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Abstract

We propose a diffusion model for a new product percolating in a social network.
Given that consumers differ in their reservation prices, a critical price exists that
defines a phase transition from a no-diffusion to a diffusion regime. As consumer
surplus is maximized just below a product’s critical price, one can systematically
compare the economic efficiency of network structures by investigating their critical
price. Networks with low clustering turn out to be most efficient, because clus-
tering leads to redundant information flows hampering effective product diffusion.
We further show that the more equal a society, the less diffusion is hampered by
clustering.

1 Introduction

The success of innovations largely depends on the diffusion process (Griliches, 1957; Mans-

field, 1961; Bass, 1969; Davies, 1979). The question how innovations diffuse is among the
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core questions in economics, sociology, marketing, innovation studies, and even physics

(Stoneman, 2001; Rogers, 2003; Valente, 2005; Vega-Redondo, 2007). The role of social

networks in innovation diffusion has become a key question since innovations generally

diffuse through patterns of social interactions (Banerjee et al., 1999). Hence, the structure

of social networks in societies may bear important consequences for the rate of technolog-

ical progress and economic growth (Fogli and Veldkamp, 2014). Our work builds on these

questions by analysing the welfare effects of social networks in new product diffusion.

Though innovations have complex effects on consumers’ welfare, the speed and extent

of diffusion are arguably the two aspects of the diffusion process that are both universal

and fundamental. If one assumes that any consumer adopting an innovation is improving

its welfare, both a faster diffusion and a mode widespread diffusion automatically imply

higher returns to society. The key question becomes how different network structures

impact on the speed and extent of innovation diffusion.

Starting from the generic assumption that consumers differ in their reservation prices,

we show that the network structures supporting the speed of diffusion are not necessarily

those that lead to a greater extent of diffusion and vice versa. In particular, we show that

small-world networks, which exhibit short path lengths and high clustering (Watts and

Strogatz, 1998), lead to fast but often only limited diffusion compared to fully random

networks, which exhibit short path lengths and low clustering. The reason for limited

diffusion in small-world networks is the redundancy in information spreading due to clus-

tering. Accordingly, consumer welfare is much lower in small-world networks than in

random networks for a wide ranges of prices.

Our main contributions are threefold. First, we translate standard percolation the-

ory as it has already been applied to innovation diffusion before (Solomon et al., 2000;

Hohnisch et al., 2008; Cantono and Silverberg, 2009), into an explicit welfare-theoretical

framework in which the inefficiency of networks can be expressed by the unfulfilled con-

sumer surplus. We can then derive that network efficiency is equivalent to the critical

price below which diffusion becomes complete. Second, we show that for a standard lin-

ear demand curve with uniformly distributed reservation prices, the inefficiency of social

networks is a function of its clustering: the higher the degree of clustering in a network

(“friends-of-friends-being-friends”, the less efficient a social network in diffusing an inno-

vation. This finding is important as it runs counter the common belief that small-world
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networks, which combine high clustering with short path lengths, are supportive of eco-

nomic welfare [REF’s??]. Third, the detrimental welfare effects of clustering, in turn,

decline for lower levels variance in consumers’ preference distribution. As consumers’

preferences become more alike, so does the critical price below which full diffusion occurs,

for different network topologies.

The remainder of the article is organised as follows. Section 2 studies the effects of

percolation on innovation diffusion. Section 3 looks at percolation in small-world networks.

Section 4 analyses the structural factors of diffusion. Section 6 addresses alternative

demand curves, with a non-uniform distribution of consumers’ reservation prices. Section

7 studies percolation in scale-free networks. Section 8 concludes.

2 Percolation and demand

Consider a new product and a network of N potential consumers, where i and j are

neighbours if there is a link ηi,j connecting them. Links are either existing (ηi,j = 1) or

absent (ηi,j = 0), and do not depend on time. The diffusion process starts exogenously

with a small number n << N of initial adopters of the new product (seeds). Information

about the innovative product is local: consumers who are not among the initial adopters,

come to know about the new product only if a neighbour adopts.

The adoption decision is based on the product’s price p, which is defined in the interval

[0, 1], and which is assigned before diffusion starts. Consumers’ preferences are expressed

by a reservation price pi ∼ U [0, 1]: only consumers with pi > p are willing-to buy (Fig.

1, central panel). A consumer who does not adopt does not pass on information to

her neighbours, while a consumer who adopts passes on information to her neighbours.

Hence, the network that truly matters for diffusion is the one that results from individual

reservation prices. Drawing consumers reservation prices amounts to randomly switching

‘off’ nodes and their links (Fig. 1, right panel). The resulting network of active nodes is

called the operational network. Diffusion will have a sizeable extent only if a large (‘giant’)

connected component exists in the operational network and at least one seed is part of

this giant component.

What is important to notice is that drawing reservation price has a highly non-linear

effect on diffusion. In the example of Fig. 1 we have 30 consumers, and all but one happen
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Figure 1: Percolation in a network of consumers considering whether to buy an innovative product with price

p ∈ [0, 1]. Left: original network. Centre: after drawing reservation prices pi ∼ U [0, 1], only consumers with pi > p

are willing-to-buy (white nodes), while the others are not (filled nodes). Right: consumers that are not willing to

buy are removed from the networks, and their links are removed as well. The resulting giant connected component

is enlightened with the dashed line.

to be connected initially (Fig. 1, left panel). An innovation price p = 0.5 means that on

average 50% of consumers are willing-to buy, that is 15 consumers. The unwilling-to-buy

consumers are “removed”, and the resulting network is made of a number of connected

components, the largest being formed by only eight consumers. In the best case, when we

have an initial adopter who belongs to this component, diffusion size will be eight, which

is just over half the potential diffusion size of 15 willing-to-buy consumers.

