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Abstract

In this paper we study the use of the interval scoring rule as a non-market based forecasting

mechanism. In our experiment subjects forecast the termination time of a time series to

be generated from a given but unknown stochastic process, where over time they gradually

learn more about the underlying process and hence the true distribution over termination

times. We conduct two treatments, one with a high and one with a low volatility process.

We find that individuals forecast better when facing a low volatility process, but when

individual forecasts are aggregated over groups, groups make better predictions when

facing a high volatility process.
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1 Introduction

Firms often depend on internally generated forecasts when making operational decisions such

as whether to invest in a project or whether to increase production capacity. Generating

forecasts for such purposes require both the elicitation of beliefs and aggregation of infor-

mation, dispersed across different individuals within, as well as outside, a firm. Given that

unstructured mechanisms to aggregate information may result in a failure to correctly take

all information into account (Hopman, 2007), it is important to investigate the forecasting

ability of alternative mechanisms designed to elicit beliefs.

In this paper we propose and implement a non-market based mechanism to elicit forecasts

and to test it experimentally. Non-market based methods have recently been shown to perform

well and Gillen et al. (2013) implement such a mechanism to forecast future sales within Intel

and are able to outperform internal forecasts in a majority of the cases. Goel et al. (2010) find

that non-market based methods do not perform significantly worse than prediction markets

in forecasting outcomes of sports and movie events. Prediction markets have been extensively

studied as an elicitation mechanism and they have been shown to perform very well in a wide

array of applications, such as elections (Forsythe et al., 1992), corporate settings (Cowgill and

Zitzewitz, 2013) and in the laboratory (Smith, 1962). Yet, these markets do not come without

problems and can be subject to manipulations (Hanson et al., 2006; Veiga and Vorsatz, 2006)

as well as strict regulatory requirements (Arrow et al., 2008).

In our experiment subjects have to forecast, over a sequence of twenty periods, the termi-

nation time of a time series that is to be generated from a fixed but unknown random process

by specifying an interval where they believe the time series is going to terminate. Subjects are

not informed about the details of the process and gradually learn about the underlying pa-

rameters as the experiment advances. One advantage of conducting a laboratory experiment

is that we are able to control the distribution over possible outcomes (the random process

being just one way to generate such a distribution). This allows us to compare the individual

predictions against the true ex-ante distribution of outcomes – something that is hard to

do with experiments in the field where comparison are typically made against realizations –

and hence facilitates a better performance analysis and allows a better understanding in the

mechanics that lead to good forecasting environments.

We incentivize subjects by means of the interval scoring rule (Schlag and van der Weele,

2009). That is, only a positive payoff is earned in case the realized termination time is in the

stated interval – this payoff being decreasing in the chosen length of the interval – and zero

otherwise. Consequently, the experimental setting does not involve strategic interaction, i.e.

there is no competition among subjects and they are rewarded purely on basis of their own

performance. There are several advantages of moving away from a market-based setting. For

instance, non-market based mechanisms can be operated with fewer forecasters, aggregation of
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individual forecasts can be weighted by individual characteristics of the forecaster (including

past performance) and information flows can easily be traced across different subsets of the

forecasters.

Several papers have implemented variations on the interval scoring rule, including Galbiati

et al. (2013), Tausch et al. (2014) and Peeters et al. (2012); yet its properties have not been

studied extensively. In this paper we explore, in a forecasting context, several aspects of

belief elicitation using this rule. First, we consider the choices individuals make in this

environment given the incentives provided, and how choices change over time in response

to recent experiences. Second, we study how individual forecasting performance relates to

the level of the underlying uncertainty and individual attributes like cognitive ability, risk

and gender. Finally, we investigate the quality of the performance of group predictions (on

basis of aggregating the forecasts of the individuals in this group) depending on the size and

composition of the group.

We find that individuals’ forecasts are significantly better in the low volatility treatment

than in the high volatility treatment. Over time individuals improve their forecasting per-

formance in the low volatility treatment, but fail to do so significantly in the high volatility

treatment where they learn to improve in the choice of location of the interval given the

interval length, but fail to choose the correct length. Interestingly, behavior, as well as per-

formance, in the experiment does not appear to be significantly affected by risk preferences.

This is in line with Harrison et al. (2013), who show that when eliciting subjective beliefs

over continuous events using a popular scoring rule one does not need to correct those beliefs

for the subject’s risk preferences. Yet, interestingly, this is in contrast to beliefs elicited over

binary outcomes which are affected by an individual’s risk tolerance (see for instance Winkler

and Murphy, 1970).

When aggregating forecasts over groups of individuals, we find that the group performance

(as measured by the Hellinger distance to the true distribution) is increasing in group size at

a decreasing rate. While, for any given group size, group performance is better in the low

volatility treatment throughout the first half of the experiment, aggregated forecasts are better

in the high volatility treatment during the second half. This is possibly due to there being

less correlation in individual forecasting errors, which makes the aggregate forecast resemble

the underlying distribution better. Although we believe we may conclude that the mechanism

studied yields a quite good forecast already when aggregating over few individuals, forecasting

accuracy can be improved when aggregating over the right individuals. For instance, Budescu

and Chen (2014) and Goldstein et al. (2014) show that performance can be improved by

putting more weight on individuals that performed better in the past. Our results show that

groups perform better when the share of females is larger and the average tolerance towards

risk is higher; the effect of cognitive ability seems to interact with the level of uncertainty.
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2 Experiment

