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Abstract

The paper considers a one-to-one matching with contracts model in the presence of

price controls. This set-up contains two important streams in the matching litera-

ture, those with and those without monetary transfers, as special cases and allows for

intermediate cases with some restrictions on the monetary transfers that are feasible.

An adjustment process that ends with a stable outcome is presented, thereby prov-

ing the existence of stable outcomes. The process contains the deferred acceptance

algorithm of Gale and Shapley (1962) and the approximate auction mechanism of

Demange, Gale, and Sotomayor (1986) as special cases. The paper presents a no-

tion of competitive equilibrium, called Drèze equilibrium, for this class of models, an

extension of the concept as developed by Drèze (1975) for economies with divisible

commodities subject to price controls. It is shown that Drèze equilibrium allocations

are equivalent to allocations induced by stable outcomes. One implication is the ex-

istence of Drèze equilibria. Another implication is the equivalence of a competitive

equilibrium concept and the concept of stable outcomes that is valid with and with-

out monetary transfers as well as when monetary transfers are limited.
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1 Introduction

Although standard competitive analysis assumes prices to be completely flexible, price

controls and price regulations are actually very common. Nguyen and Whalley (1990), p.

667, write “Price controls have been employed by governments all over the world, during

war and peace, in response to all manners of threats (both real and imaginary), and in all

ages” and Levy (1991), p. 157, observes that “Price controls are pervasive in developing

countries.” Some typical examples include minimum wages in the labor market, minimum

prices for agricultural products, price controls to reduce inflation (Cox, 1980), and upper

bounds on rents. Andersson and Svensson (2014) report that as of 2011, legislated rent

control existed in approximately 40 countries around the world and legislated minimum

wages in around 200 countries.

The Arrow-Debreu theory of general equilibrium is a powerful tool to analyze resource

allocation in market economies. However, many of the examples of markets with price

controls, like the housing market or the labor market, are characterized by extensive het-

erogeneity. The standard competitive requirement that the goods traded in each market

are homogeneous therefore leads to a very large number of extremely thin markets, which is

at odds with the standard assumption of price-taking behavior. Moreover, in the presence

of price controls, standard competitive equilibria often fail to exist as it can easily happen

that every competitive equilibrium violates the restrictions as imposed by the price con-

trols. The matching approach is therefore often believed to be more suitable for analyzing

the discrete character as present in many markets, see for instance Hatfield, Plott, and

Tanaka (2012b) and Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013).

This paper starts from a one-to-one matching with contracts model in the spirit of

Hatfield and Milgrom (2005). Buyers and sellers trade commodities by signing contracts,

where a contract specifies a buyer, a seller, a commodity, and a price. We add the possibility

that contracts are subject to price controls, which means that the price of a contract is

subject to a price floor and a price ceiling, and therefore restricted to belong to some

interval. The price floor is allowed to be equal to minus infinity and the price ceiling may

be equal to plus infinity. Two important streams in the matching literature, those with and

those without monetary transfers, can be seen as special cases. The case without monetary

transfers as for instance studied in the marriage problem of Gale and Shapley (1962) follows

by specifying both the lower and the upper bound on the price to be equal to zero. The

case with unrestricted monetary transfers, the assignment model of Shapley and Shubik

(1971) being a typical example, follows by setting the interval of feasible prices equal to

the set of real numbers. Also intermediate cases, where price controls limit the monetary

transfers that are feasible in non-degenerate ways, follow as special cases. Examples are

Talman and Yang (2008) and Andersson and Svensson (2014), who consider the assignment

1



model with price controls, and Hatfield, Plott, and Tanaka (2012b), who study how the

presence of price controls leads to quality competition.

We present an adjustment process in the style of Kelso and Crawford (1982) that is

shown to always terminate with a stable outcome in the discretized version of the model.

The existence of a stable outcome in the model without a smallest monetary unit then

follows from a simple limit argument. The adjustment process starts with a set of permitted

contracts that is equal to all possible contracts and a set of tentatively accepted contracts

that is equal to the empty set. In each step of the process, every unassigned buyer chooses

one best element within the current set of permitted contracts. Next every seller tentatively

accepts one best element within the set of choices by the unassigned buyers and the previous

set of tentatively accepted contracts, leading to a new set of tentatively accepted contracts

and assigned buyers. The process stops when none of the sellers reject any contract.

Otherwise, the rejected contracts are removed from the set of permitted contracts and the

process continues with the next iteration.

When applied to the marriage problem, the adjustment process is identical to the

deferred acceptance algorithm of Gale and Shapley (1962). When applied to the assignment

model, the adjustment process is identical to the generalization of the approximate auction

mechanism with personalized prices as discussed in Section V of Demange, Gale, and

Sotomayor (1986). When there are no ties, the adjustment process coincides with the

generalized Gale-Shapley algorithm of Hatfield and Milgrom (2005).

We present a concept of competitive equilibrium in the matching with contracts model

under price controls that does not suffer from lack of equilibrium existence. It is based on

the contribution by Drèze (1975), who introduces price rigidities in the standard general

equilibrium framework with divisible commodities, and presents an equilibrium concept

where markets with binding price rigidities are cleared by quantity adjustments. We extend

the equilibrium concept of Drèze (1975) to the matching with contracts framework and

refer to the resulting equilibrium concept as Drèze equilibrium. Earlier contributions that

have proposed equilibrium concepts under price controls for discrete set-ups are Talman

and Yang (2008) and Andersson and Svensson (2014) under the names of constrained

Walrasian equilibrium and rationing price equilibrium.

A Drèze equilibrium specifies commodity prices, a set of rationing constraints, and a

feasible allocation. Prices should satisfy the lower bounds as expressed by price floors and

the upper bounds as specified by price ceilings. Buyers and sellers determine their demand

and supply for commodities by maximizing utility, thereby taking commodity prices and

rationing constraints as given. Rationing constraints on the supply side can only occur in

markets where the price floor is binding and serve as quantity adjustments to clear such

markets. Similarly, rationing constraints on the demand side can only occur in markets
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with binding price ceilings. Markets are transparent, meaning that in the market of a

given commodity it is not allowed that buyers and sellers are rationed simultaneously. In

equilibrium, only the long side of the market is rationed and the amount of rationing is

determined by the short side of the market. In the case of binding price floors, rationing

constraints are determined by the demand side and are used to allocate the prevailing

demand, if any, to all the sellers that are willing to supply the commodity. In the case of

binding price ceilings, the supply side determines the amount of rationing of the buyers.

In competitive models, trade takes place anonymously via markets and it is not specified

who trades with whom, contrary to the concept of a stable outcome as used in the matching

approach. In this sense, a stable outcome provides more information than a concept of

market equilibrium. On the other hand, a concept of market equilibrium specifies prices for

all commodities, including the ones that are non-traded. It is therefore not immediate to

compare stable outcomes as defined in matching theory with Drèze equilibria. We show that

each stable outcome induces a unique allocation of commodities and that the same is true

for Drèze equilibria. We can therefore compare allocations as resulting from the matching

and the equilibrium approach, respectively. We demonstrate that both approaches lead to

exactly the same predictions. The set of allocations corresponding to stable outcomes is

identical to the set of Drèze equilibrium allocations. The existence of Drèze equilibria now

follows as a corollary.

There are several papers that have established a connection between stable outcomes

and competitive equilibria for the case of unlimited monetary transfers. Shapley and Shubik

(1971) consider the assignment game and prove that the set of stable payoffs coincides with

the set of competitive equilibrium payoffs. When allowing for personalized prices, such a

result can be extended to many-to-many matching set-ups or even trading networks as has

been demonstrated by Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013). No

parallel results exist for the case without monetary transfers. The current paper extends

the Shapley and Shubik (1971) result in this direction and presents an equivalence result

that holds both in the case of unlimited monetary transfers and in the absence of monetary

transfers, as well as all for the intermediate cases where transfers are limited to some extent.

In the class of models under consideration, the set of stable outcomes coincides with

the set of core outcomes. The relation between the core and competitive equilibrium is a

classical problem in economics, dating back to Edgeworth (1881). In general, competitive

equilibria belong to the core, but the core contains other allocations as well. In models

of perfectly competitive economies, where agents are infinitely small, the core coincides

with the set of competitive allocations. Debreu and Scarf (1963) obtain a core convergence

result by showing that the set of core allocations shrinks to the competitive allocation

when an economy is replicated. Aumann (1964) obtains a core equivalence result, showing
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that the core coincides with the set of competitive equilibrium allocations when there is

a continuum of traders. This paper therefore delimits another class of economies where

the core coincides with the set of equilibrium allocations. Moreover, agents need not be

infinitely small. Where usually the equilibrium concepts are thought as more appealing

in a set-up with many individuals that view themselves as an insignificant part of a large

market and the cooperative concepts are thought to be more appropriate in situations with

few players, both approaches coincide here irrespective of the number of agents.

The paper is organized as follows. Section 2 presents the model of matching with con-

tracts under price controls and shows how many contributions in the literature are included

as special cases. Section 3 presents the notion of stable outcome. To illustrate the model

and the stability concept, the quality competition model of Hatfield, Plott, and Tanaka

(2012b) is examined in detail. Section 4 shows stable outcomes to exist by an adjust-

ment process that generalizes both the deferred acceptance algorithm of Gale and Shapley

(1962) and the approximate auction mechanism of Demange, Gale, and Sotomayor (1986).

Section 5 extends the seminal work by Drèze (1975) to the discrete matching framework

and presents the notion of Drèze equilibrium. The equilibrium concept is illustrated for

the quality competition model. Section 6 is devoted to the equivalence between allocations

induced by stable outcomes and Drèze equilibrium allocations. Section 7 concludes.

2 Matching under Price Controls

There is a finite set of buyers B and a finite set of sellers S who trade commodities in a

finite set L and a good labeled 0, which we call money. The set of all agents is I = B ∪ S.
Trade in commodities takes place by signing contracts, where a contract is an element

y = (b, s, `,m) ∈ B×S×L×R. A given contract y = (b, s, `,m) involves a buyer β(y) = b,

a seller σ(y) = s, a commodity λ(y) = `, and an amount of money µ(y) = m. The set of

agents involved in contract y is ι(y) = {β(y), σ(y)}. We consider a one-to-one matching

set-up, so a buyer signs a contract with at most one seller and a seller with at most one

buyer.

For a set of contracts Y ⊂ B × S × L × R, the set of contracts involving buyer b is

given by Y b = Y ∩ β−1({b}) = {y ∈ Y | β(y) = b} and the set of contracts involving seller

s by Y s = Y ∩ σ−1({s}) = {y ∈ Y | σ(y) = s}. Similarly, the set of contracts involving

commodity ` is given by Y ` = Y ∩ λ−1({`}) = {y ∈ Y | λ(y) = `}.
The amount of money involved in a contract may be subject to price controls. The

price of a commodity ` ∈ L is subject to a price floor p
`
∈ {−∞} ∪ R and a price ceiling

p̄` ∈ R∪{+∞}. The set of admissible prices is now equal to P = {p ∈ RL | p ≤ p ≤ p̄}. To

ensure that the set of admissible prices is non-empty, it is assumed that p ≤ p̄. One extreme
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but highly relevant case is where no monetary transfers are allowed. This is achieved by

setting p
`

= p̄` = 0. In applications related to social housing, it is common that the rent m`

to be paid for an apartment of type ` is fixed, which corresponds to setting p
`

= p̄` = m`.

The case with unlimited monetary transfers follows by specifying p
`

= −∞ and p̄` = +∞.
Both price floors and price ceilings are allowed to be negative.

