.53.

Figure 4 illustrates the distributional consequences of a variation in borrowing con-
straints for three of the debt limits under consideration, =0, = 1.0 and the natural
debt limit ¢, = 4.935 It becomes obvious that the presence of comparably tighter borrow-
ing constraints leads to a more pronounced concentration of wealth near the respective
debt limit. This goes along with lower wealth inequality.

From this we conclude that, if we compare economies which only differ with respect
to the extent to which households are restricted in borrowing against future income flows,
we find a negative correlation between growth and inequality.
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Figure 4: Wealth distributions and debt limits (p = 3)
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4  Growth Policy and Redistribution

4.1 Policy Implications

The policy implications of the Romer (1986)-model are well-known. Due to the produc-
tion externality, the private return to capital falls short of the social return, and households
save less than the socially optimal amount. The optimal policy provides an incentive to
save more by subsidizing accumulation and closing the wedge between the private and
the social return. Let s denote a subsidy on the factor price of capital. An optimal policy
s completely internalizes the knowledge spillover, establishes the Pareto—efficient alloca-
tion, and consequently is welfare-maximizing in an economy with complete markets. The
optimal subsidy relates to the relative magnitude of the externality and is determined by
the partial elasticities of production, s= (1—a)/a.

Another standard implication following from the theory of optimal taxation is that tax
revenues necessary to balance the public budget in this context should be raised in a non—
distortionary fashion, i.e. by a lump-sum tax if available, or—in the case of inelastic labor
supply—a consumption tax or a labor income tax.

The outlined policy recommendations and results are valid for an economy populated
by homogenous agents. If household are heterogeneous regarding their relative factor en-
dowments, this is also true for the individual-related income shares accruing from the two
income sources. Beyond that, factor incomes in our model also differ with respect to the
risk involved. Due to the presence of borrowing constraints, agents choose different sav-
ing rates. Consequently, benefits and burdens of the underlying tax—transfer scheme are
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not likely to be equally distributed. This issue was raised by Bertola (1993), who consid-
ered the Arrow/Romer-type economy with exogenously given and time-invariant wealth
heterogeneity and pointed out that the optimal policy financed from a labor income tax
is not a likely outcome of a majority vote, if the median voter has relative endowment
holdings below the mean. A policy which is optimal in the complete markets economy not
necessarily is welfare-maximizing from an individual viewpoint too in a heterogeneous—
agent economy.

The general policy implication of providing households with an additional incentive
to accumulate is preserved in our model, but it is also necessary to shed more light on
the growth, redistributive, and welfare effects of financing the subsidy payments. In this
context, we have to account for several dimensions. Firstly, a tax—-cum-subsidy scheme
affects the riskiness of after—tax income, thereby possibly providing an insurance against
the individual income risk. Secondly, as far as wealth levels and the endogenously deter-
mined wealth distribution are concerned, the underlying policy may possibly interact with
the extent to which borrowing constraints are actually binding. A chosen policy gives rise
to primary and secondary effects on the aggregate growth rate of the economy and on
wealth inequality. The distribution of the associated welfare gains and losses across the
population is not necessarily straightforward and will be one of the issues raised in our
subsequent analysis.

We start our policy analysis with a simple growth policy, where the subsidy on capital
returns is financed from revenues from a consumption tax, the latter known to be nondis-
tortionary in an intertemporal context. Our numerical analysis offers results on growth,
inequality and welfare for a change in the subsidy rate. Because the underlying policy
sustains heterogeneity among households, we also discuss the implications for a politico—
economic equilibrium in section 4.3. Contrary to the consumption tax, a labor income tax
directly affects the riskiness of after—tax incomes, the insurance effect being larger, the
higher the underlying tax rate. This also comprises an immediate redistributive effect. We
will postpone the discussion of redistribution via risk—sharing to section 4.4 and deal with
a simple growth policy first.