In the experiment subjects are exposed to a random process that starts at a value of zero

at time t = 0 and runs from there in discrete time-steps. At each unit of time the value

is incremented with a real number (possibly negative) that is drawn randomly according to

a normal distribution with mean zero (hence, there is no drift) and a fixed but unknown

variance. The process terminates either when the value crosses the lower boundary at −2.5,

crosses the upper boundary at +2.5, or has reached time t = 100 without having reached

one of these boundaries. Figure 1 shows one time series generated by this process that led

to a termination at the lower bound at time t = 63. In a sequence of twenty rounds, the

task of the participants in this experiment is to predict the termination time of the upcoming

time series. While doing so, the participants gradually learn about the underlying parameters

that generate the stochastic process, possibly giving rise to a gradual improvement in their

predictions.

Value

Time

0 20 40 60 80 100
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Figure 1: An example of a time series.

Prior to the first round, participants were shown an animation of a randomly generated

time series. After having seen this animation, they were asked to indicate the time interval in

which they believe the next time series is going to hit one of the boundaries, conditional on

the time series to terminate before time t = 100. The decision was made by positioning two

triangular cursors along the time line between t = 0 and t = 100.1 Participants were incen-

tivized by means of an interval scoring rule (Schlag and van der Weele, 2009): a participant

expressing the belief that, conditional on the time series to terminate before time t = 100,

1In addition to this task described, during all twenty rounds, the subjects were simultaneously confronted
with a second decision task. In this second task subjects were asked how likely they regard the event that the
time series will terminate before t = 100. As this refers to a binary event, for this task they were incentivized
by means of a quadratic scoring rule. This task was implemented for the sole purpose to provide subjects with
the full set of outcomes space, but their decisions for this task are not subject to analysis in this paper.
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it to hit one the boundaries within the time interval [x̂, ŷ] received 100 · (1 − ŷ−x̂
100 )2 ECU

(Experimental Currency Units) if the time series indeed terminated within the given time

interval and received nothing otherwise. Thus, the payoff that could potentially be obtained

is larger when a smaller interval is selected and the potential payoff was shown on-screen in

real-time while cursors were moved along the time line. After having confirmed their predic-

tions, participants were shown the animation of the time series that was generated for the

first round, whereafter the task was repeated in the second round. This procedure continued

until the last (twentieth) round.

Finally, the participants participated in a short cognition task in which we elicited their

perceptual reasoning ability, their risk attitude, and a few personal characteristics, including

gender and age. For the cognition task, we used the symbol-digit correspondence test from

the Wechsler Adult Intelligence Scale (WAIS), in which subjects had 90 seconds to find as

many correspondences between symbols and numbers as they could, using the correct number

for each symbol. The speed and accuracy of this task under time pressure determine an

individual’s perceptual reasoning ability (cf. Dohmen et al., 2010). Risk attitude was elicited

by the direct approach as suggested in Dohmen et al. (2011).

A random selection of subjects from our subject pool (mainly students in business and

economics) were invited to participate in one of two sessions of an economic experiment via

ORSEE (Greiner, 2004). Both sessions were run in the BEElab at Maastricht University

in September 2013. The instructions were paper-based and the prediction phase was com-

puterized using z-Tree (Fischbacher, 2007).2 In total 48 students participated: half of them

participated in the low volatility treatment with the standard deviation of the normal dis-

tribution being equal to 0.1885, the other half participated in the high volatility with this

standard deviation being set at 0.2270.3 All participants in a treatment were shown the same

animations in the same order, and the series of time series were generated by a statistical soft-

ware package and were not subject to experimental manipulation. At the end of the session,

for each participant individually, eight random draws (with replacement) over the payoffs that

were earned in the twenty rounds were made. The final earnings of the participants consisted

of the amount of ECUs collected in these eight tasks exchanged into Euros at a conversion

rate of 6 Eurocents for each ECU and a 3 Euro show-up fee. Each experimental session lasted

about 60 minutes and the average earnings of the subjects was 13.56 Euro.

Figure 2 presents the true distribution over termination times, conditional on termination

before t = 100, for the two treatments. The mode of this distribution is at 66 for the low

volatility treatment and at 31 for the high volatility treatment. Given the incentives provided,

when having perfect knowledge of this true distribution, a risk neutral individual maximizes

2The instructions as they were provided to the experimental subjects are included in Appendix A.
3These standard deviations are chosen such that the probability of the process to terminate before t = 100

equals approximately 1/3 in the low volatility treatment and 2/3 in the high volatility treatment.
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her expected payoff by choosing the interval [51, 83] in the low volatility treatment and the

interval [21, 51] in the high volatility treatment.
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0.012

0.008

0.004

0.000
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Figure 2: Distribution over termination times conditional on termination before t = 100. The
dashed curves relate to the low volatility treatment; the solid curve to the high volatility
treatment.

3 Results

In Table 1 we present the summary statistics of our experiment. The upper part shows the

summary statistics of the main characteristics of the participants in our experimental sessions.

The ratio of males was slightly larger in the low volatility treatment; so was the number of

correctly identified symbols in the cognition task. There are no substantial difference in age

and risk attitude (where the value 0 indicates extreme risk aversion and the value 10 extreme

risk loving) between the participants in the two treatments.