In many settings, it is not possible for every buyer to supply every commodity to every

seller. Some specific examples are presented later. The set of feasible trades is given by T,

a subset of B×S×L. We assume that for every commodity its set of traders has a product

structure. Whenever there is a trade in T involving commodity ` by buyer b1 and seller

s1 as well as a trade by buyer b2 and seller s2, then there is also a trade in T involving

commodity ` by buyer b1 and seller s2, and a trade in T involving commodity ` by buyer b2

and seller s1. Equivalently, for every ` ∈ L, the graph with as nodes the buyers β(Ȳ `) and

the sellers σ(Ȳ `) and an edge between a buyer b and a seller s if and only if (b, s, `) ∈ T is

a complete bipartite graph. This assumption is without loss of generality, since any form

of trading restrictions can be incorporated in the notion of a commodity. In the extreme,

we could define as many commodities as there are trades.

The set T generates the set of feasible contracts Ȳ defined as the set of all contracts

with the trade in T and the amount of money satisfying the restrictions imposed by the

price controls, so

Ȳ = {y ∈ B × S × L× R | (β(y), σ(y), λ(y)) ∈ T and p
λ(y)
≤ µ(y) ≤ p̄λ(y)}.

The commodities that can be traded by an agent i ∈ I are defined by

Li = λ(Ȳ i) = {` ∈ L | ∃y ∈ Ȳ i such that λ(y) = `}.

It holds that ∪b∈BLb = ∪s∈SLs = L.

For ` ∈ L, let e(`) be the `-th unit vector in RL. Then the set of feasible contracts Ȳ

defines the consumption set Xb of a buyer b ∈ B to be equal to

Xb = R× ({0L} ∪ {e(`) | ` ∈ Lb}),

where 0L denotes the zero vector in RL and corresponds to the case where the buyer does

not sign any contract. The unit vector e(`) results when buyer b signs a contract involving

commodity `. The first component of a vector xb ∈ Xb denotes the amount of money

consumed and is denoted by xb0. If buyer b signs a contract involving an amount of money

m, then xb0 = −m. If buyer b does not sign a contract, then xb0 = 0.

The consumption set Xs of a seller s is given by

Xs = R× ({0L} ∪ {−e(`) | ` ∈ Ls}),
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where we make the usual convention that the supply of commodity ` by a seller s results

in a negative consumption, xs` = −e(`). If seller s signs a contract involving an amount of

money m, then xs0 = m. If seller s does not sign a contract, then xs0 = 0.

We denote X =
∏

i∈I X
i.

The preferences of an agent i ∈ I are represented by a utility function ui : X i → R.
The concept of a commodity encompasses all utility relevant information. For a buyer

the utility of a commodity does not depend on the agent delivering it, and for a seller

the utility of a commodity is independent of the identity of its buyer. This assumption is

without loss of generality. Whenever such information is relevant, it should be included in

the description of a commodity.

Utility functions are assumed to be continuous and strongly monotonic in x0. There

are limits to the monetary transfers buyers are willing to make for commodities without

price ceilings. For every b ∈ B, for every ` ∈ Lb such that p̄` = +∞, there is m ∈ R
such that ub(−m, e(`)) ≤ ub(0, 0L). There are limits to the monetary transfers sellers are

willing to make for commodities without price floors. For every s ∈ S, for every ` ∈ Ls

such that p
`

= −∞, there is m ∈ R such that us(m,−e(`)) ≤ us(0, 0L). Commodities are

allowed to be bads, so for a buyer it might be that for some commodity ` it holds that

ub(0, e(`)) < ub(0, 0L), and for a seller that us(0,−e(`)) > us(0, 0L). Quasi-linear utility

functions are a prominent and commonly used example of utility functions satisfying our

assumptions.

The primitives of an economy are summarized by E = (T, p, p̄, (ui)i∈I). Although sim-

ple, this model includes a number of important special cases.

Example 2.1: Gale and Shapley (1962), marriage problem.

A community consists of n men and n women. Each person ranks those of the oppositive

sex in accordance with his or her preferences for a marriage partner. Monetary trans-

fers are not allowed. We define B as the set of men, S as the set of women, and the

set of commodities as L = B × S. This is clearly a case with many trading restrictions,

since buyers and sellers are both restricted to trade in the commodity carrying their label,

T = {(b, s, `) ∈ B × S ×L | ` = (b, s)}. A commodity corresponds to a contract between a

man and a woman. The absence of monetary transfers is achieved by setting p = p̄ = 0L.

Utility functions are now specified in accordance with each person’s ranking of the partners

of opposite sex, with the utility of remaining single strictly below the lowest utility assigned

to a partner when x0 = 0. Since monetary transfers are not possible, the specification of the

utility function is immaterial for other values of x0. Since there are as many commodities

as there are trades, T trivially has a product structure.
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Example 2.2: Shapley and Shubik (1971), assignment model.

There are m homeowners in the real estate market, and n prospective purchasers. Home-

owner s values his house at cs dollars, while purchaser b values the same house at hbs dollars.

There are no restrictions on monetary transfers. We define B as the set of prospective pur-

chasers, S as the set of homeowners, and the set of commodities as L = S. A commodity

corresponds to a house. Again, there are many trading restrictions, since a seller is re-

stricted to trade in the house baring his label, T = {(b, s, `) ∈ B × S × L | ` = s}. There

are no restrictions on monetary transfers, so for every ` ∈ L we set p
`

= −∞ and p̄` = +∞.
The utility of a buyer b ∈ B is given by

ub(x) = x0 +
∑
s∈S

hbsxs.

The utility of a seller s ∈ S is equal to

us(x) = x0 + csxs.

It is easily verified that this application satisfies all the assumptions made before.

Example 2.3: Talman and Yang (2008), assignment model with price controls and

quasi-linear utility functions.

The model is the one of Example 2.2 with cs = 0 for every s ∈ S. Moreover, price controls

restrict monetary transfers. Price controls are expressed by price floors p ∈ NL
0 and price

ceilings p̄ ∈ NL
0 , where N0 denotes the set of natural numbers including 0.

Example 2.4: Andersson and Svensson (2014), assignment model with price controls

and general utility functions.

The model is the one of Example 2.2, except that utility functions need not be quasi-linear

but are only assumed to be continuous and strongly monotonic in x0. Moreover, there

are price controls expressed by price floors p ∈ RL and price ceilings p̄ ∈ (R ∪ {+∞})L.
The price floors correspond to the sellers’ reservation utilities, so us(p

s
,−e(s)) = us(0, 0L),

s ∈ S.

Example 2.5: Hatfield, Plott, and Tanaka (2012b), quality competition in the presence

of price controls.

Several authors have argued that the presence of price controls affects the commodity which

is traded on the market. For instance, Leffler (1982) argues that price ceilings give rise to

the supply of inefficiently low quality. Other authors, like Feldstein (1973), have studied

the effect of minimum wages on job quality, and Agell and Lommerud (1997) analyze

the effects of minimum wages on worker’s skill formation. To study the effects of price
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controls on traded quality, Hatfield, Plott, and Tanaka (2012b) develop a model of quality

competition.

The set of commodities is L = {1, . . . , ¯̀}. Commodities have universally agreed upon

qualities, with the quality of commodity ` exceeding the quality of commodity k if and

only if ` ≥ k. Commodities are therefore referred to as qualities. There is a price control

that specifies a common price floor f for all qualities: for every ` ∈ L, p` = f. There are no

price ceilings, so for every ` ∈ L, p̄` = +∞. The value for buyer b of procuring any quality

is given by vb ≥ 0, and v` denotes the additional utility derived from procuring quality `.

To obtain a unique utility representation, it is assumed that v1 = 0. For ` = 2, . . . , ¯̀, we

define ∆v` = v` − v`−1 as the difference in utility between quality ` and quality `− 1. It is

assumed that ∆v` is positive. The utility of a buyer b ∈ B is then given by

ub(x) = x0 + vb
∑
`∈L

x` +
∑
`∈L

v`x`.

Sellers produce at most one quality. The cost for seller s of producing any quality is given

by cs ≥ 0, and c` denotes the additional cost of producing commodity `. To obtain a

unique representation of the costs, it is assumed that c1 = 0. For ` = 2, . . . , ¯̀, we define

∆c` = c` − c`−1 as the increase in costs to go from quality `− 1 to quality `. It is assumed

that ∆c` is positive. The utility of a seller s ∈ S is given by the profit

us(x) = x0 + cs
∑
`∈L

x` +
∑
`∈L

c`x`.

The set of applications of the general model can be easily expanded. For instance, upper

bounds on prices can be used to model buyers with liquidity constraints as in Maskin (2000)

and restrictions on the set of feasible trades can be used to analyze trading networks as in

Corominas-Bosch (2004).

3 Stable outcomes

In this section, we present the solution concept of stability, a concept that is suggested

by both theoretical, empirical, and experimental work, see e.g. Roth (1991) and Hatfield,

Plott, and Tanaka (2012a).

A set of contracts A ⊂ Ȳ is an outcome if each agent is involved in at most one contract,

so the cardinality of every set Ai is at most one. The set of all outcomes is denoted by

the collection A = {A ⊂ Ȳ | ∀i ∈ I, |Ai| ≤ 1}. In particular, it holds that ∅ ∈ A. For

i ∈ I, the collection Ai is defined as the collection containing the empty set together with

all sets consisting of a single contract that involves agent i and corresponds to the set

of possible choices for agent i. More formally, Ai = {A ∈ A | ∀y ∈ A, i ∈ ι(y)}. An
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outcome A generates the unique allocation ξ(A) ∈ X defined as follows. For every b ∈ B,
if Ab = ∅, then ξb(A) = (0, 0L); otherwise, let y be the unique contract in Ab and define

ξb(A) = (−µ(y), e(λ(y))). For every s ∈ S, if As = ∅, then ξs(A) = (0, 0L); otherwise, let

y be the unique contract in As and define ξs(A) = (µ(y),−e(λ(y))). Since every contract

specifies the delivery of a commodity from a seller to a buyer in exchange for a particular

quantity of money, it holds that∑
i∈I

ξi(A) = 0. (3.1)

The utility of agent i ∈ I derived from outcome A ∈ A is given by

U i(A) = ui(ξi(A)).

The choice relation Ci of agent i ∈ I is defined by

Ci(Y ) = arg max
{Ai∈Ai|Ai⊂Y i}

U i(Ai), Y ⊂ Ȳ .

The relation Ci might be empty-valued. This could for instance occur when the set Y is

open. In the sequel, we will apply Ci to finite sets Y, which clearly guarantees that Ci is

not empty-valued. The next definition rewrites the stability concept as defined in Roth

and Sotomayor (1990) to our set-up.

Definition 3.1: An outcome A ∈ A is stable if:

1. For every i ∈ I, Ai ∈ Ci(A).

2. For every z = (b, s, `,m) ∈ Ȳ it holds that U b({z}) ≤ U b(A) or U s({z}) ≤ U s(A).

A stable outcome A involves only contracts in the set of feasible contracts Ȳ and at

most one contract for each agent. The first condition in Definition 3.1 corresponds to

individual rationality. Every agent i should weakly prefer his current contract to staying

inactive. The second condition requires absence of blocking by a two-agent coalition. It

now follows easily that an outcome is stable if and only if it belongs to the core.