4.2 Growth Policy

We assume that capital accumulation is subsidized at the rate s paid on the factor price of
capital. The post—subsidy real interest factor is then given by Rs= R+S(R—1+9). Subsidy
payments are financed out of revenues from a consumption tax 1. We can write down the
agents intertemporal budget constraint in detrended form as

A(14Y)+E(1+1) =Rd+[(1+y) —RJ o+ W6, (16)

with Rs simply replacing the no—policy interest factor R. The associated value function of
the problem is equivalent to the one given in (9).
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Table 4: Growth, consumption, and consumption risk under policy s, 1

p=3.0 p=50
repr. agent incompl. markets repr. agent incompl. markets
S I's Yc T Y T Yc T Y T
0.0 0.03 | 0.0048 0.0 | 0.0091 0.0 0.0029 0.0 | 0.0085 0.0

0.4 0.07 | 0.0189 0.19 | 0.0239 0.19 0.0113 0.19 | 0.0181 0.19
0.8 0.12 | 0.0327 0.40 | 0.0380 0.41 0.0195 0.40 | 0.0267 0.39
1.2 0.16 | 0.0460 0.64 | 0.0514 0.65 0.0274 0.64 | 0.0346 0.60
1.6 0.21 | 0.0591 0.91 | 0.0644 0.93 0.0350 0.91 | 0.0420 0.83
2.0 0.25| 0.0718 1.21 | 0.0769 1.25 0.0425 1.21 | 0.0492 1.08
2.4 0.29 | 0.0842 1.56 | 0.0892 1.61 0.0497 1.56 | 0.0561 1.48

The government budget is balanced in each period of time, if°

~ S(R-1+)9)
T_—R—(1+y)+vv' a7

The results of our numerical simulations are given in Tables 4 and 5. They are based on
the calibration as outlined in the preceding section (see also Table 1). Again, we compare
the allocation resulting under the ad hoc debt limit of @, = 0 and the complete markets
economy. For given subsidy rates, the table provides information on the consumption tax
rate necessary to keep the public budget balanced, the equilibrium interest factor, and the
resulting equilibrium growth rate of the economy for the two cases p=3and p=5.

Starting from an equilibrium without policy intervention, we increase the subsidy rate
in steps of 0.4. The optimal level of the subsidy in our numerical example which com-
pletely internalizes the knowledge spillover can be determined as S= (1—a)/a = 2.03.
The associated growth rate of the complete markets economy is given by yc s= 0.0718for
p =3 and yc s= 0.0425for p = 5 respectively.

Naturally, the aggregate growth rate increases with a rise in the capital subsidy in all
settings under consideration. The rise in the net interest rate provides an incentive to
increase individual savings. Adjustments in the equilibrium net interest rate follow the
rise in the subsidy, the initial interest rate rising by more than factor eight for subsidy
rates close to S.1° The positive growth effect is most pronounced in the complete markets
economy, the rise in the growth rate amounting to 3/4 of the associated increase in s
(highest vs lowest nonzero value of s). The growth effect is smaller for the incomplete
markets economies under consideration, amounting to 3/5 of the associated increase in s
for the case of p=3and 1/2 for p=5.

9Total public revenues and spendings are derived by aggregating individual budget constraints in equi-
librium, such that A(1+y) = ReA+[(1+Y) —RJ@+W— (1+1)C. Aggregate subsidy payments equal
s(R—1+8)(A— @), and tax revenues are given by 1€ = o7 ([(1+y) =Ry (e—A) +W). With A-p=1in
equilibrium, a balanced budget requires s(R— 1+ &) (A— ¢) = 1C which implies (17).
10Given the parameterization of production technology, this outcome is standard for this class of endoge-
nous growth models.
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Table 5: Growth and inequality under policy s, T

p=30 p=50

s |y G@a Gy v G@a G
0.0 | 0.0091 0.485 0.231 || 0.0029 0.445 0.222
0.4 | 0.0239 0.479 0.251 || 0.0113 0.439 0.237
0.8 | 0.0380 0.459 0.261 || 0.0195 0.409 0.240
1.2 | 0.0514 0.435 0.264 || 0.0274 0.379 0.238
1.6 | 0.0644 0.411 0.263 || 0.0350 0.354 0.234
2.0 | 0.0769 0.391 0.261 || 0.0425 0.331 0.229
2.4 1 0.0892 0.372 0.258 || 0.0497 0.312 0.223

The general result stated in Proposition 1 that growth under idiosyncratic uninsur-
able risk exceeds growth in the complete markets economy is reflected in our numerical
simulations for all values of s. The policy scheme under consideration indirectly lowers
the riskiness of individual total income by raising the relative income share accruing to
(riskless) individual capital income, which becomes obvious if we consider the budget
constraint (16). The lower income risk generates a disincentive to save out of precaution-
ary motives and explains the comparably smaller growth effect in the incomplete markets
economy.