Mean value (std.dev)

All Low High

Age (years) 21.2 (2.4) 21.1 (1.9) 21.2 (2.8)
Gender (%, Male = 1) 50.0% 58.3% 41.7%
Risk attitude (0–10) 6.1 (1.9) 6.0 (1.9) 6.1 (2.0)
Cognitive ability (number) 40.5 (6.5) 41.1 (7.3) 40.0 (5.6)

Lower bound (0–100) 43.6 (13.5) 31.6 (15.6)
Upper bound (0–100) 82.4 (12.9) 77.1 (15.8)
Exp. payment (in ECU) 17.6 (3.8) 14.1 (3.6)

Table 1: Summary statistics of the participants in the experiment.

The lower part of this table shows the average intervals constructed and the average ex-

pected payment, where averages are taken over all individuals over all twenty periods and the

expectation is based on the expected payment given the interval chosen on basis of the true

distribution. The average interval in the low volatility treatment almost fully captures the

interval that a risk neutral individual would optimally choose (when knowing the true distri-

bution) and the mode of the true distribution. In the high volatility treatment a substantial
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part of the risk neutral optimal interval is not captured in the average interval chosen; even

the mode of the true distribution is just not contained. In both treatments subjects design

longer intervals than a risk neutral individual would optimally do. The mis-positioning of the

intervals in the high volatility treatment relative to the low volatility treatment, leads to sub-

jects’ expected payment being significantly higher in the low volatility treatment compared

to the high volatility treatment (Mann-Whitney U: p < 0.001).

3.1 Choices

Panel (a) of Figure 3 presents the development of the average interval chosen during the course

of the experiment for each of the two treatments. We see that there is some learning in the

first periods and on average behavior stabilizes in the low volatility treatment while this is less

so the case in the high volatility treatment. The earlier observed properties on the positioning

of the intervals relative to the risk-neutral optimal intervals and the lengths of the intervals

appears not to be an artefact of averaging over rounds but a persistent property. The risk-

neutral optimal intervals have the property that the upper bound of the interval in the high

volatility treatment should be equal to the lower bound of the interval in the low volatility

treatment. Where averaged over time the former is 33.5 points above the latter, there is no

time period in which these bounds differ by less than 24. The regression results presented in

Table 2 indicate that over time the intervals marginally shrink in the low volatility treatment

and marginally expand in the high volatility treatment. Furthermore, the choice of interval

length does not correlate significantly with gender, risk attitude and cognitive ability.
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(a) Average intervals over time.
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(b) Share of intervals containing the true mode.

Figure 3: Average intervals over time and share of intervals containing the mode of the true
distribution in the low volatility (dashed) and the high volatility (solid) treatment.
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One property of the interval scoring rule is that if a subject’s belief distribution over

termination times is single-peaked, then the mode of this distribution should be contained

in the reported interval. We see that for the low volatility treatment the mode of the true

distribution (at 66) is during the whole course of the experiment contained in the average

interval chosen; for the high volatility treatment, most of the time the mode (at 31) is not

contained. Due to the flatness of the true distributions at the mode, it is hard for subjects

to learn or to identify the true mode.4 Allowing for a certain degree of mis-identification,

panel (b) of Figure 3 shows the the share of intervals that contained the true mode at each

time period. We classify each interval, that intersects with a termination time that is at

least 95% as likely to realize as the true mode, as containing the true mode.5 The figure

shows that in the low volatility treatment in all periods at least 21 of the 24 subjects, and

half of the time all 24 subjects, had an approximate mode contained in their interval. In the

high volatility treatment more than half of the time more than 20 of the 24 subjects had an

approximate mode contained in their interval, though in the first five periods less than 18

individuals qualify for this criterion. The fraction of subjects in the high volatility treatment

that make a good forecast in this respect is never above this fraction in the low volatility

treatment.

Relatedly, in Table 2 we study how individual characteristics relate to the interval lengths

chosen as well as to the fact whether or not they contain the true mode. We see that none

of the characteristics matter in the choice of interval length (first two columns). This is

a surprising finding, given that we would expect risk attitudes to play a role in the choice

of interval length. Moreover, we see that characteristics are not a significant predictor for

the true mode being contained in the chosen interval (last two columns; coefficients are the

marginal effects at the mean from a logit model).

All in all, individuals make better predictions (measured relative to the risk-neutral opti-

mal interval and for the mode being contained in the interval) in the low volatility treatment

compared to the high volatility treatment. There is no indication that this is due to any of

the individual attributes. As the distinctive element of the treatments is the volatility, and

as such the structure of the uncertainty, we can conclude that the nature of the uncertainty

may have a large impact on individuals making good forecasts. Despite this sensitivity to-

wards uncertainty, risk attitude seems not to be of importance – something we will get back

to in Subsection 3.3. First, we explore how subjects adapt their chosen intervals on basis of

experiences.

4Multiples of millions of simulations are needed to numerically identify the true mode. It is therefore not to
be expected that our experimental subjects would be able to learn to do so within twenty rounds (even when
taking into account that during one round they learn more about the process than one termination time).