To illustrate the usefulness of the model and the richness of the stable outcomes that

result, we now examine the model of Example 2.5 in a bit more detail. Suppose first that

there is a single quality ` and there are no price controls, so Ȳ = B×S ×{`}×R. In that

case it is easily shown that an outcome A is stable if and only if every contract in A trades

at the same price p` and A is constrained efficient, i.e. maximizes the sum of utilities over

outcomes in A. For a given stable outcome A, we define

qB
`

= supb∈B\β(A) v
b + v`,

qS
`

= sups∈σ(A) c
s + c`,

q
`

= max{qB
`
, qS
`
},
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and

q̄B` = infb∈β(A) v
b + v`,

q̄S` = infs∈S\σ(A) c
s + c`,

q̄` = min{q̄B` , q̄S` }.

The amount qB
`

corresponds to the highest willingness to pay of buyers who are not involved

in any contract in A, and qS
`

to the highest cost of a seller who is involved in A. Although

qB
`

and qS
`

may depend on A, it holds that q
`

is independent of the choice for the stable

outcome A. Similarly, q̄B` corresponds to the lowest willingness to pay of buyers who are

involved in some contract in A, and q̄S` the lowest cost of a seller who is not involved in any

contract in A. It holds that q̄` is independent of the choice for the stable outcome A. The

common price p` should be such that q
`
≤ p` ≤ q̄`. The price p` should be sufficiently high

such that a buyer without a contract is not willing to buy and every seller with a contract

is willing to supply. Similarly, the price p` should be sufficiently low such that a buyer with

a contract is willing to buy and a seller without a contract is not willing to supply.

We now consider the case where a price floor f is imposed. The set of contracts is

then equal to Ȳ = {y ∈ B × S × L× R | µ(y) ≥ f}. The following result has been shown

in Hatfield, Plott, and Tanaka (2012b). The economy E is said to be convex if ∆v` is

non-increasing in ` and ∆c` is non-decreasing in `.

Theorem 3.2: Consider a convex economy E with price floor f and assume there is

a unique quality `∗ < ¯̀ that maximizes the surplus v` − c`. A stable outcome A exists.

Moreover, we have the following cases.

1. f < q
`∗
. The outcome A is efficient and there is m ∈ [q

`∗
, q̄`∗ ] such that for every

y ∈ A it holds that µ(y) = m.

2. q̄` < f < q
`+1
−∆v`+1 for some ` ≥ `∗. For every y ∈ A it holds that

[λ(y) = ` and µ(y) = f ] or [λ(y) = `+ 1 and µ(y) = f + ∆v`+1].

Moreover, it holds that

β(A) ∈ arg max
B̂⊂B

∑
b∈B̂

(vb + v` − f).

3. q̄`+1 −∆v`+1 < f < q
`+1

for some ` ≥ `∗. The outcome A is constrained efficient for

the set of feasible contracts B × S × {` + 1} × R and there is m ∈ [q
`+1
, q̄`+1] such

that for every y ∈ A it holds that µ(y) = m.

10



1 2 3

b1 7 8 9

b2 6 7 8

b3 2 3 4

1 2 3

s1 1 3 6

s2 2 4 7

s3 4 6 9

Table 1: Valuations and costs in an economy with B = {b1, b2, b3}, S = {s1, s2, s3}, and

L = {1, 2, 3}.

The first case of Theorem 3.2 corresponds to a price floor below the lower bound on

the common price in case only the efficient quality `∗ is available. In this case the price

floor is ineffective and the set of stable outcomes coincides with the one in the absence of

price floors.

It is tempting to replace the assumption in the first case by f < q̄`∗ . Although any

stable outcome in the absence of price floors remains stable as there are less blocking

opportunities, new possibilities arise.

Consider, for instance, an economy with three buyers, three sellers, and three qualities,

where valuations and costs are as depicted in Table 1. It can easily be verified that `∗ = 1,

q
1

= 2, q̄1 = 4, q
2

= 4, q̄2 = 6, q
3

= 7, and q̄3 = 8. When the price floor f is less than

or equal to 4, every efficient stable outcome A involves two contracts, β(A) = {b1, b2},
σ(A) = {s1, s2}, only quality 1 is traded, λ(A) = {1}, and every contract in A trades at a

price m in between f and q̄1 = 4.

However, even when the price floor is less than or equal to q̄1 = 4, but is greater than

or equal to q
1

= 2, there are also constrained inefficient stable outcomes. Consider, for

instance, the outcome A = {(b1, s1, 2, f + 1), (b2, s2, 1, f)}, where buyer b1 trades quality 2

with seller s1 against the price f +1 and buyer b2 trades quality 1 with seller s2 against the

price f. We verify next that A is stable. Every contract in A obeys individual rationality.

Suppose there is a contract z = (b, s, `,m) which gives both b and s strictly higher utility.

It holds that U b1(A) = 7− f, so to give b1 strictly higher utility, it should hold that ` = 1

and m < f, or ` = 2 and m < f + 1, or ` = 3 and m < f + 2. The first case is not possible

in the presence of a price floor equal to f. The latter two cases are not possible since the

utility for s would be lower than U s(A). It follows that b 6= b1. The same argument can

be used to show that b 6= b2. Buyer b3 cannot get a positive utility by consuming `∗ = 1

against price f, and no seller can produce quality 2 against a cost lower than vb3 + v2 = 3

or quality 3 against a cost lower than vb3 + v3 = 4, so b 6= b3.

The second case in Theorem 3.2 involves trade in only one quality, either ` or ` + 1,

or both qualities ` and ` + 1. The price of any contract where quality ` is traded is equal

to f, the price of any contract with trade in quality ` + 1 is equal to f + ∆v`+1, which
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makes buyers indifferent between these two types of contract. Trade in quality ` + 1

corresponds to trade in an inefficiently high quality and the same holds for trade in quality

` whenever ` > `∗. The outcome is not even constrained efficient for the set of feasible

contracts B × S × {`, ` + 1} × R, since whenever there is trade in quality ` + 1 against a

price f + ∆v`+1, the seller of such a contract would be strictly better off by trading quality

` against a price f, leaving the buyer of such a contract indifferent.

The condition q̄` < f < q
`+1
−∆v`+1 for some ` ≥ `∗ in the second case of Theorem 3.2

might be empty. For instance, in the example of Table 1, it holds that q̄1 = 4, whereas

q
2
−∆v2 = 4− 1 = 3. Similarly, it holds that q̄2 = 6, whereas q

3
−∆v3 = 7− 1 = 6. It is

tempting to reduce the lower bound on f to q
`
. However, we can use the same construction

as before to show that when the price floor f is in between q
2

= 4 and 5 there are stable

outcomes A with λ(A) = {1, 2}, so violating the assertion in Case 2 that for every y ∈ A
it holds that λ(y) ∈ {2, 3}.

In the third case of Theorem 3.2 only quality `+ 1 is traded against a price in between

q
`+1

and q̄`+1. In this case, the traded quality is again inefficiently high. The outcome is

constrained efficient when feasible contracts are restricted to quality `+ 1. In the example

of Table 1, the condition q̄`+1 − ∆v`+1 < f < q
`+1

for some ` ≥ `∗ of Case 3 is empty as

well, since 5 = 6− 1 = q̄2 −∆v2 > q
2

= 4 and 7 = 8− 1 = q̄3 −∆v3 = q
3

= 7.

4 Existence of Stable Outcomes

In this section, we present an adjustment process in the spirit of Kelso and Crawford (1982)

that ends with a stable outcome.

Consider some t = (b, s, `) ∈ T. Without loss of generality, we assume in the formulation

of the adjustment process that there is m ∈ [p
`
, p̄`] ∩ R such that ub(−m, e(`)) ≥ ub(0, 0L)

and us(m,−e(`)) ≥ us(0, 0L). Otherwise, a trade can never be part of a stable outcome by

individual rationality and can be dropped from T.

We first reduce the set of possible contracts to a finite set. Consider some t = (b, s, `) ∈
T. The amount of money specified in a contract involving trade t is restricted to belong to

an interval [mt, m̄t], where mt and m̄t are both finite.

To define mt, we distinguish two cases. In the first case, p
`

= −∞. Let mt ∈ R be the

unique amount of money such that us(mt,−e(`)) = us(0, 0L). Since it has been assumed

that for every ` ∈ Ls such that p
`

= −∞, there is m ∈ R such that us(m,−e(`)) ≤ us(0, 0L)

and there ism ∈ [p
`
, p̄`]∩R such that us(m,−e(`)) ≥ us(0, 0L), and us is strongly monotonic

in x0, it holds that mt is well-defined, uniquely determined, and less than or equal to p̄`.

Individual rationality of seller s implies that mt is the lowest amount of money that s is ever

going to accept for a contract involving trade t. In the second case, it holds that p
`
6= −∞.
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Either us(p
`
,−e(`)) ≥ us(0, 0L) and we define mt = p

`
, or us(p

`
,−e(`)) < us(0, 0L) and we

define mt ∈ R as the unique amount of money such that us(mt,−e(`)) = us(0, 0L). By the

same argument as before, mt is well-defined, uniquely determined, and less than or equal

to p̄`. The lower bound on the price of commodity `, together with individual rationality

of seller s, implies that mt is the lowest amount of money that s is ever going to accept for

a contract involving trade t.

Next, we define m̄t in a similar way. If p̄` = +∞, then let m̄t ∈ R be the unique amount

of money such that ub(−m̄t, e(`)) = ub(0, 0L). By a similar argument as before, it holds

that m̄t is well-defined, uniquely determined, and greater than or equal to p
`
. Individual

rationality of buyer b implies that m̄t is the highest amount of money that b is ever going

to pay for a contract involving trade t. If p̄` 6= +∞, then either ub(−p̄`, e(`)) ≥ ub(0, 0L)

and we define m̄t = p̄`, or ub(−p̄`, e(`)) < ub(0, 0L) and we define m̄t ∈ R as the unique

amount of money such that ub(−m̄t, e(`)) = ub(0, 0L). By the same argument as before, m̄t

is well-defined, uniquely determined, and greater than or equal to p
`
. The upper bound on

the price of commodity `, together with individual rationality of buyer b, implies that m̄t

is the highest amount of money that b is ever going to pay for a contract involving trade t.

Next, we choose some ε > 0 and define the finite set of contracts Ȳ ε by

Ȳ ε = {(t,m) ∈ Ȳ | ∃k ∈ N0 such that m = min{mt + kε, m̄t}}.

In this way, only contracts (t,m) are considered where the difference between m and mt is

an integer multiple of ε or m = m̄t. Moreover, this definition achieves that m belongs to

the interval [mt, m̄t].

The adjustment process is now defined as follows.

Definition 4.1: (Adjustment Process)

Step 1: Initially, the set of permitted contracts Y is equal to Ȳ ε and the set of tentatively

accepted contracts A is equal to ∅.

Step 2: Every buyer b ∈ B \ β(A) chooses a unique member in the set Cb(Y ). Let Z be

the union of the set of contracts as chosen by b ∈ B \ β(A) and the set A.

Step 3: Every seller s ∈ σ(Z) tentatively accepts one arbitrarily chosen contract in Cs(Z).

Let A be the set of contracts as tentatively accepted by s ∈ σ(Z).

Step 4: The process stops if A = Z. In that case the contracts in A are permanently

accepted. Otherwise, the process returns to Step 2 with set of permitted contracts

Y \ (Z \ A).
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We illustrate the adjustment process for the case of the marriage problem. The adjust-

ment process turns out to be identical to the deferred acceptance algorithm of Gale and

Shapley (1962) in this case. For every choice of ε > 0, it holds that

Ȳ ε = Ȳ = {y ∈ B × S × (B × S)× {0} | λ(y) = (β(y), σ(y))}.