If all consumers are directly linked in a fully connected network (meaning that all

consumers have N−1 neighbours), all consumers are immediately informed once any seed

adopts, and diffusion will always attain its maximum possible size. Assuming a uniform

distribution of consumers’ reservation prices, we obtain the standard downward-sloping

linear demand curve. When p is the price of the innovative product, the probability that a

consumer is willing-to-buy is q = 1− p, and the expected number of adopters is N(1− p).

It is the local nature of information diffusion in social networks that makes the ac-

tual adoption curve to depart from the standard linear demand curve. In particular, a

sparse network structure introduces a phase transition, leaving many potential adopters

uninformed at high prices. We illustrate this point by simulating the percolation model

for the case where 10,000 consumers form a Poisson random network (Erdös and Rényi,

1960). The left panel of Fig. 2 reports the final number of adopters for different values of

the innovation price. The percolation process is initiated by 10 seeds (n = 10).1 At low

1The exact diffusion size depends on the number of seeds, but the critical transition threshold does

not. Simulations with 100 seeds yield the same patterns. Simulations with less than 10 seeds are less

informative, since the variability of results is too large, with a standard deviation near 100%. The reason
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Figure 2: Percolation in a Poisson network with N = 10000 nodes, average connectivity 4, and 10 seeds. Left:

number of adopters as a function of the products price. Left: adoption values reported as a demand curve. Values

are averages over 50 simulation runs. The standard deviation is largest at the percolation threshold (25%).

prices, the number of adopters follows the linear demand curve reflecting the uniform dis-

tribution of reservation prices. This amounts to full diffusion of the innovation, meaning

that all consumers with a reservation price equal or above the products price, actually

adopt the product. However, already at values as low as p = 0.4 the diffusion size starts

to be lower than the number of consumers willing to adopt, and drops down to almost

zero above p = 0.7. In these scenarios diffusion is not full, because the information of the

product’s existence does not spread in the network. Put differently, the operational net-

work is fragmented in many small components of consumers, without any links between

these components. As we increase the price, an ever increasing share of consumers that

would be willing-to-buy the innovation based on its price, do not actually buy it, because

they do never get to know about its existence (Solomon et al., 2000).

We can distinguish between two different regimes: a diffusion regime, where informa-

tion spreads throughout the whole operational network, and diffusion is full or almost-full.

A no-diffusion regime, where information does not spread, and diffusion is very limited

leaving many potential buyers uninformed. By lowering the price, the consumers’ network

undergoes what in physics is called a percolation phase transition (Stauffer and Aharony,

1994). A critical threshold value of the price, pc, separates the two regimes (phases). This

is the value that marks a fundamental change in the structure of the system, namely the

value below which we see the appearance of a giant connected component of consumers

is that if no seeds fall in the giant connected component, no macroscopic diffusion takes place.
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that are willing-to-buy (see Fig. 1). The size of the giant component is highly non-linear,

with a sharp increase in size below the critical price pc (the percolation threshold).

The percolation threshold is a mathematical property of a network, which can be

computed, at least numerically. A powerful approach is based on Generating Functions,

introduced by Newman et al. (2001) for the analysis of several characteristics of random

networks. Callaway et al. (2000) apply this formalism to percolation. The case of a

Poisson network allows to evaluate analytically the percolation threshold. In the price

space dimension of innovation diffusion, and for a network of infinite size, the percolation

threshold is given by

pc =
〈k〉 − 2

〈k〉 − 1
, (1)

where k refers to the connectivity of nodes. In the example of Fig. 2 the average connec-

tivity is 〈k〉 = 4, so the percolation threshold is pc ' 0.67.

The effects of social networks can be expressed in welfare-theoretical terms. Network

inefficiency stems from “lost” consumers, that is, consumers who would have been willing

to buy, but who are not informed by any neighbour about the product. That is, for rela-

tively expensive products, a social network may not be able to convey to all its members

about the product’s existence, and consequently not all consumers that would like to buy

the product will buy it, because they do not get informed. The group of consumers who,

at price p, are willing to buy but who do not adopt, we will refer to as lost consumers. By

definition, a lost consumer has a reservation price in the range between 1 and p. Hence,

given the uniform distribution of reservation prices, the expected loss in consumer sur-

plus of a lost consumer amounts to (1−p)/2. Accordingly, in the no-diffusion regime, the

welfare loss amounts to N(1− p) lost consumers who miss out, on average, on (1− p)/2

surplus, amounting to
1

2
N(1− p)2 for p > pc. (2)

Hence, for a given society with N members, the welfare loss due to network inefficiency

is solely a function of the price. This implies that, in the following analysis of network

inefficiencies, we can proceed by solely focusing on the critical price that separates the

diffusion regime from the no-diffusion regime. That is, we can express the inefficiency of

different network topologies by the critical price below which full diffusion occurs. The

lower this critical price, the less efficient is the network in question.
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3 Innovation diffusion in a small-world network

One of the most popular models of social networks is the small-world model introduced

by Watts and Strogatz (1998). Several empirical studies have identified small-world prop-

erties in real world social and physical networks,2 with possibly the most notorious one

being the six degrees of separation: it takes on average six steps to reach any individ-

ual in the world [MAYBE HERE WE CITE MILGROM’s EXPERIMENT]. This fact is

actually a manifestation of a well defined mathematical property, which is a relatively

short average path-length. The small-world network model is constructed starting with a

regular one-dimensional lattice, and introducing a rewiring probability µ based on which

any link can be re-wired. Fig. 3 shows examples with N = 50 nodes and degree 4 (the

total number of links is 4 × 50/2 = 100). In the middle panel there is a small-world

network where eleven links have been rewired (the rewiring probability was µ = 0.1). The

Figure 3: small-worlds construction process: example with 50 nodes and degree 4. Left: regular lattice (µ = 0).

Centre: small-world with µ = 0.1. Right: Poisson network (µ = 1).

limit case µ = 1 is a network where all links have been rewired (Fig. 3, right panel), a

procedure that leads to a fully random Poisson network of the type introduced by Erdös

and Rényi (1960). In this network the connectivity of nodes follows a Poisson distribution.

