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1 Introduction

The model of abstract binary Arrowian aggregation introduced by Wilson (1975), and
further developed by Rubinstein and Fishburn (1986), provides a general framework
for studying the problem of aggregating sets of logically interconnected propositions,
a problem that has recently received some attention in the literature on judgement
aggregation, following List and Pettit (2002). A great variety of aggregation problems
can be analyzed in this framework, among them the classical preference aggregation
problem and the problem of strategy-proof social choice on generalized single-peaked
domains.

In this paper, we shall adopt a “property space” formulation of the abstract aggrega-
tion framework. An aggregation problem is characterized by a set of evaluations which
are described in terms of a family of binary properties, or equivalently, in terms of a
family of yes/no-issues. Each evaluation corresponds to a unique combination of prop-
erties, or yes/no-evaluations. The property space formulation is characterized by an
extensional view of properties as sets of evaluations. Crucially, the issues are logically
interrelated so that some combinations of properties are inconsistent. An aggregator
maps profiles of evaluations to “social” evaluations. An aggregator is called Arrowian
if it satisfies a property space analogue of the familiar independence condition and
respects unanimity. To enable a unifying characterization of the class of aggregators,
we assume in addition that they be monotone, i.e. that they respond non-negatively to
the individual evaluations. For Arrowian (i.e. independent) aggregators, monotonicity
is extremely natural, and it is hard to see how non-monotone Arrowian aggregators
could be of interest in practice.1

The program of the paper is to characterize those problems (property spaces) that
admit monotone Arrowian aggregators satisfying various additional properties of inter-
est, such as non-dictatorship, local non-dictatorship, anonymity and neutrality.

Our first result, Theorem 1, characterizes those problems that admit only dictatorial
Arrowian aggregators in terms of a condition called “total blockedness.” Many, but by
far not all, interesting aggregation problems are totally blocked.

1Nonetheless, not least in view of the fact that monotonicity plays no role in Arrow’s original
theorem, there is an obvious technical interest in studying non-monotone Arrowian aggregators; see
in particular Dokow and Holzman (2010a) and Dietrich and List (2007).
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While this result ensures that if an aggregation problem is not totally blocked non-
dictatorial monotone Arrowian aggregators exist, those may still be “almost dictatorial”
by giving almost all decision power to a single agent, or by giving all decision power
on some issues to one agent and all decision power on all other issues to another agent.
Thus, the negation of total blockedness cannot be viewed as securing genuine possibility
results. The second main result of the paper, Theorem 2, therefore characterizes those
problems that admit anonymous and monotone Arrowian aggregators, ensuring that
all agents have equal influence on the chosen outcome. It turns out that the problems
that admit anonymous aggregators are exactly those that admit locally non-dictatorial
aggregators.

As illustrated by an example, the characterizing condition for the existence of anony-
mous monotone Arrowian aggregators is rather intricate. The intricacy derives from
the existence of contrived cases in which anonymous aggregation rules exist only for
an odd number of agents. A simpler and more satisfying characterization is obtained
for problems admitting anonymous monotone Arrowian aggregators for an arbitrary
number of agents (Theorem 3).

While anonymous aggregation rules treat agents symmetrically, they typically treat
social states asymmetrically, for instance by applying different quotas to different issues.
We therefore finally characterize the circumstances under which monotone Arrowian
aggregation is compatible with different notions of neutrality, i.e. symmetric treatment
of social states (Theorem 4).

The remainder of this paper is organized as follows. The following Section 2 intro-
duces our framework and notation; it also presents the characterization of all monotone
Arrowian aggregators in terms of the Intersection Property obtained in Nehring and
Puppe (2007). Section 3 contains the main results.

Section 4 presents two applications to the aggregation of preferences on restricted
domains.2 The first is to the possibility of strategy-proof social choice on domains
of generalized single-peaked preferences. Using the framework developed in Nehring
and Puppe (2007) we show how the characterization results of the present paper entail
corresponding characterizations of the domains of generalized single-peaked preferences
that admit non-dictatorial, locally non-dictatorial, anonymous and neutral strategy-
proof social choice functions, respectively.