Step 1 defines the initial set of permitted contracts to be equal to Ȳ and the set of ten-

tatively accepted contracts to ∅. In Step 2, every man proposes to his favorite woman. In

Step 3, every woman tentatively accepts her favorite man among those that have proposed

to her and rejects all the others. The process stops in Step 4 if no man is rejected in Step 3

and all initial proposals become definite. Otherwise, the process returns to Step 2 with a

set of permitted contracts where all the contracts rejected in Step 3 have been removed.

In Step 2, the men that have been rejected now propose to their second choices. Every

woman tentatively accepts her favorite man from the group consisting of the new proposers

and the tentatively accepted man, if any. The others are rejected. The process continues

in this way and will stop after finitely many iterations with a set of contracts where each

man is matched to exactly one woman.

We next illustrate the adjustment process for the assignment model of Shapley and

Shubik (1971). The adjustment process turns out to be identical to the approximate

auction mechanism of Demange, Gale, and Sotomayor (1986) with personalized prices as

discussed in Section V of that paper. For every t = (b, s, `) ∈ T, mt = cs, the home owner’s

valuation of the house, and m̄t = hbs, the valuation of the house of purchaser b. We take

ε = 1 and make use of the assumption that valuations are integer dollar amounts. It holds

that

Ȳ 1 = {(t,m) ∈ B × S × S × Z | µ(t,m) ∈ [mt, m̄t]},

where Z denotes the set of integers. Step 1 defines the initial set of permitted contracts to

be equal to Ȳ 1 and the set of tentatively accepted contracts to ∅. In Step 2, every purchaser

b maximizes hbs − cs over all sellers s and makes an offer cs∗ to seller s∗ with s∗ one of his

favorite sellers. In Step 3, every seller who receives one or more offers rejects all but one,

which he tentatively accepts. Since a seller s will initially only receive offers equal to cs, he

is completely indifferent among all offers received. The process stops in Step 4 if no buyer

is rejected in Step 3 and all initial offers become definite. Otherwise, the process returns to

Step 2 with a set of permitted contracts where all the contracts rejected in Step 3 have been

removed. In Step 2, a purchaser b that has been rejected now makes a new offer. There are

several possibilities. For instance, if purchaser b was indifferent between the selected seller

s∗ in the previous round and exactly one other seller s′, i.e. hbs∗− cs∗ = hbs′− cs′ > 0, then

he makes an offer of cs′ to seller s′. If purchaser b values seller s∗ at least two units more
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than the next best seller, i.e. hbs∗ − cs∗ − 2 ≥ maxs∈S\{s∗}(hbs− cs) and hbs∗ − cs∗ ≥ 2, then

he makes an offer of cs∗ + 1 to a seller s∗. In case of indifferences, the buyer makes any

optimizing choice. Every seller tentatively accepts the best offer from the set consisting of

the new offers and the tentatively accepted offer of the previous round, if any. The others

are rejected. It is now no longer necessarily the case that all offers involve the same amount

of money. The process continues in this way and will stop after finitely many iterations.

In case there are no ties, the adjustment process coincides with the generalized Gale-

Shapley algorithm of Hatfield and Milgrom (2005), when starting with the set of contracts

Ȳ ε for the buyers and the empty set of contracts for the sellers.

Talman and Yang (2008) define an adjustment process for the assignment model of

Example 2.3, and Yang and Zhang (2013) show that this adjustment process terminates at

a core allocation. The process is a variant of the Hungarian algorithm as used in the exact

auction mechanism of Demange, Gale, and Sotomayor (1986) for the case without price

controls. These processes are quite different from the one presented here. For instance, in

each step of Demange, Gale, and Sotomayor (1986), price adjustments are made for min-

imal overdemanded sets of items. The determination of a minimal overdemanded set of

items relies on the entire demand sets of all the purchasers and all purchasers report their

entire demand set in each step of the process. There is also no such thing as a tentatively

accepted offer.

A stable outcome A for the set of feasible contracts Ȳ ε is defined as in Definition 3.1

with Ȳ replaced by Ȳ ε. This affects Definition 3.1 in two ways. First, the set of all out-

comes A is defined using Ȳ ε instead of Ȳ , so all contracts in A are required to belong to Ȳ ε.

Secondly, absence of blocking by a two-agent coalition as in Condition 2 of Definition 3.1

is restricted to absence of blocking by contracts in Ȳ ε.

Theorem 4.2: The adjustment process of Definition 4.1 terminates in a finite number

of steps with a set A of permanently accepted contracts. The set A is a stable outcome for

the set of feasible contracts Ȳ ε.

Proof:

Suppose the adjustment process does not terminate in a finite number of steps. Then, in

Step 4 of each iteration, the set Z \A is non-empty and the cardinality of the set Y in the

next iteration diminishes by at least one. Since the initial set Y as defined in Step 1 has

finitely many elements, this leads to a contradiction.

Let A be the set of permanently accepted contracts. Since by Step 2 every buyer is

involved in at most one contract in A, and by Step 3 every seller is involved in at most one
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contract in A, it follows that A is an outcome.

For every (m, t) ∈ Ȳ ε, the definitions of mt and m̄t guarantee individual rationality for

both the buyer and the seller involved in trade t. It follows that Condition 1 of Definition 3.1

is satisfied.

Consider the finite sequence of sets of tentatively accepted contracts as generated in the

various iterations of the adjustment process and the associated finite sequence of utilities

of a seller s. The finite sequence of utilities is weakly increasing at each iteration. Indeed,

the first, if any, tentatively accepted contract by seller s gives utility at least equal to

U s(0, 0L) since all contracts in Ȳ ε are individual rational for seller s. Next, a seller can

keep a tentatively accepted contract forever, or rejects it in favor of a contract that gives

at least the same utility.

Suppose there is z = (b, s, `,m) ∈ Ȳ ε such that U b({z}) > U b(A) and U s({z}) > U s(A).

Then, at some iteration of the adjustment process, z has been rejected in Step 3 by seller

s. The tentatively accepted contract by seller s in that iteration, say y, is such that

U s({y}) ≥ U s({z}). Since the utility of the tentatively accepted contract by seller s is

weakly increasing at each iteration, it holds that U s(A) ≥ U s({y}) ≥ U s({z}), leading to

a contradiction. Consequently, Condition 2 of Definition 3.1 is satisfied. 2

We now turn to the existence of stable outcomes in the model without a smallest mon-

etary unit.

Theorem 4.3: Consider an economy E = (T, p, p̄, (ui)i∈I). A stable outcome exists.

Proof:

Consider the sequence (εn)n∈N with εn = 2−n and let An be the outcome that is generated

by the adjustment process of Definition 4.1 for the set of feasible contracts Ȳ εn . By listing

the, potentially empty, contracts of the buyers, we can represent every An as an element

of the compact set

(S × L× [m, m̄] ∪ {∅})B,

where m is a finite lower bound for {mt | t ∈ T} and m̄ is a finite upper bound for {m̄t |
t ∈ T}. The sequence An therefore has a convergent subsequence, denoted by (Ank

)k∈N,

with limit, say, A.

The remainder of the proof verifies that A is a stable outcome.

It clearly holds that A ⊂ Ȳ is an outcome and that every contract (t,m) ∈ A satisfies

mt ≤ m ≤ m̄t. Condition 1 of Definition 3.1 corresponding to individual rationality is

therefore satisfied by A.
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Suppose that there is z = (b, s, `,m) ∈ Ȳ such that U b({z}) > U b(A) and U s({z}) >
U s(A). Since A satisfies individual rationality, it follows that mb,s,` ≤ m ≤ m̄b,s,`. Then

there is n′ ∈ N and y = (b, s, `, m̃) ∈ Ȳ εn′ such that U b({y}) > U b(A) and U s({y}) >
U s(A). Observe that, for every n ≥ n′, y ∈ Ȳ εn .

Let k′ be such that, for every k ≥ k′, U b({y}) > U b(Ank
) and U s({y}) > U s(Ank

). Let

k∗ be such that nk∗ ≥ max{n′, nk′}. It follows that b and s can use y ∈ Ȳ εnk∗ to block

outcome Ank∗ , thereby violating that Ank∗ is stable for the set of feasible contracts Ȳ εnk∗ .

Consequently, A satisfies Condition 2 of Definition 3.2. 2

5 Equilibrium Outcomes

For markets in which all trading opportunities are universally available, it is natural to

assume that the identity of the trading partner is irrelevant. In that case, it is customary

to study notions of competitive equilibrium that assign a single price to each commodity,

see, e.g., Gul and Stacchetti (1999) and Sun and Yang (2006). It is this perspective that

we take in the current section, so we aim at developing a notion of competitive equilibrium

for the economy E = (T, p, p̄, (ui)i∈I) as presented in Section 2, where each agent can trade

against the same price vector. The initial endowment of every agent i ∈ I is equal to

(0, 0L) ∈ X i.

For economies in which all commodities are perfectly divisible, there is an extensive

literature on competitive equilibrium under price controls, starting with seminal contribu-

tions by Bénassy (1975), Drèze (1975), and Younès (1975). Herings (1996) provides an

overview of this stream in the literature. Here, we follow the approach as developed in

Drèze (1975) for economies where all commodities are divisible and extend this approach

to the economy of Section 2.

In a competitive analysis of price controls, there is a price vector p ∈ {1} ×RL against

which trade in commodities takes place, with each commodity ` trading against a single

price p`. In the presence of a price floor p and a price ceiling p̄, it should hold that p
`
≤ p` ≤

p̄` for every ` ∈ L. A buyer b ∈ B chooses a utility maximizing element xb ∈ Xb subject

to the budget constraint pxb ≤ 0. Similarly, a seller s ∈ S chooses a utility maximizing

element xs ∈ Xs subject to the budget constraint pxs ≤ 0. Moreover, buyers and sellers

may face rationing constraints to be explained below.

In case the price ceiling p̄` is binding for some commodity `, its market may be cleared

by quantity adjustments. Since prices are upward rigid, quantity adjustments are on the

buyers’ side. At a price equal to p̄`, a buyer might be willing to buy commodity `, but

there is no seller willing to supply to him at that price. The price ceiling prevents the price
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to go up. Under such circumstances, a buyer faces demand rationing of commodity `.

Let Q ⊂ {(b, `) ∈ B × L | ` ∈ Lb} be the set of demand rationing constraints. The

collection of all such sets is denoted by Q, so

Q = {Q ∈ 2B×L | for every (b, `) ∈ Q, ` ∈ Lb}.

If (b, `) ∈ Q, then buyer b is rationed in his demand of commodity `, and when maximizing

his utility, he takes into account the constraint xb` = 0. The set Q is determined endoge-

nously in an equilibrium and could be equal to the empty set in which case no demand

rationing is present. For b ∈ B, we define Qb = {` ∈ L | (b, `) ∈ Q} and for ` ∈ L, we

define Q` = {b ∈ B | (b, `) ∈ Q}. The set Qb yields the commodities in which buyer b is

rationed in his demand. The set Q` contains the buyers which are rationed in their demand

of commodity `.

In case the price floor p
`

is binding for some commodity `, its market may be cleared by

quantity adjustments. Since prices are downwards rigid, the quantity adjustments are on

the sellers’ side. Indeed, a seller may not face any demand for commodity ` when the price

is p
`
, although he is willing to sell commodity ` against price p

`
. Moreover, the price floor

prevents the price to go down. Under such circumstances, the seller faces supply rationing

of commodity `.

Let R ⊂ {(s, `) ∈ S × L | ` ∈ Ls} be the set of supply rationing constraints. The

collection of all such sets is denoted by R, so

R = {R ∈ 2S×L | for every (s, `) ∈ R, ` ∈ Ls}.