The Gini coefficient of income displays a non-monotonic pattern for a rise in s, first
rising and declining again for higher subsidies; see Table 5. Contrary, wealth inequality
is declining monotonically for rising s. The subsidy induced increase in accumulation
also exerts a leveling effect on the wealth distribution. Indirectly, individual borrowing
constraints are relaxed. This becomes obvious from the intertemporal budget constraint
(16). Given our baseline specification Epah = 0, the household receives higher returns for a
given wealth level.

Regarding the welfare effects of capital subsidization, it is important to note that the
relatively rich benefit from it more than the relatively poor, as interest payments make
up a larger share in their individual incomes. Figure 5 illustrates the welfare effect of
a growth policy targeted at internalizing the knowledge spillover in accumulation. As
before, we calculate the welfare gain in terms of a utilitarian welfare measure, tracing
back welfare gains to equivalent percentage increases in consumption, leaving each and
all agents indifferent between the no—policy situation and the policy of having a subsidy
of size s. For reference, we also display the complete markets economy (dashed lines).
The figure shows that welfare effects are smaller in magnitude in the incomplete markets
economy.

Of course, the maximum welfare gain in the complete markets economy results for
a subsidy of size s= (1—a)/a which completely closes the wedge between the private
and the social return to capital. But interestingly, this is also true in the aggregate for
the incomplete markets economy. Although the respective welfare gains are smaller in
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Figure 5: Welfare and optimal growth policy
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magnitude here, it is only the issue of technological efficiency which is relevant for the
determination of an optimal growth policy. This holds irrespective of the presence of
borrowing constraints, idiosyncratic risk and even a rising inequality in the distribution
of income, these factors only accounting for the difference in the magnitude of welfare
gains.

Summing up, a benevolent social planner seeking to maximize aggregate welfare
would choose a policy which completely internalizes the external effect in capital accumu-
lation. The optimal subsidy on capital returns is completely determined by the underlying
technology. Another major implication of the policy analysis is the negative correlation
between growth and wealth inequality. The underlying policy also has a leveling effect
on the distribution of wealth, such that countries concentrating their efforts on growth
policies tend to have lower wealth inequality.

4.3 Politico-economic Equilibrium

The welfare statements of the preceding section regarding the issue of optimality rely on
a utilitarian welfare measure, where we first determine the compensating variation for
each household, then aggregate and last solve for the welfare-maximizing growth policy.
This does, however, not necessarily imply that the optimal policy indeed will be voted into
effect in a majority vote. The reason is that agents do not symmetrically benefit from cap-
ital subsidization. Those, who draw a larger income share from the accumulating factor
will benefit more from an investment subsidy than the relatively capital-poor. This was
already acknowledged by Bertola (1993) who found for an exogenously given invariant
wealth distribution that policies which focus on income redistribution across reproducible
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and non-reproducible factors tend to slow down growth the more the stronger the politi-
cal power of those who own only relatively small amounts of the accumulating factor.

Bearing in mind that growth as well as the distribution of income and wealth are
endogenous in our model, the politico~economic implications of our approach are quite
similar to Bertola’s findings. We determine the politico-economic equilibrium by first
solving the model numerically for different levels of the subsidy s consistent with a bal-
anced public budget. This provides us with the necessary information on the consumers’
individual preferences towards alternative levels of subsidization. Let V(&,6;s) denote
the value function under policy s. V(4,0;s) is single-peaked in s, such that there exists a
unique individually preferred subsidy for each given combination of individual wealth &
and productivity 6.

In a next step we compute the cumulative density W(s;s) of individually preferred
subsidies of households having productivity 6 and owning wealth & by using the stationary
distribution [ at a given policy S. Let sy(S) denote the subsidy preferred by the median
voter, i.e. W(sy;S) = 0.5. To determine the politico—economic equilibrium, we finally iterate
over sto find a level s* such that W(s*;s*) = 0.5.