5This implies that the range of values that could be considered as mode are [51,84] in the low volatility
treatment and [25,40] in the high volatility treatment. Not allowing for mis-identification (i.e. only accepting
the true mode), does not have any impact on the main findings.
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Mode contained
Interval length (marginal effect)

Treatment Low High Low High

Constant 54.4004∗∗∗ 30.4989
(12.8491) (18.2669)

Period −0.2736∗ 0.2930∗∗ 0.0021 0.0198∗∗∗

(0.1440) (0.1166) (0.0017) (0.0034)
Gender −2.0509 1.9541 0.0286 −0.0361

(4.2102) (4.7124) (0.0248) (0.0485)
Risk attitude 0.1538 0.4683 −0.0051 0.0090

(1.0740) (1.0332) (0.0056) (0.0171)
Cognitive ability −0.3023 0.2065 −0.0013 0.0064

(0.2521) (0.3764) (0.0013) (0.0046)

Observations 480 480 480 480
R-squared 0.0446 0.0284

Standard errors clustered on the individual level in parentheses
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 2: Interval length and whether the mode is contained in the interval against individual
characteristics.

3.2 Dynamics of choices and learning

Each period, after having chosen their interval, subjects immediately experience the conse-

quence of their choice. For our analysis on the dynamics of subjects’ choices, which provides

information on their learning, we distinguish four mutually exclusive and jointly exhaustive

experiences, depending on the termination time of the time series relative to the chosen inter-

val: (1) the termination time is below the interval, (2) the termination time is in the interval,

(3) the termination time is above the interval, but the time series terminated before t = 100,

and (4) the time series did not terminate before t = 100. We label these possible experiences

by ‘below’, ‘hit’, ‘above’, and ‘no hit’, respectively (see Figure 4). Only the experience ‘hit’

yields a positive payoff; the other experiences do not yield any payoff.

0 100interval

below hit above no hit

Figure 4: The four possible experiences.

We use the following regression model to estimate how individuals adapt their interval in

response to their experiences:

∆bi,t = β0 + β1Belowi,t−1 + β2Abovei,t−1 + β3NoHiti,t−1 + ΓiCi + εi,t.

Here, ∆bi,t denotes the change in either the upper or lower bound of the interval of individual i

in period t. Ci is the vector that stores individual i’s characteristics. Our main interest lies in

the coefficients of β1, β2 and β3 that capture the adjustment in the interval bound relative to
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the ‘hit’ experience. The results are shown in Table 3 and indicate that subjects react quite

significantly to previous period experiences.

Low volatility High volatility

lower bound upper bound lower bound upper bound

Constant 5.0193∗∗ 2.3811 3.2089 0.1320
(2.4196) (2.1233) (2.3037) (1.7443)

Below (t− 1) −15.4055∗∗∗ −8.2924∗ −11.4430∗∗∗ −4.7961∗∗∗

(4.4908) (4.1464) (2.3877) (1.6610)
Above (t− 1) 2.5710 4.7751 0.5756 3.2335∗

(5.3155) (5.4829) (1.8960) (1.8387)
No hit (t− 1) −5.1643∗∗ −1.6478 −8.8576∗∗∗ −4.6007∗∗

(1.8956) (1.9694) (2.5277) (2.0867)
Gender 1.0421∗∗ 0.6746 1.4763∗∗ 0.0403

(0.4715) (0.4199) (0.6159) (0.4005)
Risk attitude −0.0861 0.0218 −0.3772∗∗ −0.1077

(0.1082) (0.0958) (0.1580) (0.0864)
Cognitive ability −0.0009 −0.0245 0.0595 0.0487

(0.0309) (0.0274) (0.0449) (0.0312)

Observations 456 456 456 456
R-squared 0.0548 0.0245 0.0922 0.0369

Standard errors clustered on the individual level in parentheses.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 3: Interval updating depending on the experiences in the previous period.

When subjects experienced a termination below the selected interval in the previous pe-

riod, in both treatments, they shift both bounds downwards, and the lower bound with a large

amount compared to the upper bound, this leading to a widening of the interval. In case the

series terminated above the chosen interval, individuals seem to shift both bounds upward

in a manner that also yields a widening of the interval, but these effects are not statistically

significant. The responses to these two experiences are consistent (for sure, not inconsistent)

with Bayesian learning.

In the more extreme case where the time series did not terminate before t = 100 (the

‘no hit’ experience), in both treatments both interval bounds are shifted downwards (not

significant for the upper bound in the low volatility treatment). This adjustment is clearly

inconsistent with Bayesian learning. Individuals seem prone to the gambler’s fallacy (cf.

Lehrer, 2009) by acting in accordance to the mistaken belief that, in order to balance the

mean, a no hit should be followed by an early hit. From the regressions reported in Table 8

in Appendix C it follows that most significant adjustments take place in the first half of the

experiment which is in line with Bayesian learning (taking into account the difference in the

amount of information to incorporate in the updating process); though, some adjustments

persist in being significant.

From the adjustments in choices in response to experiences it is evident that subjects do

learn throughout the experiment. Yet, one question is what they learn. In this section, we
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more or less assumed that they try to learn to make better choices. Though, it may well be that

they form better beliefs and that their choices are just a reflection of that. In Appendix B,

under some additional structural assumptions on the subjects’ beliefs, we investigate how

beliefs are adjusting in response to experiences. Similar inferences are derived, though we

find some differences in statistical significance of the reported effects.

3.3 Performance

In each treatment we measure individual performance in the prediction task as the ex ante

expected payoff relative to the maximum ex ante expected payoff that can be obtained in

the respective treatment. Here, the ex ante expected payoff refers to the expected payoff

given the interval chosen and the incentives provided by the interval scoring rule and the true

distribution over termination times as plotted in Figure 2; the maximum ex ante expected

payoff is based on the same incentives provided and true distributions, but given that the

risk neutral optimal interval is chosen. The columns labeled ‘Normal’ in Table 4 present

the result of cross-sectional regressions of the individual performance on the participants’

characteristics.