If (s, `) ∈ R, then seller s is rationed in his supply of commodity `, and when maximizing his

utility, he takes into account the constraint xs` = 0. The set R is determined endogenously

in an equilibrium and could be equal to the empty set in which case no supply rationing

is present. For s ∈ S, we define Rs = {` ∈ L | (s, `) ∈ R} and for ` ∈ L, we define

R` = {s ∈ S | (s, `) ∈ R}. The set Rs yields the commodities in which seller s is rationed in

his supply. The set R` contains the sellers which are rationed in their supply of commodity

`.

Given a price vector p ∈ {1} × RL and a set of rationing constraints Qb ⊂ Lb, the

budget set of a buyer b ∈ B is given by

γb(p,Qb) = {xb ∈ Xb | pxb ≤ 0, for every ` ∈ Qb, xb` = 0}.

The rationing constraints of buyers different from b are irrelevant for the budget set of

buyer b and are therefore suppressed in the definition of γb. The demand correspondence

δb of buyer b is defined by

δb(p,Qb) = arg max
xb∈γb(p,Qb)

ub(xb).
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The budget set γb(p,Qb) is non-empty as it contains (0, 0L) as an element. It follows that

δb(p,Qb) is non-empty, since monotonicity of the utility function in money implies that the

budget constraint can be defined with equality, and the maximization therefore takes place

over a non-empty finite set of elements.

Given a price vector p ∈ {1} × RL and a set of rationing constraints Rs ⊂ Ls, the

budget set of a seller s ∈ S is given by

γs(p,Rs) = {xs ∈ Xs | pxs ≤ 0, for every ` ∈ Rs, xs` = 0}.

The rationing constraints of sellers different from s are irrelevant for the budget set of seller

s and are therefore omitted in the definition of γs. The demand correspondence δs of seller

s is defined by

δs(p,Rs) = arg max
xs∈γs(p,Rs)

us(xs).

Using the same argument as before, it follows that δs(p,Rs) is non-empty.

Definition 5.1: A Drèze equilibrium of the economy E = (T, p, p̄, (ui)i∈I) is an element

(p∗, Q∗, R∗, x∗) ∈ ({1} × RL)×Q×R×X such that:

1. For every b ∈ B, x∗b ∈ δb(p∗, Q∗b).

2. For every s ∈ S, x∗s ∈ δs(p∗, R∗s).

3.
∑

i∈I x
∗i = (0, 0L).

4. For every ` ∈ L, p
`
≤ p∗` ≤ p̄`.

5. For every ` ∈ L, if p∗` < p̄`, then Q∗` = ∅.

6. For every ` ∈ L, if p∗` > p
`
, then R∗` = ∅.

7. For every ` ∈ L, Q∗` = ∅ or R∗` = ∅.

The first two conditions in Definition 5.1 reflect the standard optimizing behavior of the

buyers and the sellers. Buyers and sellers need only know the given prices and their

individual rationing scheme and need not consider the other individuals in making their

choices. The third condition expresses market clearing. The fourth condition rules out

exchange against prices violating the price controls. Condition 5 states that whenever the

price of a commodity ` is upwards flexible, i.e. strictly below the price ceiling p̄`, then

there is no rationing of the buyers. Instead, the standard price mechanism should result
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in higher prices when there is excess demand of commodity `. The price mechanism is

prevented from clearing the market for commodity ` whenever the price p∗` is equal to p̄`

and there is excess demand of commodity `. In such a case, rationing of buyers may occur

at equilibrium. Similarly, Condition 6 states that whenever the price of a commodity ` is

downwards flexible, i.e. strictly above the price floor p
`
, then there is no rationing of the

sellers. Instead, the standard price mechanism should result in lower prices when there is

excess supply of commodity `. The price mechanism is prevented from clearing the market

for commodity ` whenever the price p∗` is equal to p
`

and there is excess supply of commodity

`. In such a case, rationing of sellers may occur at equilibrium. Condition 7 expresses that

markets are transparent. There is not simultaneously rationing on the supply and on the

demand of a given commodity `.

When we apply Definition 5.1 to the case with only one commodity, the analysis reduces

to the standard textbook analysis of the effects of price floors and price ceilings based on

supply and demand curves. Perloff (2012), for instance, considers a price ceiling p̄ on

gasoline, a measure taken by the U.S. government in 1973 and 1979 in response to reduced

supply of oil by OPEC. At p̄, which is chosen below the market clearing price for gasoline,

total demand for gasoline strictly exceeds total supply. The amount of gasoline demand

which is fulfilled is exactly equal to the total supply of gasoline at p̄, resulting in rationing

of all the demand in excess of total supply at p̄. This is exactly the same equilibrium as

the Drèze equilibrium resulting from Definition 5.1, except that in Definition 5.1 it is also

specified which buyers are going to be rationed. With a price ceiling on gasoline, but no

price floor, Condition 6 of Definition 5.1 specifies that R∗ = ∅, so there is no rationing on

the supply side. Total supply of gasoline is therefore equal to the total number of sellers

that are willing to supply at a price equal to p̄. By Condition 3 of Definition 5.1, this

will be equal to total demand for gasoline at a Drèze equilibrium. The needed reduction

in demand for gasoline is achieved by rationing some of the buyers, so including them in

Q∗` . More precisely, the number of buyers facing binding demand rationing is exactly equal

to the difference between total unrationed demand and total supply at p̄. The amount of

rationing of the long side of the market is determined by the short side.

There are no Drèze equilibria with a price below p̄. At such prices demand rationing

is ruled out by Condition 5. Since already at p̄ total unrationed demand exceeds total

supply, the same is true at prices lower than p̄, and market clearing is not possible. Unlike

Definition 5.1, the standard textbook analysis does not take into account that other markets

are going to be affected by the price ceiling on gasoline, and ignores all general equilibrium

effects.

When we apply Definition 5.1 to the marriage market, the set Qb specifies all the women

that are unavailable for man b, and, similarly, Rs specifies all the men that are not available
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for woman s. Condition 4 states that no monetary transfers are made. Conditions 5 and

6 are vacuous. By Condition 7 it is ruled out at equilibrium that there is a pair (b, s) of

a man and a woman such that simultaneously (b, s) ∈ Qb and (b, s) ∈ Rs. It holds that

woman s can be proposed to by man b or that man b can be proposed to by woman s.

Condition 1 now expresses that all men choose the best available woman and Condition 2

that all women choose the best available man. If a man or a woman does not face any

rationing constraints, then he or she is free to choose the best possible partner. Condition 3,

market clearing, is now equivalent to the requirement that if man b chooses woman s, then

also woman s chooses man b, and vice versa. Rationing of men and women is determined

endogenously at equilibrium and is a consequence of men or women being in excess demand

of the opposite sex.

Definition 5.1 extends the equilibrium concept as developed in Drèze (1975). Drèze’s

concept has been defined for economies satisfying the standard assumptions of traditional

general equilibrium analysis with divisible commodities, thereby ruling out the discrete

matching with contracts case as studied in this paper.

In the absence of price controls, so when, for every ` ∈ L, p
`

= −∞ and p̄` = +∞,
Definition 5.1 reduces to the standard definition of a Walrasian equilibrium. It follows

immediately from Conditions 5 and 6 that Q∗ = R∗ = ∅, so Condition 7 is automatically

satisfied. Condition 4 becomes void. What remains are the two standard Conditions 1

and 2, expressing optimization without rationing constraints, and the market clearing

Condition 3.

For the assignment model with price controls and quasi-linear utility functions as pre-

sented in Example 2.3, Talman and Yang (2008) define the concept of constrained Wal-

rasian equilibrium. It is not difficult to show that the application of the Drèze equilibrium

of Definition 5.1 to the economy of Example 2.3 coincides with the constrained Walrasian

equilibrium.

Andersson and Svensson (2014) consider the model of house allocation with price con-

trols of Example 2.4. They propose the concept of a rationing price equilibrium and specify

an allocation rule that always selects a rationing price equilibrium. The allocation rule is

shown to be constrained efficient and non-manipulable for almost all preference profiles.

For the extreme cases in which rents are fully flexible or completely fixed, the allocation

rule coincides with the one from the competitive price mechanism of Demange and Gale

(1985) and the deferred acceptance algorithm of Gale and Shapley (1962), respectively.

The rationing price equilibrium is a Drèze equilibrium, but not vice versa. Indeed, a ra-

tioning price equilibrium satisfies by definition a particular constrained efficiency criterion,

which is closely related to Pareto efficiency from the buyers’ point of view. In the absence

of price rigidities, this boils down to selecting the competitive equilibrium at minimum
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Walrasian prices, whereas Definition 5.1 would comprise all competitive equilibria. Ander-

sson and Svensson (2014) also require that rationing constraints correspond to some given

priorities, whereas Definition 5.1 allows for all rationing constraints compatible with the

seven conditions.

Our next example illustrates the concept of Drèze equilibrium for the model of quality

competition in the presence of price controls of Example 2.5. We consider again the

economy with primitives derived from Table 1 and consider a uniform price floor f equal

to 8.5 for all qualities. Since at prices greater than or equal to f, buyers b2 and b3 always

express a demand of (0, 0L), the economy essentially reduces to an economy with one buyer,

b1, and three sellers.

Let (p∗, Q∗, R∗, x∗) be a Drèze equilibrium. Since price ceilings are equal to +∞ for all

qualities, Condition 5 specifies that Q∗ = ∅. Condition 7 of Definition 5.1 is then trivially

satisfied.

Suppose p∗1 > 8.5. Since p∗1 > f, there is no rationing of quality 1 according to Condi-

tion 6 of Definition 5.1. Every seller strictly prefers selling quality 1 to being inactive. Total

supply of all qualities together is then equal to 3. Since buyers b2 and b3 are not willing to

buy any quality at prices greater than or equal to 8.5, total demand of qualities is less than

or equal to 1. This violates the market clearing Condition 3 of Definition 5.1. Consequently,

it holds that p∗1 = 8.5. By exactly the same argument, it follows that p∗2 = 8.5.

There are two possibilities for p∗3. It holds that either p∗3 > 8.5 or p∗3 = 8.5. In the former

case, R∗3 = ∅ and total supply of qualities is at least two units, which strictly exceeds total

demand of qualities, being equal to at most one unit. We obtain p∗3 = 8.5. Since there

is no demand for qualities 1 and 2 when p∗1 = 8.5, whereas all sellers prefer the supply

of qualities 1 and 2 to the supply of quality 3, Condition 3 of Definition 5.1 implies that

R∗1 = R∗2 = {s1, s2, s3}.
Essentially, there are two Drèze equilibria. In both equilibria, buyer b1 demands one

unit of quality 3. In one equilibrium, seller s1 supplies one unit of quality 3 against a price

p∗3 = 8.5 and s2 ∈ R∗3, and in the other equilibrium seller s2 supplies one unit of quality 3

against a price p∗3 = 8.5 and s1 ∈ R∗3. Whether s3 belongs to R∗3 or not is irrelevant, since

the cost of producing quality 3 is equal to 9 for s3, so exceeds p∗3 and there is no supply of

quality 3 by seller s3 in either case.

In both equilibria there are trades with a positive surplus which are not carried out,

since they require a price below the price floor. Also, the partners involved in the single

equilibrium trade would both benefit from trading a lower quality against a price below the

price floor. The equilibrium where quality 3 is supplied to b1 by s2 is not even constrained

efficient, as the equilibrium where quality 3 is supplied to b1 by s1 leads to a strictly higher

sum of utilities. The equilibrium where quality 3 is supplied to b1 by s1 is constrained
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efficient.