Figure 6 plots the function sy(s) for the two alternative degrees of risk aversion under
consideration. The associated politico-economic equilibria are represented by the inter-
section of the function sy(s) with the 45°-line. Because the underlying stochastic process
for labor efficiency generates a wealth distribution which is skewed to the left, the median
voter prefers a subsidy which falls short of the optimal one maximizing aggregate welfare,
s" < s. The knowledge spillover is only incompletely internalized, and there remains a
wedge between the private and the social return to capital. The associated equilibrium
growth rate is lower in the politico~economic equilibrium, and the wealth distribution
remains more unequal; see also Table 5. The equilibrium subsidy is the lower the more
risk averse (or likewise inequality averse) consumers are, yielding values of s* = 1.74 for
p=23.0and s" = 1.63for p=>5.0.

4.4 Growth and Redistribution

We conclude our analysis with some final remarks on redistribution. Consider as a thought
experiment that the government offers subjects a perpetual and complete elimination
of individual income risks from time t onward, e.g., by taxing away labor incomes and
redistributing them in a lump-sum fashion with a transfer equal to mean wage income
W. The immediate effect of providing full insurance against idiosyncratic risk would be
that the stationary wealth distribution is frozen and perpetually fixed in its time-t state.
The economy jumps to a new balanced growth path, the equilibrium growth rate for
an arbitrarily chosen growth policy (s, 1) being given by the value it attains under the
complete markets regime, yc s = (B Rs)l/ e,

By Proposition 1, equilibrium growth from time t onward will now be lower than
before under the incomplete markets regime, because the importance of holding buffer—
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Figure 6: Politico—economic equilibrium

stocks has ceased. Hence, insurance comes at the cost of lower growth. Individuals have
to weigh the utility gain from eliminating idiosyncratic risk against the welfare losses
stemming from the reduction in the aggregate growth rate. It turns out that the aggre-
gate support for such a redistributive policy also crucially depends on whether or not the
government combines it with a growth policy which (at least partly) compensates for the
welfare loss associated with lower growth.!!

Lifetime utility a household with wealth & under the redistributive regime and a given

growth policy from time t onward can be determined explicitly as:'?

1 (& [(Re—(L+ycs)a+w]) P
1-B 1-p '

Table 6 lists our numerical results for several policy mixes, combining growth policies of

VR(8) =

alternating scope with full insurance. It provides information on the decline in the growth
rate measured in percentage points, on the population fraction of supporters, who would
actually like to have this policy implemented, and on the aggregate welfare gain (or loss
respectively) for the two degrees of risk aversion under consideration.

A purely redistributive policy (i.e. s=0) is only supported by 20-25% of the population
(the poorest) and goes along with aggregate welfare losses amounting to almost 2% of
aggregate consumption for the case of p = 3. The welfare loss in a more risk averse society
is smaller of course (1.5%), as consumers benefit comparably more from the elimination
of risk. The reduction in the growth rate amounts to about half a percentage point and is

11 The results would be qualitatively similar if we considered incomplete insurance, which does not com-
pletely eliminate the idiosyncratic risk, for instance, by assuming a flat rate tax 1,7 < 1 on labor income

combined with a lump-sum transfer.
12The expression for optimal consumption follows from the intertemporal budget constraint, by utilizing

the condition that & = 4 in steady—state, rearranging, and dividing by 1+T.
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Table 6: Risk-pooling and welfare

p=30 p=5.0
S p.p- changeiny % in favor Wgonsx 100 | p.p. changeiny % in favor Wgonsx 100
0.0 —0.43 17.58 —1.967 —0.56 25.31 —1.428
0.4 -0.50 38.72 —0.497 —0.68 52.73 -0.076
1.0 —0.54 68.75 0.115 -0.73 68.75 0.429
2.0 —0.51 68.75 0.354 —0.67 68.75 0.553

larger for higher degrees of risk aversion, as the precautionary motive is more pronounced
here. A majority of agents votes in favor of eliminating risk only for a comparably large
subsidization of capital accumulation, even though the growth effect is rather small.!®
This indicates that the opportunity costs of insurance in terms of forgone growth are
substantial for large fractions of the population. Note that in the case of a relatively
risk averse society a majority would already favor a growth policy at rate s= 0.4 even
though the society as a whole still suffers an aggregate welfare loss from risk—pooling.
Obviously, choosing the optimal subsidy s= 2.03 is always favored by a majority, because
this represents the first—best allocation, where all sources of inefficiency are completely
eliminated in the economy.