Also Poisson networks are characterized by a relatively short average path-length with

respect to other network structures and in particular with respect to the starting regular

lattice of Fig. 3, left panel. What makes small-world networks interesting is that they

have a short average path-length, comparable with the one of a Poisson network, while

preserving another character of the original lattice, which is a high level of clustering.

The clustering coefficient measures the relative number of triplets out of all possible

2A review of studies on the statistical properties of real-world networks is Albert and Barabasi (2002).
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triplets in a network (Wasserman and Faust, 1994). This fraction is particularly large in

the regular lattice, where each node has two neighbours on each side, while it is almost zero

in the Poisson network. By rewiring links at random, the average path-length drops sud-

denly for small values of the rewiring probability, while the clustering coefficient remains

practically unaltered until one rewires a large portion of links. The typical small-world

of Watts and Strogatz (1998) is obtained with as few as 1% of links rewired. Its average

path-length is almost the same of a Poisson network, but the clustering coefficient is very

large and comparable to the original regular lattice. It is important to notice that while

the rewiring process strongly affects the degree distribution, the average degree remains

unchanged, since the numbers of nodes and links are fixed.3

We have simulated percolation in a number of different small-world networks, namely

for µ = 0.001, µ = 0.01 and µ = 0.1. Fig. 4 reports the results in terms of the final number

of adopters as average values over 20 different simulation runs. We observe that a Poisson
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Figure 4: Percolation in different small-world networks: final diffusion size (number of adopters) with 10 initial

adopters. Values are averages over 20 runs. Standard deviation is larger at the threshold, and largest for the Poisson

network (about 40%). All networks have 10000 nodes (consumers) and an average degree 4.

network represents the best scenario, with largest diffusion size at every price value. The

percolation threshold in a small-world is much lower than in a Poisson network, and the

non-diffusion regime is much larger. Hence, a much lower price is required for innovation

3The degree distribution of a Poisson random network is p(k) = 1
ke

−zzk, where k is the degree, and

the parameter z is the average degree. Each possible link has a probability q such that, given the total

number of nodes N , the average degree z = qN is constant (Vega-Redondo, 2007).
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to spread in a small-world network compared to a Poisson network. For a typical small-

world with µ = 0.01, the price threshold is between 0.2 and 0.3. In the limit case of a

regular one-dimensional lattice, the critical price is lowest, between 0.1 and 0.2. The key

conclusion here is that small-world networks are highly inefficient compared to Poisson

random networks in percolating a new product over a social network of consumers.

The percolation threshold is defined as the critical value of nodes’ activation probabil-

ity where a phase transition occurs in the size of connected components of active nodes,

the so-called percolating cluster. Newman and Watts (1999) show how to evaluate implic-

itly the percolation threshold of small-world networks of infinite size. In the price space,

the critical value pc satisfies the following equation:

p2
c = 4µ(1− pc), (3)

where µ is the rewiring probability.4 In Table 1 we report the values obtained for the

small-world networks of Fig. 4. The simulation results of Fig. 4 would present a sharp

µ = 0 µ = 0.001 µ = 0.01 µ = 0.1 µ = 1

pc 0 0.06 0.18 0.46 0.67

lost consumers 100% 94% 82% 54% 33%

Table 1: Critical price pc and inefficiency in small-world networks with different rewiring probability µ. These are

theoretical values from Eq. (3), apart from the Poisson network (µ = 1), whose value is from Eq. (1)).

discontinuity at these values in the case of an infinite network. At the threshold pc the

inefficiency from lost demand reaches its maximum level. Such inefficiency is more severe

the lower the rewiring probability µ (Table 1). For the typical small-world with µ = 0.01,

no less than 82 percent of willing-to-buy consumers are lost, because they never get to

know about the existence of the new product.

The two extreme limits represented by the regular lattice network and the Poisson

random network can be given a societal interpretation. A regular network reflects a

4Eq. (3) is Equation (30) of Newman and Watts (1999), and holds in the limit µ << 1. In particular

it does not hold for the Poisson network (µ = 1). The critical price for the Poisson Network is given by

Eq. (1). The results in Newman and Watts (1999) are obtained with a slightly different model, where

links are randomly added (not rewired). This modification of the Watts and Strogatz (1998) model is

necessary to avoid that one node remains unconnected with positive probability, giving an infinite average

path-length. The two models converge as µ→ 0.
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society that is “collectivist”, with all nodes having the exact same degree, and with a

high clustering coefficient indicative of social cohesion. The fully random network instead

corresponds to an “individualistic” society, with some nodes having higher degree than

others, and with a low clustering indicative of a lack of cohesion, but short distances. Real

social networks may be closer to one or the other limit of the model (which makes the

small-world model so relevant), depending of the specific case considered. For instance,

less developed countries are considered to be characterized by a collectivist society, while

individualistic societies are typical of industrialized countries (Fogli and Veldkamp, 2014).

4 Scaling patterns of percolation in small-worlds

To some, the low level of network efficiency of small worlds may come as a surprise.

Indeed, small worlds are generally considered very good diffusion vehicles, given their

short path lengths. However, such an assessment is based on the speed of diffusion, and

not on the extent of diffusion. Only in the unlikely case that everyone has a maximum

reservation price, the operational network would coincide with the social network itself,

and full diffusion would always be realised. In such instances, the speed of diffusion

remains the sole relevant performance criterion.

