Single Peaked Preferences

It is proved that, among all restricted preference domains that guarantee consistency (i.e. transitivity) of pairwise majority voting, the single-peaked domain is the only minimally rich and connected domain that contains two completely reversed strict preference orders. It is argued that this result explains the predominant role of single-peakedness as a domain restriction in models of political economy and elsewhere. The main result has a number of corollaries, among them a dual characterization of the single-dipped domain; it also implies that a single-crossing (‘order-restricted’) domain can be minimally rich only if it is a subdomain of a single-peaked domain. The main conclusions are robust as they apply both to strict and weak preference orders.

Prof. Dr. Clemens Puppe: clemens.puppe∂