It is well-documented in the literature with divisible commodities that price controls and

price regulations lead to various kinds of inefficiencies. Bulow and Klemperer (2012) show

in a partial equilibrium context that price controls always reduce consumer surplus when

demand is convex and less elastic than supply, or when demand is log convex irrespective of

the elasticity of supply. Herings and Konovalov (2009) demonstrate in a general equilibrium

context that under mild conditions price controls induce allocations that are conducive to

Pareto improvements even when respecting the price controls. Such a result cannot be

extended in a straightforward way to the context of this paper. The Drèze equilibrium

where quality 3 is supplied to b1 by s1 is constrained efficient and would remain so after

small perturbations to the underlying economy.

6 Equivalence of Stable Outcomes and Drèze Equilib-

ria

Shapley and Shubik (1971) consider the assignment game and prove that the set of stable

payoffs coincides with the set of competitive equilibrium payoffs. This relationship be-

tween stable outcomes and competitive equilibria has been substantially generalized, most

notably in the direction of set-ups with many-to-many matching or even trading networks

as demonstrated by Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013). These

results are invariably derived in a setting with unlimited monetary transfers, or, equiv-

alently, absence of price controls. In this section, we obtain a fully general equivalence

between stable outcomes and Drèze equilibria. This equivalence boils down to the equiv-

alence with competitive equilibria in the absence of price controls, presents a completely

new result for cases with no monetary transfers like the marriage problem, and also deals

with all intermediate cases like wage or rent controls.

The concepts of stable outcome and Drèze equilibrium are not directly comparable. On

the one hand, a stable outcome provides more information, as it is specified who trades

with whom. On the other hand, in a Drèze equilibrium also the prices of commodities that

are not traded are specified and a Drèze equilibrium specifies explicit rationing constraints.

Although it is not possible to directly compare a stable outcome to a Drèze equilibrium,

we can compare the resulting allocations. In fact, this is all that matters from a welfare

point of view.

Consider an economy E = (T, p, p̄, (ui)i∈I). The set of allocations corresponding to

stable outcomes is Xso,

Xso = {x ∈ X | there is a stable outcome A such that ξ(A) = x}.
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The set of Drèze equilibrium allocations is XD,

XD = {x∗ ∈ X | there is (p∗, Q∗, R∗) such that (p∗, Q∗, R∗, x∗) is a Drèze equilibrium}.

The next result shows that if A is a stable outcome, then there is a Drèze equilibrium with

allocation ξ(A).

Theorem 6.1: Consider an economy E = (T, p, p̄, (ui)i∈I). It holds that Xso ⊂ XD.

Proof: See Appendix.

Consider some stable outcome A. Step 1 in the proof shows that each commodity in

λ(A) trades at a single price. Indeed, for every y, y′ ∈ A such that λ(y) = λ(y′) it holds

that µ(y) = µ(y′). In the quality competition model, for instance, a single quality cannot

be part of two contracts involving different amounts of money. Intuitively, whenever two

contracts involve different amounts of money, the buyer paying the high amount wants

to match with the seller receiving the low amount, and write a contract with an amount

of money somewhere in the middle. Since T has a product structure, such a match is

feasible. This makes it possible to use the stable outcome A in the construction of a Drèze

equilibrium, where a commodity trades against a single price by definition. The price of a

commodity ` ∈ λ(A) is denoted by p∗` .

For ` ∈ L and b ∈ β(Ȳ `), the extended real number rb` denotes the reservation value of

commodity ` for buyer b. By definition, it is equal to the value ofm for which ub(−m, e(`)) =

ub(x∗b), where x∗b is the consumption bundle of buyer b as induced by the stable outcome

A.1 The highest reservation value among all buyers in β(Ȳ `) is denoted by rB` . Similarly,

for ` ∈ L and s ∈ σ(Ȳ `), rs` denotes the reservation value of commodity ` for seller s, so

us(rs` ,−e(`)) = us(x∗s), and rS` denotes the lowest reservation value among all sellers in

σ(Ȳ `).

In Step 3 of the proof of Theorem 6.1 it is shown that for any traded commodity

` ∈ λ(A) at least one of three cases holds. The first possibility is that the price p∗` against

which commodity ` is traded is equal to the price floor p
`
, the lowest reservation value

among sellers rS` is less than or equal to p
`
, and the highest reservation value among buyers

rB` is equal to p
`
. In this case, a seller s may have a reservation value rs` < p

`
, but the price

floor p
`

prevents a price decrease and the seller is rationed on his supply of commodity `.

Since none of the buyers b has a reservation value rb` > p∗` , there is no need for rationing

buyers on their demand of commodity `.

The second possibility as described in Step 3 of the proof of Theorem 6.1 is that the

price p∗` against which commodity ` is traded is strictly in between the price floor p
`

and

1In the proof, we also deal carefully with the cases where ub(−m, e(`)) < ub(x∗b) for all m ∈ R and

ub(−m, e(`)) > ub(x∗b) for all m ∈ R.
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the price ceiling p̄`, and equal to the lowest reservation value among sellers rS` and the

highest reservation value among buyers rB` . This case corresponds to a market without

effective price controls and absence of rationing. It will always occur when the price floor

p
`

is equal to −∞ and the price ceiling p̄` is equal to +∞.
The third possibility of Step 3 parallels the first case, with the role of buyers replaced

by sellers. The price p∗` against which commodity ` is traded is equal to the price ceiling

p̄`, the lowest reservation value among sellers rS` is equal to p̄`, and the highest reservation

value among buyers rB` is greater than or equal to p̄`. In this case, a buyer b may have a

reservation value rb` > p̄`, but the price ceiling p̄` prevents a price increase and the buyer is

rationed on his demand of commodity `. Since none of the sellers s has a reservation value

rs` < p∗` , there is no need for rationing sellers on their supply of commodity `.

In degenerate cases, the first and the third possibility can occur simultaneously. In this

case the price floor must be equal to the price ceiling, the lowest reservation value among

sellers, and the highest reservation value among buyers. The behavior of the market

resembles the one of the second possibility. There are no effective price controls and there

is absence of rationing.

In Step 4 of the proof of Theorem 6.1 it is shown that for any non-traded commodity

` ∈ L \ λ(A) at least one of three cases holds. The first possibility is that the highest

reservation value rB` among buyers for commodity ` is less than or equal to p
`
. In that

case, the price floor is so high that all potential trade in commodity ` is killed off. The

lowest reservation value among sellers of commodity ` may be higher or lower than rB` .

In case it is lower, welfare gains could be achieved by contracts among such a seller and

a buyer with a strictly higher reservation value. Since rS` can be strictly below the price

floor p
`
, supply rationing of sellers may occur in equilibrium. Since rB` ≤ p

`
, there will

be no simultaneous rationing of the demand of buyers. The equilibrium price p∗` of such

a non-traded commodity can be set equal to p
`

if p
`
> −∞. If p

`
= −∞, and therefore

rB` = −∞, so none of the buyers have an interest to acquire commodity ` against any price,

p∗` can be set equal to any value less than or equal to the price ceiling p̄` and the lowest

reservation value among all sellers rS` .

The second possibility in Step 4 of the proof of Theorem 6.1 concerns the case where

the highest reservation value among buyers rB` is strictly above the price floor p
`

and the

lowest reservation value among sellers rS` is strictly below the price ceiling p̄`, and, moreover,

rB` < rS` . The market for such a commodity resembles a market without price controls and

does not involve any rationing. Commodity ` does simply not admit a profitable trade

among a buyer and a seller in this case. The equilibrium price of such a commodity can

be any value in between rB` and rS` .

The third possibility of Step 4 is the analogue of the first possibility with buyers replaced
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by sellers. The lowest reservation value rS` among sellers of commodity ` is greater than or

equal to p̄`. The price ceiling is so low that all potential supply of commodity ` is wiped

out. If the highest reservation value among buyers exceeds p̄`, then demand rationing of

such buyers occurs. The equilibrium price of such a commodity is taken equal to p̄` if

p̄` < +∞ and equal to any value greater than or equal to p
`

and rB` otherwise.

The first and third possibility of Step 4 can occur simultaneously, also in non-degenerate

cases. In this case, the market for commodity ` is characterized by the absence of any supply

and demand.

Theorem 4.3 asserts that a stable outcome exists. Using Theorem 6.1, we can then

infer the existence of a Drèze equilibrium as a corollary.

Corollary 6.2: Consider an economy E = (T, p, p̄, (ui)i∈I). A Drèze equilibrium ex-

ists.

The next result presents the converse of Theorem 6.1. If (p∗, Q∗, R∗, x∗) is a Drèze

equilibrium, then there is a stable outcome A such that ξ(A) = x∗.

Theorem 6.3: Consider an economy E = (T, p, p̄, (ui)i∈I). It holds that XD ⊂ Xso.

Proof:

Step 1. Definition of a stable outcome.

By Corollary 6.2, the setXD is non-empty. Take some x∗ ∈ XD and choose (p∗, Q∗, R∗) ∈
({1} × RL) × Q × R such that (p∗, Q∗, R∗, x∗) is a Drèze equilibrium. For every ` ∈ L

with x∗` 6= 0, Condition 3 of Definition 5.1 implies that there are exactly as many buyers as

sellers. Match every buyer b ∈ B with x∗b` = 1 to a seller s(b) ∈ S with x
∗s(b)
` = −1, so in

particular b 6= b′ implies s(b) 6= s(b′), and define a contract yb = (b, s(b), `, p∗`). We define

A as the set of all such contracts, A = ∪{b∈B|x∗b 6=(0,0L)}{yb}. It clearly holds that, for every

i ∈ I, U i(A) = ui(x∗i), and ξ(A) = x∗.

Step 2. For every i ∈ I, Ai ∈ Ci(A).

Suppose for some b ∈ B, Ab 6∈ Cb(A), so ub(0, 0L) > ub(x∗b), a contradiction to x∗b ∈
δb(p∗, Q∗b). Consequently, it holds for every b ∈ B that Ab ∈ Cb(A).

Suppose for some s ∈ S, As 6∈ Cs(A), so us(0, 0L) > us(x∗s), a contradiction to x∗s ∈
δs(p∗, R∗s). Consequently, it holds for every s ∈ S that As ∈ Cs(A).
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It follows that Condition 1 of Definition 3.1 is satisfied.

Step 3. For every z ∈ Ȳ it holds that U b({z}) ≤ U b(A) or U s({z}) ≤ U s(A).

Suppose there is z = (b, s, `,m) ∈ Ȳ such that U b({z}) > U b(A) = ub(x∗b) and

U s({z}) > U s(A) = us(x∗s). By Condition 7 of Definition 5.1, it holds that Q∗` = ∅ or

R∗` = ∅.
Consider the case with Q∗` = ∅ first. Since x∗b ∈ δb(p∗, Q∗b) and U b({z}) > ub(x∗b), it

holds that (−m, e(`)) 6∈ γb(p∗, Q∗b). Since there is no demand rationing of commodity `, it

now follows that m < p∗` . Since z ∈ Ȳ , this implies in turn that p
`
< p∗` , so, according to

Condition 6 of Definition 5.1, R∗` = ∅. Since there is no supply rationing of commodity `,

U s({z}) > us(x∗s) implies that m > p∗` , and we have obtained a contradiction.