Low volatility High volatility

Normal Conditional Normal Conditional

Constant 0.8355∗∗∗ 0.9652∗∗∗ 0.8057∗∗∗ 0.8227∗∗∗

(0.1464) (0.0367) (0.2151) (0.0949)
2nd Half 0.0612∗∗∗ 0.0192∗∗ 0.0251 0.0320∗∗∗

(0.0188) (0.0068) (0.0164) (0.0106)
Gender 0.0437 0.0210 −0.0276 −0.0220

(0.0349) (0.0158) (0.0421) (0.0191)
Risk attitude −0.0191∗∗ −0.0060∗∗ −0.0150 0.0055

(0.0082) (0.0029) (0.0121) (0.0054)
Cognitive ability 0.0014 0.0002 −0.0011 0.0005

(0.0028) (0.0007) (0.0050) (0.0017)

Observations 480 480 480 480
R-squared 0.0870 0.0415 0.0517 0.0289

Standard errors clustered on the individual level in parentheses.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 4: Individual prediction performance with performance measured as ex ante expected
payoff relative to maximum possible payoff (normal) and the latter maximum conditional on
chose interval length (conditional).

The only individual characteristic that appears to have a significant impact on performance

is risk attitude, and this effect is only significant in the low volatility treatment. The negative

sign indicates that more risk averse individuals make better predictions. Gender and cognitive

ability are not a significant predictor for individual performance.

In principle the subjects’ interval choices can be disentangled in two choices: the length of

the interval and its location. In order to disentangle the impact of individual characteristics

11



on performance (or the lack thereof) for these two choices, we ran additional regressions where

the performance is measured relative to the maximum possible payoff given the chosen length

of the interval, the result of which are presented in the column label ‘Conditional’. Again, the

only individual characteristic that has a significant impact on performance is risk attitude,

and, again, this effect is only significant in the low volatility treatment. This indicates that

part of the effect of risk attitude on performance can be attributed to the location of the

interval. As the impact of risk attitude on interval length was shown to be highly insignificant

(recall Table 2), we may conclude that the worse performance of risk seeking individuals can

be fully attributed on where they locate their intervals.

Comparing the variables ‘Constant’ and ‘2nd Half’ across treatments, the coefficients sug-

gest that individuals perform better in the low volatility treatment compared to the high

volatility treatment and that performance has improved during the experiment in both treat-

ments. This improvement is not significant in the high volatility treatment, but is so when

the performance is measured relative to the chosen interval lengths. This suggests that in the

high volatility treatment subjects mainly improve in their choice of interval location.

In order to draw a better picture of how risk attitude affects performance and how this

interacts with the volatility of the stochastic process, Figure 5 displays individual performance

(y-axis) conditional on interval length (x-axis) for the low and high volatility treatments in

the first and last period of decision making. Panels (a) and (b) show first period choices

for the low and high volatility treatments respectively, while panels (c) and (d) show the

same individuals’ choices in the last period. The curves in the plots identify the (normalized)

maximum attainable payoff as a function of chose interval length. Three different geometric

are used to distinguish individuals from three different risk groups where, for each treatment,

we split the subjects at the one-thirds and two-thirds quantile of their reported scores. In

the figure, the circles refer to the individuals with the lowest risk tolerance, the diamonds to

those with medium risk tolerance, and the triangles to those with the highest risk tolerance.

Comparing the performances in the first and last period, we see that the figure nicely

illustrates the effects observed in Table 4. In the low volatility treatment, with the geometric

shapes being close to the curves in panel (a) and (c), subjects succeed to choose the location

close to optimal given the chosen interval length already in the first period and still do so in

the last period. Though, comparing the distribution of interval lengths over these two panels,

we see that over time subjects improve in their choice of interval length (while they keep

choosing the right location given the length). Moreover, there is no apparent difference in the

distribution of interval lengths across risk groups (which we saw already in Table 2).

In the high volatility treatment, we do not observe the same effect (panel (b) and (d)).

First, subjects do not succeed to choose the best location given the chosen interval length

in the first period, but learn to do so over time. Second, while like in the low volatility
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(a) Low volatility, First period
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Figure 5: Individual performance against interval length for the two treatments in the first
and last period.

treatment the dispersion of interval lengths is reduced over time, we see that they cluster

on a suboptimal level: subjects opt for too lengthy intervals. Overall, this explains the lack

of improvement in individual performance over time in this treatment. Again, there is no

apparent difference in the distribution of interval lengths across risk groups.

3.4 Aggregate forecasts of the underlying distribution

Even though the time series shown to the participants are identical and they thus only possess

common information about the underlying parameters we observe significant variation in

the forecasted intervals. The aggregation of interval predictions of several subjects yields a

distribution over possible termination times. Such an amalgamation of individual forecasts

may provide a better forecast than any of the individual forecasts.

Figure 6 shows the aggregated probability density functions for the two treatments in the

first (dashed line) and last period (solid line) of the experiment, where for each treatment

the aggregation is taken over all 24 participating subjects. Table 5 shows some key summary

statistics related to these densities. Overall, we see that the aggregate forecasts improve over
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time. Next, we focus on the quality of an aggregated prediction in relation to group size, and

how the quality develops over time.
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(a) Low volatility treatment.
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(b) High volatility treatment.