Following the standard downward-sloping demand curve, we instead assume random

reservation prices, in particular, uniformly distributed prices. In such instances, we can

express network efficiency as the critical price below which full diffusion occurs. In this

context, as reported by Figure 4, we observe a relatively low improvement of diffusion size

when comparing a regular network to a small-world network. The typical small-world with

rewiring probability µ = 0.01 (low average path length and high clustering coefficient) has

a critical price which is only marginally larger than the regular network. Only for larger

values of the rewiring probability, leading to lower levels of clustering, we find networks

becoming more efficient. We thus claim that whenever diffusion is driven by a percolation

mechanism, the important factor is a low clustering coefficient, not a short average path-

length. We see in Figure 4 that for price values where there is sizable diffusion in a Poisson

random network, small-world networks present a much smaller diffusion size. The latter

is correlated with the ‘absence’ of clustering (Watts and Strogatz, 1998), and not at all

with the average path length.
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The key factor in percolation concerns “spreading”, that is, low clustering turns into

a topological “spreading” of the network, where the number of neighbours increases with

distance. In a random network the number zr of neighbours at distance r is given by

(Newman et al., 2001)

zr =

[
z2

z1

]r−1

z1. (4)

Connectivity spreads whenever the second order neighbours are in larger number than

direct neighbours, z2 > z1. In general the number of second order neighbours depends

on the variance of the connectivity k, z2 = 〈k2〉 − 〈k〉 (Vega-Redondo, 2007). Then

connectivity spreads in a network whenever 〈k2〉 > 〈k〉. For Poisson networks 〈k2〉 = 〈k〉2,

so this condition simplifies to 〈k〉 > 1. Considering that in a Poisson network z2
z1

= 〈k〉,

and the expected number of neighbours at distance r is 〈k〉r. In our model of innovation

diffusion we set the average connectivity to 〈k〉 = 4, and we obtain the following value for

the expected number of neighbours at distance r in a Poisson network:

zPoissonr = 4r. (5)

This is to be compared with the regular one-dimensional lattice. Here the connectivity is

constant, k = 4, and also at distance r we have:

zCircler = 4. (6)

small-world networks present non-trivial scaling properties for connectivity, and different

regimes within the bounds represented by Eq. (5) and Eq. (6). Newman and Watts

(1999) find two regimes.5 For a given density of rewired links µ, when two nodes are

close to each other on the circular reference system, their average distance scales linearly

with their relative coordinate and with the network size. When they are far apart and

for large networks, their average distance scales logarithmically. These two regimes are

separated by a characteristic distance ξ = 1
2µ

, which is defined as the typical distance on

the circular reference system between the two ends of a short-cut (rewired link).6 Below

5As already pointed out in Section 3, we use analytical results obtained for the slightly different

small-world model where links are randomly added and not-rewired. The reason is purely technical,

since rewiring can lead to an infinite average path-length with positive probability, and for low values of

rewiring probability µ (the range of interest) the two models coincide.
6For the expression of the characteristic distance ξ and for the expression of the surface A(r), we

adapt equation (9) of Newman and Watts (1999) to our model setting, where the original lattice has a

connectivity range equal to 2, that is two neighbours on either sides.
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ξ the network presents characteristics close to the regular lattice, and above ξ it is close

to the Poisson network. The average number of neighbours at distance r is given by the

‘surface’ A(r), which is defined as the number of nodes at distance r from any given node.

Adapting the computation of Newman and Watts (1999) to our model setting, we find

that in a small-world this number is given by A(r) = 4e8µr. The exponential scaling of

the surface holds when the distance is comparable with the characteristic distance ξ. At

short distances r << ξ, the surface scales linearly. Resuming, we can express the number

of neighbours at distance r in a small-world as follows:

zSWr =

4(1 + 4r/ξ) if r << ξ,

4e4r/ξ if r >> ξ.

(7)

When µ << 1, as in a typical small-world, the regime r << ξ is much more important. For

instance, with µ = 1% the characteristic distance is ξ = 50. This means that neighbours

of orders up to r = 50 scale only linearly, and very slowly (since the proportionality

coefficient is µ). This regime is the one that counts when diffusion works as percolation.

Small values of r are crucial, because the surface A(r) at short distances is more affected

by inactive nodes (those for which pi < p) than at long distances. Inactive nodes are

uniformly distributed, and while at long distances information can easily find a way

through the surface, at short distances it may stop easily after a few steps. Only when

the rewiring probability is large the surface enlarges fast enough to overcome this hurdle,

because the characteristic distance of the small-world is much reduced. For instance,

when µ = 0.5 the surface starts to scale up exponentially already after ξ = 2 steps.

The volume zr is a measure of accessibility of a network, that is ‘how many’ nodes

can be reached from a given node after r steps. We evaluate the average accessibility

for different networks. Fig. 5 shows how zr scales with the rewiring probability µ at

different distances r. The scaling pattern of accessibility correlates perfectly with the

absence of clustering (Watts and Strogatz, 1998). The right panel of Fig. 5 shows that in

small-world networks accessibility scales linearly, at least for the first steps r, while in a

Poisson network it scales exponentially, in agreement with Eq. (7). In a small-world with

µ = 0.1 we have ξ = 5, and already after five first steps we exit the linear scaling regime.

For a small-world with µ = 0.01 the characteristic distance is ξ = 50, and we have linear

scaling as long as r < ξ/4 = 12.5. In the case of a small-world with rewiring probability

µ = 0.001, we have ξ = 500, and a linear scaling regime endures for more than 100 steps.

12



0

100

200

300

400

500

600

700

800

0.001 0.01 0.1 1

av
er

ag
e 

ac
ce

ss
ib

ili
ty

m�

r = 1

r = 2

r = 3

r = 4

r = 5

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5

av
er

ag
e 

ac
ce

ss
ib

ili
ty

r

circle
SW 0.001
SW 0.01
SW 0.1
Poisson

Figure 5: Average accessibility of nodes in small-world networks (N = 10000 nodes, average connectivity 4). Left:

nodes accessibility as a function of the rewiring probability µ (horizontal axis, logarithmic scale), for different distance

values r. Right: nodes accessibility as a function of distance r, for different small-world networks.