Consider next the case with R∗` = ∅. Since x∗s ∈ δs(p∗, R∗s) and U s({z}) > us(x∗s), it

holds that (m,−e(`)) 6∈ γs(p∗, R∗s). Since there is no supply rationing of commodity `, it

now follows that m > p∗` . Since z ∈ Ȳ , this implies in turn that p̄` > p∗` , so, according to

Condition 5 of Definition 5.1, Q∗` = ∅. Since there is no demand rationing of commodity `,

U b({z}) > ub(x∗b) implies that m < p∗` , and again we have obtained a contradiction.

It follows that Condition 2 of Definition 3.1 is satisfied.

The outcome A is stable and therefore ξ(A) = x∗ ∈ Xso. 2

Combining the results of Theorem 6.1 and Theorem 6.3 leads to the following corollary.

Corollary 6.4: Consider an economy E = (T, p, p̄, (ui)i∈I). It holds that Xso = XD.

It is not hard to understand the equivalence of Corollary 6.4 for the marriage problem

of Example 2.1. Consider some stable outcome. For every (b, s) ∈ B × S, it holds that

p∗b,s = 0. For each man b, let Q∗b be the set of all women that are strictly preferred by

b to the woman matched to b in the stable outcome. Similarly, for each woman s, let

R∗s be the set of all men that are strictly preferred by s to the man matched to s in the

stable outcome. These rationing constraints lead to sets of feasible partners for all men

and women. Demand and supply of men and women will single out the partner as assigned

in the stable outcome. Market clearing is obvious. It remains to be verified that there is

no (b, s) ∈ B × S such that (b, s) ∈ Q∗b and (b, s) ∈ R∗s. By definition of Q∗b and R∗s, this

would mean that s is strictly preferred by b to his match in the stable outcome and b is

strictly preferred by s to her match in the stable outcome, and would contradict that we

were starting from a stable outcome.

Consider some Drèze equilibrium for the marriage problem. The equilibrium allocation
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provides a unique matching between the men and the women and, since there are no

monetary transfers, a unique outcome. Suppose the outcome is not stable. Then there is

(b, s) ∈ B × S such that b strictly prefers s to his match in the outcome, and s strictly

prefers b to her match in the outcome. Since the outcome is induced by the equilibrium

allocation, which is in turn based on demand and supply, it follows that (b, s) ∈ Q∗b and

(b, s) ∈ R∗s, violating Condition 7 of Definition 5.1.

The matching concept of stability and the market equilibrium concept of Drèze equilib-

rium lead to exactly the same conclusions as far as allocations are concerned. The result is

true in a set-up with unrestricted monetary transfers, thereby generalizing the equivalence

of stable outcomes in the assignment model of Shapley and Shubik (1971) and Walrasian

equilibrium outcomes to the matching with contracts set-up of this paper. The result

holds in a set-up without any monetary transfers, so it presents an equivalence between

stable outcomes in the marriage problem of Gale and Shapley (1962) and an appropriately

specified market equilibrium concept. The result is valid in a set-up with limited mon-

etary transfers, so for models as considered in Talman and Yang (2008), Hatfield, Plott,

and Tanaka (2012b) and Andersson and Svensson (2014) the set of stable outcomes is

equivalent to the set of Drèze equilibria.

7 Conclusion

This paper considers a discrete matching with contracts framework where contracts are

subject to price controls. The framework is sufficiently general to admit many important

models as special cases, like for instance the marriage problem of Gale and Shapley (1962),

the assignment model without price controls of Shapley and Shubik (1971), the assignment

model subject to price controls as in Talman and Yang (2008) or Andersson and Svensson

(2014), and the quality competition model subject to price controls of Hatfield, Plott, and

Tanaka (2012b).

The paper presents an adjustment process that always terminates with a stable outcome

for the discretized version of the model. For the marriage problem, the adjustment process

coincides with the deferred acceptance algorithm, for the assignment model without price

controls, the adjustment process coincides with the approximate auction mechanism as dis-

cussed in Section V of Demange, Gale, and Sotomayor (1986), and in the case without ties,

the adjustment process coincides with the generalized Gale-Shapley algorithm of Hatfield

and Milgrom (2005). A limit argument can now be used to demonstrate the existence of a

stable outcome in a model without a smallest monetary unit.

The paper proceeds by developing an equilibrium concept for the framework under

consideration. In the presence of price floors and price ceilings, rationing may be needed to
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clear the markets. In the equilibrium approach, rationing constraints cannot be arbitrary.

Rationing on the demand side is only allowed in the presence of price ceilings and rationing

on the demand side only in the presence of price floors. Rationing on supply and demand

cannot occur simultaneously in a given market: markets are transparent. Buyers and

sellers take prices and rationing constraints as given and maximize their utility given these

constraints. At equilibrium, prices and rationing schemes are endogenously determined to

equalize supply and demand of all commodities. The equilibrium concept is an extension

of the concept of Drèze (1975) as developed for economies with divisible commodities.

The properties of the model with divisible commodities and the discrete set-up considered

here are not the same. For instance, in the model with divisible commodities, under

weak assumptions, equilibria are not constrained efficient. In the model with indivisible

commodities, robust examples with constrained efficient equilibria can be constructed.

The relationship between solution concepts coming from matching theory and those

resulting from competitive analysis is an important topic of research. This paper con-

tributes to this literature by showing that the set of stable allocations according to the

matching approach is the same as the set of Drèze equilibrium allocations in the presence

of price controls like price floors or price ceilings. Since price floors can be set equal to

minus infinity and price ceilings to plus infinity, the case with absence of price floors and

price ceilings is a special case. In this case, Drèze equilibria are equivalent to Walrasian

equilibria and the result specializes to the equivalence between Walrasian equilibria and

stable outcomes. Since price floors and price ceilings can be both set equal to zero, the

case without monetary transfers is a special case as well. As an example, the set of Drèze

equilibria leads to a set of allocations that is equal to the one induced by stable outcomes

in the marriage problem. Finally, there are many cases of interest in between unlimited

monetary transfers and absence thereof, for instance, when studying the effects of mini-

mum wages or rent controls. It is comfortable to know that the matching approach and

the equilibrium approach lead to equivalent predictions in these cases as well.

There are at least three important generalizations of the current model where the theory

of competitive equilibrium with price rigidities could benefit from the matching approach

and where the question of equivalence between the approaches should be addressed. One

generalization is the extension to the case of many-to-many matching or the case where a

network of agents can trade indivisible commodities as in Hatfield, Kominers, Nichifor, and

Westkamp (2013). Already in the case of many-to-one matching, the condition that the

set of traders in a commodity has a product structure is not sufficient to guarantee that a

single commodity trades against a single price. One way to establish the equivalence result

in that case is to use personalized prices. Hatfield and Kominers (2012) show that without

continuous transfers, in markets that lack a vertical structure, stable outcomes may not
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exist. This suggests that results with price controls may not generalize so easily beyond

a-cyclical cases.

Price controls are often thought of as being a response to market failures like market

incompleteness, see Polemarchakis (1979) and in particular Drèze and Gollier (1993). The

main idea here is that in an incomplete markets set-up, fixed prices may offer insurance

against risks that is not provided by flexible price contracts. Herings and Polemarchakis

(2005) show that in an incomplete markets world it is generically possible to make Pareto

improvements by choosing appropriate price regulations. The question is then whether

the matching analysis can be extended to the incomplete markets case and whether in the

presence of market incompleteness, contracts with fixed prices could outperform contracts

with flexible prices.

Another reason to be interested in price rigidities is the observation that many com-

modity prices are sticky. Based on a detailed analysis on the distribution of the frequency

of price changes in Nakamura and Steinsson (2008), Nakamura and Steinsson (2010) report

that the median frequency of monthly price change across sectors in the U.S. economy is

8.7%, implying that the median duration of a particular price across sectors is around

one year. Citanna, Crès, Drèze, Herings, and Villanacci (2001) show that the presence

of price stickiness gives rise to coordination failures and multiplicity of equilibria. The

introduction of fiat money in general equilibrium models with price stickiness along the

lines as suggested by modern monetary theory as presented in Woodford (2003), results

in a high degree of real indeterminacy of equilibrium as is shown by Herings (2014). The

question is then whether in an extension of the matching approach allowing for fiat money

this indeterminacy still prevails and sharp predictions about the effects of monetary policy

on equilibrium outcomes are not possible.
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Appendix: Proof of Theorem 6.1

Theorem 6.1: Consider an economy E = (T, p, p̄, (ui)i∈I). It holds that Xso ⊂ XD.

Proof: Consider some x∗ ∈ Xso and let A be a stable outcome such that ξ(A) = x∗.

We prove the result in ten steps.

Step 1. A commodity trades at a single price: For every y, y′ ∈ A such that λ(y) = λ(y′)

it holds that µ(y) = µ(y′).

Suppose µ(y) 6= µ(y′) and without loss of generality assume µ(y) < µ(y′). Consider the

contract

z = (b, s, λ(y), 1
2
µ(y) + 1

2
µ(y′)),

where b = β(y′) and s = σ(y). Since

p
λ(y)
≤ µ(y) < 1

2
µ(y) + 1

2
µ(y′) < µ(y′) ≤ p̄λ(y),

and the set of traders in commodity ` has a product structure, it holds that z ∈ Ȳ . The

utilities corresponding to z are equal to

U b({z}) = ub(−1
2
µ(y)− 1

2
µ(y′), e(λ(y))) > ub(−µ(y′), e(λ(y′))) = U b(A),

U s({z}) = us(1
2
µ(y) + 1

2
µ(y′),−e(λ(y))) > us(µ(y),−e(λ(y))) = U s(A),

so Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

Consequently, for every y, y′ ∈ A such that λ(y) = λ(y′) it holds that µ(y) = µ(y′).

Step 2. Definition of prices for traded commodities and reservation values for all com-

modities.

For every ` ∈ λ(A), we denote the price at which ` is traded by p∗` , so for every y ∈ A
such that λ(y) = ` it holds that µ(y) = p∗` .

Consider some ` ∈ L and some b ∈ β(Ȳ `). If, for every m ∈ R, ub(−m, e(`)) > ub(x∗b),

then we define rb` = +∞ and ub(−∞, e(`)) = limm→+∞ u
b(−m, e(`)). Notice that by the

assumptions on ub, it holds that p̄` < +∞ in this case. It also holds that ub(−∞, e(`)) ≥
ub(x∗b). If, for every m ∈ R, ub(−m, e(`)) < ub(x∗b), then we define rb` = −∞ and

ub(+∞, e(`)) = limm→−∞ u
b(−m, e(`)). It holds that ub(+∞, e(`)) ≤ ub(x∗b). Otherwise,

let rb` ∈ R be such that ub(−rb` , e(`)) = ub(x∗b). We define rB` = maxb∈β(Ȳ `) r
b
` .
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Consider some ` ∈ L and some s ∈ σ(Ȳ `). If, for every m ∈ R, us(m,−e(`)) >

us(x∗s), then we define rs` = −∞ and us(−∞,−e(`)) = limm→−∞ u
s(m,−e(`)). Notice

that by the assumptions on us, it holds that p
`
> −∞ in this case. It also holds that

us(−∞,−e(`)) ≥ us(x∗s). If, for every m ∈ R, us(m,−e(`)) < us(x∗s), then we define rs` =

+∞ and us(+∞,−e(`)) = limm→+∞ u
s(m,−e(`)). It holds that us(+∞,−e(`)) ≤ us(x∗s).

Otherwise, let rs` ∈ R be such that us(rs` ,−e(`)) = us(x∗s). We define rS` = mins∈σ(Ȳ `) r
s
` .

It holds by definition that rb` = p∗` = rs` for every (b, s, `,m) ∈ A.