5 Conclusion

In this paper we combined the neoclassical standard incomplete markets model with idio-
syncratic risks and borrowing constraints in the spirit of Aiyagari (1994, 1995) with a
simple growth mechanism, namely the learning-by—doing approach by Romer (1986). A
special feature of our approach is that both, the equilibrium income and wealth distri-
bution as well as the long-run equilibrium growth rate, are endogenously determined in
our model. We therefore are able to study possible feedback effects between risk, growth,
and inequality and to discuss the redistributive and growth implications of public policy.
To this end our approach aims at a qualitative and quantitative assessment of the con-
sequences of market imperfections on long-run growth and inequality in order to gain
a better understanding of the subject, rather than being viewed as modeling an actual
economy, calibrated and simulated to match certain empirical regularities.

We derive necessary and sufficient conditions for the existence of a balanced growth
path and demonstrate that these not necessarily have to be met, such that an equilibrium
growth path possibly might not exist under a given numerical specification of the model.

As well known from the literature, the presence of uninsurable risk and borrowing con-
straints unambiguously has a positive effect on the long-run growth rate of the economy.

13The majority of 68.75% follows from the numerical approximation of the underlying Markov process.
Given the five states of 6, the majority including the median voter is formed by agents in the three lower
states, who make up 68.75% of the population in the stationary distribution.
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Endogenous growth in our model stems from human capital externalities. This endoge-
nous growth mechanism is known to generate allocations which fail Pareto—efficiency.
Although many implications of the representative agent endogenous growth model re-
garding optimal policy straightforwardly extend to the incomplete markets context, our
numerical simulations come up with some interesting results for the interaction between
growth, risk, and inequality. We find that a policy aimed at pushing growth by subsidizing
interest payments (financed from a non-distortionary consumption tax) also tends to re-
duce the observed wealth inequality. Contrary, a redistributive policy aimed at completely
eliminating the individual income risk stands at odds with the growth target and may
turn out welfare-deteriorating in the whole. Moreover, the policy under consideration
also lowers the riskiness of disposable income, such that feedback effects on intertempo-
ral accumulation decisions and growth have to be taken into account.

This is also important, when it comes to the evaluation of welfare effects. Generally,
welfare gains are directly related to either lower risk or higher growth. Lower risk, how-
ever, is accompanied by a decrease in aggregate savings and consequently a decline in the
equilibrium growth rate. Depending on the magnitude of risk, one of the effects is offset-
ting the other, such that we observe an inverted U-shaped relationship between welfare
and risk.

The aggregate welfare implications of the underlying policy straightforwardly extend
from the representative agent complete markets economy to the heterogeneous agent in-
complete markets one. Because the optimal rate of subsidization is solely determined by
the production technology, aggregate welfare is maximized if the knowledge spillover is
fully internalized. But, as households are heterogeneous in our model due to the presence
of uninsurable shocks to labor efficiency, welfare gains are unequally distributed across
the society. This naturally raises the question of possible outcomes of majority voting over
alternative public policies. We find that the median voter prefers less than optimal sub-
sidies on investment. Interestingly, a majority might even vote against a policy providing
full insurance, because welfare losses due to lower growth more than offset welfare gains
from having lower risk.
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A Appendix

A.1 Proof of result 1

We reformulate problem (9) by defining and substituting ¢ = &/(1+y), R=R/(1+Y), W= W/(1+VY):

V(4 0)= max{(1+y)1pu(é)+[~3EgV(é’, 9’)} (A1)

Reformulating the optimization problem this way does not affect optimal decisions, which — when
aggregated — are represented by the function A(y, @, R W), describing aggregate (detrended)
wealth holdings for given y, @ R and W. Given the reformulated problem (A.1), the solution
properties and proofs provided by Aiyagari (1994) straightforwardly carry over to the present
model.

We furthermore have to specify an ad hoc debt limit @, > 0, whenever R < 1 for a proper
formulation of the optimization problem (A.1). For R> 1, a natural debt limit ¢, might be binding
before any ad hoc limit takes effect. The natural debt limit is given by:

WOmin

= — A.2
="y (A.2)
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where 6min denotes the lowest possible realization of 8. We rewrite condition (8) as:

g o=~ | @,
81/+1>(p7 (p{

20>

<1
(A.3)
>1

20

Min[Qan, @],
Upper and lower bounds on feasible growth rates:
Problem (A.1) is bounded only if B < 1. This implies the following restrictions on feasible growth
rates for p > 0,p = 1:

1
1+y<pet, <1
y<B p (A4)

1+y> BP% , p>1.
Depending on the size of p, these restrictions impose upper and lower bounds on feasible growth
rates. Forp=1, [3 = 3, and feasibility is met by assumption.