Figure 6: Distributions over termination times conditional on termination before time t = 100:
true distribution (dotted) and aggregated interval choices in first (dashed) and last (solid)
round of experiment.

Low volatility High volatility

First round Last round True distr. First round Last round True distr.

Mean 55.75 63.29 63.58 65.85 51.62 51.13
Median 54.73 65.11 64.64 67.14 51.03 49.02
Std. dev. 16.96 15.05 21.54 23.01 17.47 24.12

Table 5: Key summary statistics related to the distributions in Figure 6.

In order to study the impact of group size (and composition) on the quality of predictions

when aggregating individual predictions over groups it is important to adopt a good measure

to quantify ‘quality of prediction’. One property that such a measure should capture is that

it allows for a fair comparison within and across groups of different sizes. In our analysis, we

will make use of the Hellinger distance (Hellinger, 1909) that quantifies the similarity between

two probability distributions. An important advantage of the Hellinger distance over often

used alternatives (such as the Kullbeck-Leibler divergence) is that it does not require absolute

continuity, a property that is violated almost by design.6

The Hellinger distance of the (discrete) empirical probability distribution Q = (q1, . . . , qm)

to the (discrete) true probability distribution P = (p1, . . . , pm) is defined as

H(Q,P ) =
1√
2

√√√√ m∑
j=1

(
√
qj −

√
pj)2.

6Yet another desirable property of the Hellinger distance, that we do not exploit here, is that it satisfies
the triangular inequality.
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In case the two distributions P and Q coincide, the Hellinger distance equals zero. The

maximum Hellinger distance of one is obtained when the supports of the two distributions

are disjoint. Consequently, for intuitive reasons, we henceforth define a performance index,

Z, that equals one minus the Hellinger distance:

Z(Q,P ) = 1−H(Q,P ).

In Figure 7 we plot the performance measure, Z, of the aggregated interval predictions over

different group sizes and time periods. In the three dimensional graph, each point represents

the average performance for a given aggregation size (increasing from far to near) and time

period (increasing from left to right). The left panel shows this for the low volatility treatment

and the right panel for the high volatility treatment. The graphs from both treatments look

quite similar and it is evident that the performance improves substantially when increasing

the group size. In both treatments, for given group size, the performance averaged over all

possible groups of that size is rather constant over time. Any effects of learning that we saw

to be present on the individual level, in particular during the first eight periods, seem to have

disappeared in the aggregation process.
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Figure 7: Average performance of aggregate interval predictions over group size and over time.

In the following, we quantify the impact of groups size on forecasting performance using

a regression model. For each possible coalition of individuals of group size between two

and twelve, we compute the coalition’s forecasting performance in each period and store the

coalition’s average values for gender, risk attitude and cognitive ability. This yields for each

treatment a dataset with almost 200 million entries.7 Next, we regress performance on group

7There are 20 time periods with 24 individuals in each treatment. All possible group configurations of
individuals in group sizes between one and twelve equal 9,740,685.
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size, using as regressors either the individual characteristics (model (1)) or individual dummies

(model (2)). Table 6 presents the results of these regressions.

Low volatility High volatility

(1) (2) (1) (2)

Constant 0.6158∗∗∗ 0.3296∗∗∗

(0.0030) (0.0027)
2nd Half −0.0630∗∗∗ −0.0630∗∗∗ −0.0075∗∗∗ −0.0075∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000)
Gender −0.0357∗∗∗ −0.0081∗∗∗

(0.0000) (0.0000)
Risk attitude 0.0066∗∗∗ 0.0182∗∗∗

(0.0000) (0.0000)
Cognitive ability −0.0029∗∗∗ 0.0014∗∗∗

(0.0000) (0.0000)
Group size 2 0.0996∗∗∗ −0.4164∗∗∗ 0.0994∗∗∗ −0.3941∗∗∗

(0.0031) (0.0058) (0.0029) (0.0053)
Group size 3 0.1469∗∗∗ −0.8850∗∗∗ 0.1480∗∗∗ −0.8391∗∗∗

(0.0030) (0.0086) (0.0028) (0.0078)
Group size 4 0.1754∗∗∗ −1.3726∗∗∗ 0.1776∗∗∗ −1.3030∗∗∗

(0.0030) (0.0115) (0.0027) (0.0104)
Group size 5 0.1948∗∗∗ −1.8691∗∗∗ 0.1978∗∗∗ −1.7763∗∗∗

(0.0030) (0.0144) (0.0027) (0.0130)
Group size 6 0.2092∗∗∗ −2.3706∗∗∗ 0.2128∗∗∗ −2.2549∗∗∗

(0.0030) (0.0172) (0.0027) (0.0156)
Group size 7 0.2205∗∗∗ −2.8754∗∗∗ 0.2242∗∗∗ −2.7370∗∗∗

(0.0030) (0.0201) (0.0027) (0.0182)
Group size 8 0.2295∗∗∗ −3.3823∗∗∗ 0.2334∗∗∗ −3.2213∗∗∗

(0.0030) (0.0230) (0.0027) (0.0208)
Group size 9 0.2370∗∗∗ −3.8908∗∗∗ 0.2409∗∗∗ −3.7074∗∗∗

(0.0030) (0.0258) (0.0027) (0.0234)
Group size 10 0.2433∗∗∗ −4.4004∗∗∗ 0.2471∗∗∗ −4.1947∗∗∗

(0.0030) (0.0287) (0.0027) (0.0261)
Group size 11 0.2488∗∗∗ −4.9110∗∗∗ 0.2524∗∗∗ −4.6830∗∗∗

(0.0030) (0.0316) (0.0027) (0.0287)
Group size 12 0.2535∗∗∗ −5.4222∗∗∗ 0.2569∗∗∗ −5.1720∗∗∗

(0.0030) (0.0345) (0.0027) (0.0313)

Individual effects No Yes No Yes
Avg. ind. effect 0.5160 0.4935

Observations 194,813,700 194,813,700 194,813,700 194,813,700
R-squared 0.2119 0.2757 0.0502 0.1389

Standard errors in parentheses.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 6: Regression analysis of group performance on group size.