In order to understand the effect of the rewiring mechanism on percolation, consider

a regular lattice with connectivity 4, and see how the number of neighbours at a given

distance r (the surface of radius r) changes for a node with a rewired link. Before rewiring,

the node has four r-order neighbour. If one link is rewired, one of these four neighbours

is lost, and four new r-order neighbours are found. In Figure 6 we give the example with

r = 2. Assuming that in r steps we do not find another rewired link, the surface of radius

Figure 6: Surface of radius r = 2 centered on a node with a rewired link. The surface is made of 4 nodes before

rewiring, and 7 nodes after.

r increases from four to seven. In case of a mechanism of random links addition instead

of rewiring, the surface increases by a factor 2, from four to eight. However, in both cases

only the surfaces of the (few) nodes with rewired links increase, which are µkN
2

. The
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surface of other nodes is unaffected.

In Table 2 we report the value of the surface of a relatively small radius, r << ξ, in the

case of a small-world with average connectivity k. We consider nodes interested by the

rewiring of a link and ‘normal’ nodes, and we compare these measures with the slightly

different small-world model where links are added, instead of rewired. We then compute

the average value of the surface, based on the probability µ that a link is rewired, and

also give the value of the volume of the sphere of radius r, which is simply the ‘integral’

of the surface and which counts the number of nodes at distance equal or smaller than

r from a given node. We consider first the case of links rewiring. In a small-world with

rewiring adding

r-surface for “normal” nodes k k

r-surface for “affected” nodes 2k − 1 2k

average r-surface for any node k(1 + µ)− 2
k
µ k(1− µ)

average r-volume for any node r[k(1 + µ)− 2
k
µ] rk(1− µ)

Table 2: Number of neighbours at distance r (surface) and within distance r for nodes interested (affected) or non

interested (normal) by the random rewiring or addition mechanism in a small-world with connectivity k and link

rewiring or addition probability µ (assuming r << ξ = 1
2µ

).

initial connectivity k, the surface of radius r for a node with a rewired link depends on

which of its k links has been rewired. If this is a link covering a distance smaller than

the range ρ = k
2

the surface of radius r < ρ is unaffected (one reachable node is lost,

one is gained). But if the rewired link was covering a distance equal to the range ρ, the

surface changes from k to 2k − 1. Since there are 2
k

of such ‘long range’ links for a node

with connectivity k, on average the surface of radius r changes with rewiring from k to

2k − 2
k
. Considering that only a fraction µ of links are rewired, the surface of radius r of

an average node is r[(1− µ)k + µ(2k − 2
k
)] = k(1 + µ)− 2

k
µ. In the case of a small-world

model with link addition these measures are way more simple, as reported in Table 2.

In a small-world, being µ << 1, the average surface of radius r << ξ is k, both for

the ‘rewiring’ and the ‘adding’ links small-world model. The surface is almost constant

in r, and connectivity does not ‘spread’, as it does in the Poisson network. In terms of

accessibility, expressed by the volumes of radius r, a small-world is not different from

the initial one-dimensional regular lattice, unless the rewiring probability µ is large. To
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conclude, since percolation is primarily driven by the average accessibility of the network,

and given that accessibility of the first few steps is primarily important, due to shut-down

nodes, the diffusion size in a small-world is not substantially larger than in the original

one-dimensional lattice. Short-cuts do not add substantially to the diffusion size, which

remains limited by the low dimensionality of the original lattice.

5 Diffusion time

So far we have been concerned with the size of the diffusion process. Another important

aspect of innovation diffusion is the diffusion time. With this we mean the time it takes for

the diffusion process to stop. This is the time required to cover all connected components

of the operational network that contain a seed. Figure 7 reports the diffusion time for

different innovation prices obtained for the simulations already analysed in Figure 4.

These results present the typical pattern of second order phase transitions, with a time
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Figure 7: Diffusion time (steps) for percolation in small-world networks with 10000 nodes (consumers) and average

degree 4. Values are averages over 20 runs. The standard deviation is larger at the percolation threshold (30%).

peak at the percolation threshold. The latter is an unambiguous way to locate the critical

price p = pc of the transition between the diffusion and no-diffusion regimes. The positions

of the peaks, 0.05, 0.2, 0.45 and 0.65, are in agreement with the theoretical values of Table

1. The diffusion time at p = 0 and p = pc from the simulations of Figure 7 are reported in

Table 3. The critical price p = pc is a “worst condition” for diffusion time, where only one

path connects several nodes in the network. Above the critical price, diffusion stops very
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diffusion time µ = 0 µ = 0.001 µ = 0.01 µ = 0.1 µ = 1

p = 0 693 328 73 16 9

p = pc 693 401 165 65 46

Table 3: Diffusion time at p = 0 and at the percolation threshold p = pc for different networks with 10000 consumers

and average degree 4. µ is the rewiring probability. Values are averages over 20 simulation runs.

quickly. On the contrary, p = 0 is a “best condition”, where all the network is accessible

(apart from unconnected components without a seed).

The regular lattice reports the longest diffusion time, as expected, and p = 0 is exactly

the percolation threshold. The rewiring mechanism reduces distances in the network, and

drives down the diffusion time both at p = 0 and at the threshold. The important aspect

to consider here is how the diffusion time scales with rewiring. There are clearly two

regimes: for small rewiring probabilities, below µ = 0.01, the diffusion time scales down

fast. Near µ = 0.01, the diffusion time is already relatively short, and further reductions

from increasing the rewiring probability are negligible. In Fig. 8 (left panel) we plot

the diffusion time values of Table 3 together with the inefficiency measure of Table 1.

The two patterns contrast remarkably with each other: the network inefficiency decreases
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Figure 8: Left: Diffusion time (primary axis) and diffusion inefficiency (secondary axis) for percolation in small-

world networks with different rewiring probability µ (horizontal axis). Values are from the simulations of Fig. 7.