An important feature of the function A(y, ¢, R, W) is that aggregate (detrended) wealth holdings
rise to infinity as R approaches fi from below (see Aiyagari, 1994). Given the definitions of R and
[~3, BFAQ < 1is equivalent to:

1+y> (BRYP =1+yc, (A.5)

which proves that the equilibrium growth rate under incomplete markets and idiosyncratic risk
exceeds the equilibrium growth rate yc under complete markets.

Properties of A(y, @, R, W):

Regarding detrended wealth holdings, we can state the following: For any ad hoc debt limit @, > 0,
the function A(y7 (~p7 R W) — —(~p if R— 0 from above, which with R fixed by technology follows from
1+y— oo, For @h, R> 1 (i.e. r >Y) by (A.3). As @, — « for R— 1 from above, by (A.2), we obtain
A(y, (:0, R W) — —oo.

Combining (A.4) and (A.5) implies the following:

(i) p> 1: Whenever the lower bound given by (A.4) is lower than 1+ ¢, the function A(y, @, R, W)
is well defined for all y > yc. The respective condition is equivalent to B < RP~! and given
the above described properties of the function A(y, o R W) this conditions turns out to be
sufficient for existence of a balanced growth path, i.e. an equilibrium growth rate y > yc
such that A(y, @ R, W) = 1. y is bounded from above by r in case of a natural debt limit,
which follows from the properties of the function Ay, @, R, W).

(ii) p=1: This case is identical to (i) except that there are no additional restriction on feasible
growth rates. As the function A(y, (~p7 R, W) is well defined for all y > yc, existence of a bal-
anced path follows immediately. Condition B < RP~ becomes B < 1 if p = 1 and is satisfied
by assumption.

(iii) p < 1: Whenever the growth rate is smaller than the upper bound implied by (A.4), the
function A(y, o R, W) is well defined for y > yc. Thus, a necessary condition for existence of a
balanced growth path is that 1+y > BF’%I > 1+Yyc, which is equivalent to B < RP~L. Given the
properties of A(y, ¢, R, W), the balanced growth path exists in case of a natural debt limit if
the upper bound is greater than or equal to r. The condition 1+y> Bﬁ > 1+ is equivalent
to B < RP~L. Thus, a balanced growth path with r >y > yc such that A(y, ¢, R, W) = 1 exists
in case of a natural debt limit, if B < RP~1. In case of an ad hoc debt limit, A(y, o R W)
decreases from + as y rises above yc. However, it might be that the upper bound implied
by (A.4) is hit before an equilibrium is attained. Therefore, the condition B < RP~ is only
necessary for existence of a balanced growth path in case of p < 1.
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Proof completed.

A.2 TIllustration of nonexistence of a balanced growth equilibrium in the case p < 1

Given that all other parameters of the model are specified as in Table 1, the necessary condition for
existence of an equilibrium (B < RP~1) implies that a balanced growth path will not exist, whenever
p < 1+InB/InR~ 0.488508 As B < RP~! is only necessary but not sufficient in the presence of an
ad hoc debt limit, a balanced growth path might not exist here, even if p exceeds this value.

Figure 7 shows the possibility of such an outcome, by using results from numerical simulations
of the model assuming a value of p = 0.52 and an ad hoc debt limit @,y = 0. The resulting growth
rate of the complete markets economy is given by yc = 0.02815and, according to (A.4), the up-
per bound on growth can be determined as y = 0.031988 Aggregate (detrended) asset holdings
A(y,®,R W) are represented by the solid line, which decreases monotonically as y moves from the
lower bound yc towards the upper bound, but remain strictly above the value A(y, o.R, W) =1,
indicating the capital market equilibrium. Consequently, the balanced growth equilibrium does
not exist within the lower and upper bound of feasible growth rates (at the upper bound for y our
simulations return a wealth level of A = 1.494).

Just for illustration, compare this result to a situation associated with lower idiosyncratic risk
(05 = 0.0076 dashed curve in Figure 7). Lower values of 0§ shift the asset holding curve to the
left, now implying existence of a growth equilibrium in Point P.

Figure 7: Nonexistence of a balanced growth path with p = 0.52 and @, =0
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