The effect of groups size is for both treatments similar in both model specifications. To

see this, first, notice that the values of the individual attributes (multiplied with the average

values presented in Table 1) added to the constant in models (1), approximately equals the

average individual effect presented in models (2); and, second, notice that the coefficients for

‘Group size k’ in model (1) are close to the coefficients of the same variable in model (2)
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after adding k − 1 times the average individual effect. Figure 8 presents the performance

as a function of groups size for the two treatments during the first end second half of the

experiment as they can be retrieved from the coefficients estimated in the regression.
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Figure 8: Group performance.

In both treatments we find that performance is increasing in group size at a decreasing

rate. Throughout the first half of the experiment the performance is (for all group sizes)

about 0.020 higher in the low volatility treatment while in the second half performance is (for

all group sizes) about 0.035 higher in the high volatility treatment. We believe that in the

first half the low volatility treatment benefits from individuals making better forecasts, while

in the second half the high volatility treatment benefits from more variation in individual

choices which may produce more structure in the aggregate distributions.

4 Conclusion

In this paper we propose and implement a non-market based mechanism to elicit forecasts

and to test it experimentally. In our experiment subjects have, incentivized by means of the

interval scoring rule, to forecast, over a sequence of twenty periods, the termination time of

a time series that is to be generated from a fixed but unknown random process by specifying

an interval where they believe the time series is going to terminate. We study the choices

individuals make in this environment, how these choices change over time in response to recent

experiences, how individual forecasting performance relates to the level of the underlying

uncertainty and individual attributes like cognitive ability, risk and gender, and the quality

of the performance of group predictions depending on the size and composition of the group.
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We find that individuals make better predictions in the low volatility treatment compared

to the high volatility treatment, and there is no indication that this is due to any of the

individual attributes. Over time individuals improve their forecasting performance in the low

volatility treatment, but fail to do so significantly in the high volatility treatment where they

learn to improve in the choice of location of the interval given the interval length, but fail

to choose the correct length. Although they seem to learn by experience in a way consistent

with Bayesian learning, subjects feel prone to the gambler’s fallacy. All in all, on basis of

individual choices, we can conclude that the nature of the uncertainty has a large impact on

individuals’ forecasts.

When aggregating forecasts over groups of individuals, we find that the group performance

is increasing in group size at a decreasing rate. While, for any given group size, group per-

formance is better in the low volatility treatment throughout the first half of the experiment,

aggregated forecasts are better in the high volatility treatment during the second half. This is

possibly due to there being less correlation in individual forecasting errors, which makes the

aggregate forecast resemble the underlying distribution better. Although we believe we may

conclude that the mechanism studied yields a quite good forecast already when aggregating

over few individuals, and provides evidence in favor of the use of non-market based forecasting

mechanisms, one systematic concern of this method is the underestimation of the tails of the

distribution – an issue that asks for further innovations in the design of elicitation methods.
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A Experimental instructions

Welcome

You are about to participate in a session on individual decision-making. Thank you for

agreeing to take part. The session should last 60 to 90 minutes.

You should already have turned off all your mobile phones, smart phones, mp3 players and

any such devices. If not, please do so immediately. These devices must remain switched off

throughout the session. Place them in your bag or on the floor besides you. Do not have

them in your pocket or on the table in front of you.

The entire session will take place through the computer. You are not allowed to talk or to

communicate with other participants in any other way during the session.

You are asked to abide by these rules throughout the session. Should you fail to do so,

we will have to exclude you from this (and future) session(s) and you will not receive any

compensation for this session.

We will start with a brief instruction period. Please read these instructions carefully. They

are identical for all participants in this session with whom you will interact. If you have any

questions about these instructions or at any other time during the experiment, then please

raise your hand. One of the experimenters will come to answer your question.

Compensation for participation in this session

In addition to the 3.00 Euro participation fee, what you will earn from this session will depend

on your decisions and chance. In the instructions and all decision tasks that follow, payoffs

are reported in Experimental Currency Units (ECUs). At the end of the experiment, the total

amount you have earned will be converted into Euros using the following conversion rate:

1 ECU = 6 Eurocents.

The payment takes place in cash at the end of the experiment. Your decisions in the experi-

ment will remain anonymous.

Instructions

This session consists of twenty rounds. Each round you are faced with two decision tasks and

the payoff (in ECU) that you collect depends on the decisions you make and chance. At the

end of the session you are paid according to eight random draws (with replacement) over the

payoffs you earned over the two tasks in the twenty rounds.8

8To elaborate, in total you make 40 decisions that lead to 40 payoffs. From these 40 payoffs, eight are
drawn for actual payment. These draws are taken with replacement, meaning that it is not excluded that the
same payoff is drawn multiple times, and for each participant individually.
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Before the first round starts, you will be shown the time series that results from some random

process. See the figure below for an example of such a time series.