Inefficiency is computed as (1 − pc)%. Right: Clustering coefficient (squares) and average path-length (dots) in

small-worlds from Watts and Strogatz (1998). Values are normalised to the case of the regular lattice (µ = 0).

little below µ = 0.01, and drops fast beyond this value. Such different scaling patterns

mean that diffusion size and diffusion time are driven by different network factors. Fig. 8

compares percolation results to structural properties of small-worlds networks such as the

clustering coefficient and the average distance between nodes (Watts and Strogatz, 1998).

The similarity between the two sets of measures is evident. While diffusion inefficiency
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(a negative measure of diffusion size) correlates with clustering, diffusion time correlates

with average path-length. For low values of µ the average path-length decreases linearly

as l
N

= 1
4
− 1

2
µN + O(µ2). When µ = 0 we have the average path-length of a circle

l = N/4, while for large values of µ the approximation above does not hold anymore, and

we have l ' logN instead, as in a Poisson network.

The diffusion time at p = 0 and p = pc are linked to different network properties. At

p = 0 the diffusion time scales with rewiring faster than diffusion time at p = pc (Table 3).

At p = 0 the operational network coincides with the full network, and many alternative

paths are available to reach any node starting from the seeds of the percolation process.

The diffusion time at p = 0 depends on the shortest one, and the lower the average path

length, the shortest the diffusion time. At the percolation threshold a different scenario

realizes. The connected operational component is relatively large, but very often only one

path connects distant parts of this network. The diameter of the giant component closely

relates to diffusion time in this case, since it is the distance between the two nodes most

far away.

6 Alternative demand curves

So far we have used a uniform distribution of reservation prices pi ∼ U [0, 1] across con-

sumers (nodes). Given the innovation price p ∈ [0, 1], the uniform distribution gives a

linear “prior” or “potential” demand D(p) = 1−p. In case of full information, the fraction

1− p of consumers adopt the innovation, on average.

In general, for a distribution f [0, 1] of reservation price values, the demand with full

information is D(p) = N × Prob(adoption), where

Prob(adoption) = Prob[pi > p] (8)

= 1− Prob[pi < p]

= 1−
∫ p

0

f(x)dx = 1− F (p).

F (p) is the cumulative distribution function, so that D(p) = N [1− F (p)]. In this section

we study percolation with non-uniform distributions of reservation prices. In particular,

we want to understand how the percolation mechanism depends on the potential demand.

Let us consider a Beta distribution of reservation price values, for which the probability
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density function reads as follows:

f(p;α, β) =
1

B(α, β)
pα−1(1− p)β−1, p ∈ [0, 1]. (9)

The factor 1
B(α,β)

is a constant, defined by B(α, β) =
∫ 1

0
tα−1(1 − t)β−1. The parameters

α and β control the probability distribution, whose density function can be increasing,

decreasing or non-monotonic. Accordingly, the cumulative distribution function F (p) and

the resulting demand curve can be convex, concave or S-shaped (Figure 9).

We run batch simulations with different demand curves for three different network

structures, namely the regular one-dimensional lattice, a small-world with rewiring prob-

ability µ = 0.01 and a Poisson random network. We first consider four cases with different

mean value of the individual reservation price. The results reported in Fig. 9 clearly show

how the potential demand curve (i.e. the distribution of reservation prices) matters for

innovation diffusion in a network of consumers. For a given network structure, different
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Figure 9: Percolation with alternative demand curves: Beta distribution of reservation prices pi. Cases with different

mean. Top: probability density function. Middle: diffusion size (averages over 20 simulation runs. The standard

deviation is larger at the threshold, and increases as the distribution moves to the right, being 50% for α = 3,

β = 1). The dashed line is the demand in a fully connected network, D(p) = N(1 − F (p)), with F the cumulative

distribution of Eq. 8. Bottom diffusion time (averages over 20 simulation runs. The standard deviation is larger at

the threshold, and ranges from 25% to 30%). The networks are a one-dimensional regular lattice, a small-world with

rewiring probability µ = 0.01, and a Poisson network, with 10000 nodes and (average) connectivity 4.

demand curves lead to different percolation thresholds. Consider for instance a Poisson
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network. This one has a percolation threshold pc ' 0.67 with linear demand (Section 2,

Eq. 1 and Figure 2). If we use a decreasing probability density function and the resulting

convex demand of the example in the left panel of Figure 9 (case α = 1, β = 3), we

obtain a much smaller diffusion regime, with a percolation threshold between p = 0.3

and 0.4. An increasing distribution of reservation prices, with a concave demand (right

panels of Figure 9) leads to a larger diffusion regime, instead, with a percolation thresh-

old near to p = 0.9. Non-monotone probability distributions (middle panels of Figure

9) give a S-shaped potential demand, with a concave and a convex region. When con-

sumers are embedded in a network and innovation diffuses as a percolation process, the

larger the mode of the distribution, the larger the percolation threshold and the smaller

the inefficiency effect of lost demand due to information transmission (Section 2). The

considerations above hold also for the the regular lattice and the small-world: whenever

the probability distribution of reservation prices puts more weight on lower values, the

percolation threshold decreases, and the diffusion regime shrinks.

The information inefficiency and the loss in demand of a percolation process strongly

depend on the reservation price distribution, and for a given distribution they depend on

the consumer network structure. For the Poisson network, the more a distribution puts

weight on large values of reservation prices, the smaller the inefficiency effect, and the less

demand is lost (Figure 9, right panel). The more weight on low reservation price values,

and the less efficient the diffusion process, instead, with a larger loss of demand (Figure

9, left panel). For the regular lattice, the opposite is true: when there is more weight

on larger reservation prices, the realized demand increases, with a larger threshold, but

not as much as for the Poisson network, and the difference with the potential demand is

amplified. The reason is as follows: a larger mass of consumers with low reservation price

produces many bottlenecks in the network, which reduce information efficiency and lead

to a low diffusion regime (Section 2). A larger mass of consumers with high reservation

prices enlarges the connected component of the operational network. This effect is much

stronger the higher the dimensionality of the network, when redundant links are rewired

and used to open alternative routes that spread from the seeds of the diffusion process.