Step 3. For every ` ∈ λ(A) at least one of the following three cases holds:

1. p∗` = p
`

and rS` ≤ p
`

= rB` ,

2. p
`
< p∗` < p̄` and rS` = p∗` = rB` ,

3. p∗` = p̄` and rS` = p̄` ≤ rB` .

It follows from the definitions in Step 2 that, for every (b, s, `,m) ∈ A, rb` = p∗` = rs` , so

it follows that rS` ≤ p∗` ≤ rB` .

Consider some ` ∈ L. It clearly holds that a. p∗` = p
`
, or b. p

`
< p∗` < p̄`, or c. p∗` = p̄`.

Each of the Cases a, b, and c is considered in turn and shown to lead to at least one of the

Cases 1, 2, and 3 of Step 3.

Case a. p∗` = p
`
.

If rB` = p
`
, then Case 1 of Step 3 holds and we are done, so assume rB` > p

`
. We argue

that rS` = p
`
. Suppose not, then rS` ≤ p∗` = p

`
implies rS` < p

`
. Let b ∈ β(Ȳ `) be such that

rb` = rB` , let s ∈ σ(Ȳ `) be such that rs` = rS` , and consider the contract z = (b, s, `, p
`
).

Since the set of traders in commodity ` has a product structure, it holds that z ∈ Ȳ . The

utilities corresponding to z are equal to

U b({z}) = ub(−p
`
, e(`)) > ub(−rb` , e(`)) ≥ ub(x∗b),

U s({z}) = us(p
`
,−e(`)) > us(rs` ,−e(`)) ≥ us(x∗s),

so Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

Consequently, it holds that rS` = p
`
.

We argue next that p
`

= p̄`. Suppose not, then it holds that p
`
< p̄`. Let b ∈ β(Ȳ `)

be such that rb` = rB` , let s ∈ σ(Ȳ `) be such that rs` = rS` , and let m ∈ R be such that

p
`
< m < min{p̄`, rB` }. The contract z = (b, s, `,m) belongs to Ȳ since the set of traders

in commodity ` has a product structure and p
`
< m < p̄`. The utilities corresponding to z

are equal to

U b({z}) = ub(−m, e(`)) > ub(−rb` , e(`)) ≥ ub(x∗b),

U s({z}) = us(m,−e(`)) > us(p
`
,−e(`)) = us(rs` ,−e(`)) ≥ us(x∗s).
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Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

Consequently, it holds that p
`

= p̄`. Now Case 3 of Step 3 holds and we are done.

Case b. p
`
< p∗` < p̄`.

Suppose that Case 2 of Step 3 does not hold. We end up in Subcase (b.i). rS` < p∗` ≤ rB`
or Subcase (b.ii). rS` ≤ p∗` < rB` .

In Subcase (b.i), let b ∈ β(Ȳ `) be such that rb` = rB` , let s ∈ σ(Ȳ `) be such that rs` = rS` ,

and let m ∈ R be such that max{p
`
, rS` } < m < p∗` . The contract z = (b, s, `,m) belongs to

Ȳ since the set of traders in commodity ` has a product structure and p
`
< m < p̄`. The

utilities corresponding to z are equal to

U b({z}) = ub(−m, e(`)) > ub(−p∗` , e(`)) ≥ ub(−rb` , e(`)) ≥ ub(x∗b),

U s({z}) = us(m,−e(`)) > us(rs` ,−e(`)) ≥ us(x∗s),

so Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

In Subcase (b.ii), let b ∈ β(Ȳ `) be such that rb` = rB` , let s ∈ σ(Ȳ `) be such that rs` = rS` ,

and let m ∈ R be such that p∗` < m < min{p̄`, rB` }. The contract z = (b, s, `,m) belongs to

Ȳ since the set of traders in commodity ` has a product structure and p
`
< m < p̄`. The

utilities corresponding to z are equal to

U b({z}) = ub(−m, e(`)) > ub(−rb` , e(`)) ≥ ub(x∗b),

U s({z}) = us(m,−e(`)) > us(p∗` ,−e(`)) ≥ us(rs` ,−e(`)) ≥ us(x∗s),

so Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

Since both Subcases (b.i) and (b.ii) lead to a contradiction, our supposition is false, so

Case 2 of Step 3 holds and we are done.

Case c. p∗` = p̄`.

By an argument completely symmetric to the one of Case a, Case 1 or Case 3 of Step 3

can be shown to hold.

Step 4. For every ` ∈ L \ λ(A), at least one of the following three cases holds:

1. rB` ≤ p
`
,

2. p
`
< rB` ≤ rS` < p̄`,

3. rS` ≥ p̄`.

Suppose not. Then there is ` ∈ L \ λ(A) such that

rB` > p
`
, rS` < p̄`, and rB` > rS` .
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Take b ∈ β(Ȳ `) with rb` = rB` and s ∈ σ(Ȳ `) with rs` = rS` . Since rB` 6= −∞ and rS` 6= +∞,
it holds that ub(−rb` , e(`)) ≥ ub(x∗b) and us(rs` ,−e(`)) ≥ us(x∗s). Let m ∈ R be such that

p
`
≤ m ≤ p̄` and rS` < m < rB` . Since p

`
≤ m ≤ p̄` and the set of traders in commodity `

has a product structure, it holds that z = (b, s,m, `) ∈ Ȳ . The utilities corresponding to z

are equal to

U b({z}) = ub(−m, e(`)) > ub(−rb` , e(`)) ≥ ub(x∗b),

U s({z}) = us(m,−e(`)) > us(rs` ,−e(`)) ≥ us(x∗s),

so Condition 2 of Definition 3.1 is violated and the outcome A is not stable, a contradiction.

The result as stated in Step 4 follows.

Step 5. Definition of prices for non-traded commodities.

Choose any ` ∈ L \ λ(A). Using Step 4, exactly one of the following three cases holds.

Case 1. rB` ≤ p
`
. If p

`
> −∞, then define p∗` = p

`
. Consider the case p

`
= −∞. Since

p
`

= −∞, it holds that rS` > −∞. Define p∗` = min{p̄`, rS` , 0}.
Case 2. p

`
< rB` ≤ rS` < p̄`. Define p∗` = (rB` + rS` )/2.

Case 3. p
`
< rB` and p̄` ≤ rS` . If p̄` < +∞, then define p∗` = p̄`. If p̄` = +∞, then define

p∗` = rB` .

Step 6. Definition of rationing constraints.

For every buyer, we introduce rationing constraints for those commodities that he does

not trade but would like to trade and which have a price equal to the price ceiling,

Q∗ = {(b, `) ∈ B × L | ` ∈ Lb \ λ(Ab) and rb` > p∗` = p̄`}. (7.1)

For every seller, we introduce rationing constraints for those commodities that he does

not trade but would like to trade and which have a price equal to the price floor,

R∗ = {(s, `) ∈ S × L | ` ∈ Ls \ λ(As) and rs` < p∗` = p
`
}. (7.2)

Step 7. (p∗, Q∗, R∗, x∗) satisfies Condition 1 of Definition 5.1.

Consider some b ∈ B. Suppose x∗b /∈ δb(p∗, Q∗b). Take some xb ∈ δb(p∗, Q∗b). It follows

that xb 6= 0 since otherwise Ab /∈ Cb(A), thereby violating Condition 1 of Definition 3.1.

Let ` ∈ Lb be such that xb` = 1. It follows that ` /∈ Q∗b. By (7.1) it must be that ` ∈ λ(Ab)

or rb` ≤ p∗` or p∗` < p̄`. The first two cases imply ub(xb) = ub(x∗b) and ub(xb) ≤ ub(x∗b),

respectively, leading to a contradiction. For the last case we distinguish two subcases: (i)

` ∈ Lb \ λ(A) and (ii) ` ∈ λ(A).
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For subcase (i), using p∗` < p̄`, it follows from the definition in Step 5 that rB` ≤ p∗` . At

the same time, ub(xb) > ub(x∗b) implies p∗` < rb` ≤ rB` , so we have obtained a contradiction.

For subcase (ii), since ub(xb) > ub(x∗b), it holds that p∗` < rb` ≤ rB` , so Cases 1 and 2 of

Step 3 do not hold. Since p∗` < p̄`, Case 3 of Step 3 is violated as well, so we have obtained

a contradiction. Consequently, it holds that x∗b ∈ δb(p∗, Q∗b).

Step 8. (p∗, Q∗, R∗, x∗) satisfies Condition 2 of Definition 5.1.

Consider some s ∈ S. Suppose x∗s /∈ δs(p∗, R∗s). Take some xs ∈ δs(p∗, R∗s). It follows

that xs 6= 0 since otherwise As /∈ Cs(A), thereby violating Condition 1 of Definition 3.1.

Let ` ∈ Ls be such that xs` = 1. It follows that ` /∈ R∗s. By (7.2) it must be that ` ∈ λ(As)

or rs` ≥ p∗` or p∗` > p
`
. The first two cases imply us(xs) = us(x∗s) and us(xs) ≤ us(x∗s),

respectively, leading to a contradiction. For the last case we distinguish two subcases: (i)

` ∈ Ls \ λ(A) and (ii) ` ∈ λ(A).

For subcase (i), using p∗` > p
`
, it follows from the definition in Step 5 that rS` ≥ p∗` . At

the same time, us(xs) > us(x∗s) implies p∗` > rs` ≥ rS` , so we have obtained a contradiction.

For subcase (ii), since us(xs) > us(x∗s), it holds that p∗` > rs` ≥ rS` , so Cases 2 and 3 of

Step 3 do not hold. Since p∗` > p
`
, Case 1 of Step 3 is violated as well, so we have obtained

a contradiction. Consequently, it holds that x∗s ∈ δs(p∗, R∗s).

Step 9. (p∗, Q∗, R∗, x∗) satisfies Conditions 3, 4, 5, and 6 of Definition 5.1.

It follows from (3.1) that∑
i∈I

x∗i =
∑
i∈I

ξi(A) = 0,

and therefore Condition 3 of Definition 5.1 is satisfied.

The definition of prices for traded commodities in Step 2 implies that for every ` ∈ λ(A),

p
`
≤ p∗` ≤ p̄`. The definition of prices for non-traded commodities in Step 5 implies that

for every ` ∈ L \ λ(A), p
`
≤ p∗` ≤ p̄`. Therefore, Condition 4 of Definition 5.1 is satisfied.

It follows from (7.1) that, for every ` ∈ L, if p∗` < p̄`, then Q∗` = ∅, and therefore

Condition 5 of Definition 5.1 is satisfied. It follows from (7.2) that, for every ` ∈ L, if

p∗` > p
`
, then R∗` = ∅, and therefore Condition 6 of Definition 5.1 is satisfied.

Step 10. (p∗, Q∗, R∗, x∗) satisfies Condition 7 of Definition 5.1.

Suppose there is ` ∈ L such that Q∗` 6= ∅ and R∗` 6= ∅. From (7.1) and (7.2) it follows

that there is b ∈ B and s ∈ S such that p
`

= p∗` = p̄` and rs` < p∗` < rb` , so in particular
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rS` < p∗` < rB` . If ` ∈ λ(A), then none of the cases in Step 3 holds, a contradiction. If

` ∈ L \ λ(A), then none of the cases in Step 4 holds, a contradiction. Consequently, for

every ` ∈ L, Q∗` = ∅ or R∗` = ∅, and Condition 7 of Definition 5.1 is satisfied.

We conclude that (p∗, Q∗, R∗, x∗) is a Drèze equilibrium and therefore x∗ ∈ XD. 2
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