The random process from which the time series has been generated is kept fixed during the

entire session, but every round a different time series will be generated using the same random

process. Each round you will see a new time series; so, you will get better acquainted with the

random process over rounds. Apart from the realized time series in the previous rounds and

the time series shown to you at the beginning (and the one in the figure above), no further

information will be given, except that the time series will start at a value of 0 at time t = 0.

Each round, before you see the time series that is generated for that round, you are faced

with two prediction tasks:

1. First, you are asked how likely you regard the event that the time series hits the boundary

(one of the thick horizontal lines in the figure above) before time t = 100. You can

express your expectation regarding this event by moving the triangular cursor along the

line. See the figure below.

The payoff that you earn with this decision task depends on the point you select along

the line and the generated time series. The potential payoffs in the event that the time

series hits the boundary before time t = 100 and in the event that it does not are shown

on-screen in real-time when you move the cursor along the line.

2. Second, conditionally on the time series hitting the boundary before time t = 100,

you are asked to indicate within which time interval you think the time series will hit
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the boundary. You can indicate this interval by moving two triangular cursors (one

indicating the lower bound of the interval; the other indicating the upper bound of the

interval) along the time line. See the figure below.

Only in the event that the time series hits the boundary within the indicated time

interval you collect a payoff. The smaller the interval that you indicated, the larger this

potential payoff is. This potential payoff is shown on-screen in real-time when you move

the cursors along the time line.

3. To avoid the unfortunate event that you confirm your decisions while not being com-

pletely confident these being the right decisions, you have to approve your decisions at

the bottom of the screen.

After having made your predictions, the time series generated for that round will be shown to

you. Furthermore, you are informed about the payoffs you collected. It is important to note

here that the time series is generated by a statistical software package and is not manipulated

for the purpose of this experiment. As all time series shown to you are generated from the same

random process, over rounds you will gradually become more familiar with the underlying

process.
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B Dynamics of beliefs and learning

In Subsection 3.2 we investigated how individual adjust their choices in response to recent

experiences. The reason that adjustments are expected is that subjects learn. One question

is what they learn. In Subsection 3.2 we more or less assumed that they learn to make better

choices. Though, it may well be that they form better beliefs and their choices are just a

reflection of that.

In this appendix we investigate how they adjust their beliefs. To do so, we assume that

subjects know that the time series involves a gradual increment of random draws from a

a normal distribution with zero mean and variance of some fixed σ. Next, we study their

adjustments in beliefs on σ. In order to be able to do so, we have to map their interval

choices to intervals of beliefs that are consistent with the chosen intervals. For this we use

the property of the interval scoring rule that in case a subject has a single-peaked belief

distribution, the stated interval should contain the mode of this distribution.

Panel (a) of Figure 9 shows the distribution over termination times for different values of

σ. We see that the distribution shifts leftwards if σ increases, and so does the mode of the

distribution. Panel (b) plots the relation between σ and the mode of the distribution. We use

this relation to map chosen intervals to intervals of beliefs over σ. For example, the σ-s that

are compatible with the interval [20, 60], are precisely the σ-s in the interval [0.196, 0.379].

After all, only σ-s in this interval produce a distribution of which the mode is in [20, 60].
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Figure 9: Relationship between volatility of process (sigma) and the implied distribution of
conditional termination times.

Table 7 shows a similar regression as presented in Table 3, but now on belief intervals
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rather than choice intervals.9 The findings are quite similar. Consistently with the findings

reported earlier, subjects tend to adjust their intervals in conformation with Bayesian learning

when the time series terminated below or above the stated interval and are prone to the

gambler’s fallacy when the time series did not terminate.10 The main difference are that

some effects that were significant are no longer significant while some effects that were not

significant before turn out to be significant now. These changes in significance may be due

to the nonlinear relation between the σ-s and the mode.

Low volatility High volatility

lower bound upper bound lower bound upper bound

Constant −0.0460∗ −0.0045 −0.0498 −0.0025
(0.0231) (0.0043) (0.0659) (0.0039)

Below (t− 1) 0.1212∗∗ 0.0061 0.1333∗∗∗ 0.0126∗∗∗

(0.0541) (0.0077) (0.0467) (0.0043)
Above (t− 1) −0.0670 −0.0385 0.0023 −0.0101∗∗

(0.1711) (0.0403) (0.0779) (0.0046)
No hit (t− 1) 0.0858∗ 0.0023 0.2117∗∗ 0.0097∗∗

(0.0494) (0.0040) (0.0915) (0.0038)
Gender −0.0192 −0.0012 −0.0368 0.0001

(0.0114) (0.0009) (0.0218) (0.0010)
Risk attitude 0.0011 −0.0001 0.0082∗ 0.0001

(0.0016) (0.0002) (0.0046) (0.0002)
Cognitive ability −0.0007 0.0001 −0.0020 −0.0000

(0.0008) (0.0001) (0.0015) (0.0001)

Observations 456 456 456 456
R-squared 0.0292 0.0227 0.0391 0.0477

Standard errors clustered on the individual level in parentheses.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table 7: Belief updating depending on the realization in the previous period.

9A similar regression with a time dummy to assess the persistence of adjustment behavior is presented in
Table 8.

10Realize here that the lower (upper) bound on choices map to the upper (lower) bound on beliefs.
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