The percolation threshold gives an absolute measure of diffusion: the “fatter” the

potential demand is, the larger the diffusion regime. The loss in demand is a relative

measure instead, which tells about the efficiency of the network structure. When the
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potential demand gets “fatter” the Poisson network experiences a smaller loss of demand.

However, inefficient network structures such as the circle or the small-world are less able to

exploit this more favourable distribution of reservation price. If we think of the reservation

price as a manifestation of consumers’ income, this means that in a more rich society the

diffusion inefficiency due to the network structure are amplified.

The diffusion time is not affected by changes in the distribution of reservation prices,

apart from the shift of the threshold peak (Fig. 9, bottom panels). Both at p = 0 and

p = pc the diffusion time does not change much for different distributions. The results

for the one-dimensional lattice are interesting. The percolation threshold shifts to the

right with distributions that have more probability mass at larger values of price, but a

peak for the diffusion time is missing: the diffusion time remains long also well below

the threshold. The reason is that in a one-dimensional lattice there are only at most

four alternative paths to cover the network, and diffusion becomes a linear process. The

larger is the distance to cover, the longer the time required, and diffusion time becomes

proportional to diffusion size.

We have studied the effect of the dispersion of reservation prices by considering sym-

metric distributions with mean preserving spread (Fig. 10). When the distribution is

less dispersed (and its peak more pronounced), meaning that consumers are more alike,

the critical price of different network structures converges to the mean value of the distri-

bution (p = 0.5). Put differently, diverse network structures look more similar for their

diffusion outcomes. When reservation prices are narrowly distributed, the mean becomes

a critical value for the innovation price, above which almost all network nodes are shut

down, and above which almost all of them are accessible. In the limit case of a homoge-

nous reservation price (δ-Dirac distribution located in p = 0.5), the demand curve is a step

function, the mean reservation price ‘attracts’ the critical prices, and different networks

present almost the same diffusion size. This is quite the case with the example in the

right panels of Fig. 10: irrespective of the network structure, there is a diffusion regime

on [0, 0.5], and a no-diffusion regime on [0.5, 1]. In this limit the percolation process is

able to get the full potential demand for all network structures, with no lost demand from

information inefficiency.

The latter results have obvious implications for consumers’ welfare. First, the conver-

gence of different network structure towards a single reservation price results in a net gain
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Figure 10: Percolation with alternative demand curves. Beta distribution of reservation prices. Cases with equal

mean (< pi >= 0.5). Top: probability density function. Middle: diffusion size (averages over 20 runs. The standard

deviation is larger at the threshold, and increases as the distribution moves to the right, being 50% for α = 3,

β = 1). The dashed line is the demand in a fully connected network, D(p) = N(1 − F (p)), with F the cumulative

distribution of Eq. 8. Bottom diffusion time (averages over 20 simulation runs. The standard deviation is larger at

the threshold, and ranges from 25% to 30%). The networks are a one-dimensional regular lattice, a small-world with

rewiring probability µ = 0.01, and a Poisson network, with 10000 nodes and (average) connectivity 4.

of consumers’ surplus. Less efficient networks like the regular lattice and the small-world

network gain both in terms of a higher critical price and a smaller loss of consumers with

respect to the potential demand. But also for the Poisson network, the effect of a smaller

critical price is outweighed by a larger area in the diffusion regime, with reduced size of

consumers loss.

7 Scale-free networks

Real social networks often present a “hub” structure, which is by no means captured

by small-worlds and Poisson random networks. Few nodes, the hubs, have many links,

while the majority of nodes only have few links. Examples are the World-Wide-Web, the

internet, science collaboration networks, and many others (Albert and Barabasi, 2002).

This network structure is characterized by a power law distribution of the degree. A power
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law distribution is also called “scale-free”: for any value of the degree, the probability of

occurrence of nodes with such degree “scales” down with the degree at the same rate.

This means that if on average there are 10 nodes with 1000 links, we may expect to find

100 nodes with 100 links, 1000 nodes with 10 links, and so on.

The scale-free network model introduced by Barabasi and Albert (1999) is essentially

an algorithm to generate a graph with a power law degree distribution. The basic idea

is a self-reinforcement mechanism of link creation, which builds on two factors, growth

and preferential attachment. At each time step a new node is added to the network,

and linked to existing nodes with a probability which is proportional to their degree (an

instance of rich-get-richer positive feedback). The model has some variants, as for instance

the possibility to add more than one link for a new node. In this case the network can have

a triadic structure, while a tree-like structure is generated if only one link is introduced

for each new node (Figure 11, right panel). In general, if we grow a network with this

algorithm, starting with N0 nodes and adding m new links for each new node until we

have N = mt+N0 nodes, the final number of links is as follows:

Nlinks = mt− (m−N0)(m−N0 + 1)

2
, (10)

which equals approximately mt links as soon as t >> m. The connectivity k of such

network is distributed with a probability density function p(k) ∼ k−γ where γ = 2.9±0.1.

The striking property of such scale-free networks is that p(k) does not depend on time

t and on size N = mt + N0: for any starting number of nodes N0 and any rate of links

addition m, at each time step t the connectivity distribution has the same shape γ. The

mean of such distribution is time invariant, but it does depend on the initial number of

nodes N0 (although it is independent on m):

〈k〉 =
γ − 1

γ − 2
kmin, (11)

where kmin is the lower bound of the distribution support. If we add m new links at each

time step, such lower bound is exactly kmin = m. In a scale-free network generated with

m = 1 then we have 〈k〉 ' 2, while for m = 2 we have 〈k〉 ' 4. Figure 11 shows an

example of scale-free network with m = 2 and average degree 4. This realization presents

some hubs on the lower-right part of the network.

We run a number of simulations to see how percolation works on scale-free networks.

Fig. 12 compares the diffusion size and the diffusion time in a scale-free network with
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Figure 11: Scale-free network generated adding m = 2 links for each new node, up to N = 50 nodes.

a small-world network and a Poisson random network, all with average degree 〈k〉 = 4.

The results in the left panel show that scale-free networks are relatively efficient in terms

of diffusion size, and roughly match the the demand pattern of consumers arranged in a

Poisson network. This is in accordance with the low degree of clustering of both structures.

The scale-free network gives a smoother transition between diffusion and no-diffusion

regimes. Its critical price is larger than the Poisson network critical price, meaning that

scale-free networks favour diffusion when the price is relatively high. Below the threshold

the Poisson network is slightly more efficient. The reason is that hubs are useful when

the innovation price is relatively high, because whenever a hub adopts the innovation, it

passes the information to many neighbours, and very likely find some with reservation

price high enough to adopt the innovation. However, when the price is relatively low, this

advantage is less important, and the high-dimensionality of a Poisson network is more

important.

The diffusion time dimension is also interesting, and show that percolation processes

in scale-free networks are relatively fast. On average, they report diffusion times lower

than the Poisson network and the small-world network, both at the critical transition

threshold and below it (Figure 12, right panel). In particular, a low diffusion time at the

threshold reflects the smoothness of the critical transition of the diffusion size.7

7In a scale-free network with 〈k〉 = 2, generated adding one link for a new node, the percolation

threshold is pc = 0, and the relationship between size and time of diffusion is monotone: a larger

diffusion size requires a longer diffusion time. This is a consequence of the tree-like structure of this

scale-free network, where there is only one path from a seed to any node.

23



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n-
of
-a
do

pt
er
s

price

SW 0.01

Poisson

Scale Free

full network

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

price

SW 0.01

Poisson

Scale Free

Figure 12: Percolation in a Scale Free network (built with two new links for each new node), a Small World (µ = 0.01)

and a Poisson network. Left: diffusion size. Right: diffusion time. All networks have 10000 nodes andaverage degree

4, and percolation experiments start with 10 seeds (early adopters). Values are averages over 20 simulation runs.

8 Conclusions

A percolation model combines two important factors of innovation diffusion, which are

adoption decisions and information spreading. Percolation shows a phase transition from

a diffusion to a no-diffusion regime (phase), for increasing prices. The phase transition

indicates the critical price below which diffusion is almost complete. We show that the

critical price can be used as a measure of network efficiency, which depends on network

topology and the distribution of reservation prices.

Percolation processes in innovation diffusion have two economic implications. First,

it highlights an instance of network inefficiency: a sizeable portion of the demand is not

satisfied in the no-diffusion phase regime. Second, percolation processes unfold differently

in different network topologies. In particular, our results challenge the common wisdom

according to which small-worlds are favourable for innovation diffusion. We show that

whenever diffusion works as a percolation process, small-worlds are rather inefficient, as

diffusion size is driven by low clustering, and not by low average path-length of a network.

We further show that, apart from low clustering, a less dispersed distribution of reservation

prices across consumers favour diffusion, suggesting that not only richer, but also more

equal societies, support new product diffusion.

Our key result on the effect of clustering on diffusion size are in line with empirical

evidence on technology diffusion (Fogli and Veldkamp, 2014), but against experimental

evidence on behaviour diffusion (Centola, 2010). Our percolation model offers a clear

benchmark for the adoption mechanism: when innovation adoption is driven by individual

preferences only, and links between consumers only carry information, clustering has a
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negative effect. For behavior spreading, however, it is more likely that social pressures

also play a role, in that individuals become more likely to adopt a behavior if many

neighbours already display the behavior. An extension of the basic percolation model

with a social-pressure function would indeed be a promising line for future research.

There are limitations to the present study, which represent possible directions for

further research. First, our analysis of the welfare implications of social networks has

been limited to the demand side, focusing on the consumer surplus that is lost when

consumer remain unaware of a product which they would be willing to buy. Since, for

monopolistic market structures, lower demand translates into lower prices, some of the

welfare losses will be compensated by lower equilibrium prices. Campbell (2013) provides

such an equilibrium model illustrating the latter effect, but without considering welfare

effects due to the loss of consumer surplus (and restricted to random networks only). In

future research, percolation theory can be integrated in the welfare analysis of markets,

where equilibrium prices are derived, rather than treated as a parameter value.

Second, a rather strong assumption in our model is that links of consumers networks

are uncorrelated with reservation prices. Since the latter likely reflect consumers’ income,

a more realistic description of the diffusion process would require to relax this assump-

tion, and consider some degree of assortativity in network structures, where neighbour

consumers are more likely to have similar reservation prices. Assortative networks and

income distribution are two key-factors in the study of the implications of percolation for

innovation policy.

Third, in our framework social networks acted solely as the medium for information

diffusion among consumers, thus ignoring other possible effects of social interactions.

For example, consumers may become more likely adopters, the more neighbours already

adopted due to local network externalities causing a consumer’s willingness to pay to

increase with the number of neighbours already adopting. Furthermore, a product’s price

may fall over time as a function of the total number of adopters, known as learning-by-

doing. Such additional mechanisms will affect the extent to which a product diffuse in

different networks, as shown in previous models (Delre et al., 2007, 2010).

Indeed, the percolation model is first and foremost a theoretical model of diffusion

dynamics driven by individual reservation prices, rather than an accurate description of

various diffusion processes that exist in reality. As a null-model based on price and network
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topology only, it is a useful benchmark in empirical studies of diffusion dynamics. To

the extent that empirical data systematically deviate from the predictions of percolation

concerning new product diffusion, additional mechanisms, such as the ones described

above, should be included to better understand the exact nature of diffusion in specific

technological and social contexts.
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