We conclude by presenting an application to classical “concrete” Arrowian aggre-
gation on restricted domains. Specifically, we consider the aggregation of single-peaked
orderings on an arbitrary connected graph into a social ordering. We show that all
monotone Arrowian aggregators are dictatorial if the graph is bi-connected, i.e. if it
remains connected even after removing any single vertex (and all edges connecting
it); moreover, there exist locally non-dictatorial monotone Arrowian aggregators if and
only if the underlying graph is a line (Theorem 6). Thus, in the context of aggregating
single-peaked orderings on a graph into a linear social ordering possibility results are
confined to the simple (and well-studied) case of a linear graph.

All proofs not provided in the text are collected in the appendix.
2A number of other applications are discussed throughout the text, for further examples see the

survey article by List and Puppe (2009).
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2 Framework and Basic Results

2.1 Property Spaces: Definition

A property space is a pair (X,H), where X is a non-empty and finite set of objects
(“evaluations”), and H is a collection of subsets of X satisfying
H1 H ∈ H ⇒ H 6= ∅,
H2 H ∈ H ⇒ Hc ∈ H,
H3 for all x 6= y there exists H ∈ H such that x ∈ H and y 6∈ H,
where, for any S ⊆ X, Sc := X \ S denotes the complement of S in X. The elements
H ∈ H are referred to as properties. Condition H1 is a simple non-triviality condition,
while condition H2 ensures that a property space is closed under negation. A pair
(H,Hc) as also referred to as an issue. Condition H3 requires that two evaluations
are distinguished by at least one property.3 It implies that each evaluation x ∈ X is
identified by the family of its constituent properties Hx := {H ∈ H : x ∈ H} in the
sense that, for all x ∈ X,

{x} =
⋂
Hx.

Property spaces can be identified with particular subsets of the hypercube {0, 1}K
for a suitable number K; thus, there is a natural interrelation between the prop-
erty space approach and the abstract aggregation framework introduced by Wilson
(1975). Specifically, any property space (X,H) withH = {H1, H

c
1 , H2, H

c
2 , ...,HK , H

c
K}

naturally defines a subset Z(X,H) of {0, 1}K as follows. For each x ∈ X, define
z(x) ∈ {0, 1}K by z(x)k = 1 if x ∈ Hk and z(x)k = 0 if x ∈ Hc

k. Then let
Z(X,H) := {z(x) ∈ {0, 1}K : x ∈ X}. Conversely, for any non-empty Z ⊆ {0, 1}K
and each k = 1, ...,K, define Hk := {z ∈ Z : zk = 1} and Hc

k := {z ∈ Z : zk = 0}, and
let H := {H1, H

c
1 , H2, H

c
2 , ...,HK , H

c
K}. Then (Z,H) is a property space provided that

each Hk and Hc
k is non-empty.

Recently, the abstract aggregation framework has been adopted by Dokow and
Holzman (2010a,b) who use Wilson’s original formulation in terms of subsets of {0, 1}K .
An advantage of a property space formulation is its emphasis on the fact that the
same collection of objects may be endowed with different structure via different lists of
properties (corresponding to different embeddings in the hypercube). An illustrative
example is given at the end of Section 2.3 below.

The notion of a property space is also closely related to the notion of an agenda
in the literature on judgement aggregation, see List and Puppe (2009) for a recent
survey of that literature. Specifically, an issue (H,Hc) can be identified with a propo-
sition/negation pair, and the elements of X with complete and consistent judgements
on these; equivalently, the elements of X can be identified with the consistent truth-
value assignments on the propositions.

2.2 Arrowian Aggregation on Property Spaces

Let N = {1, ..., n} be a set of individuals with n ≥ 2. An aggregator is a mapping
f : Xn → X. The following conditions on such mappings play a fundamental role in
our analysis.

3Effectively, condition H3 is without loss of generality by considering the quotient space X/≈ with
respect to the equivalence relation x ≈ y :⇔ [for all H ∈ H : x ∈ H ⇔ y ∈ H].
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Unanimity f(x, ..., x) = x, for all x ∈ X.
Independence If f(x1, ..., xn) ∈ H and, for all i ∈ N , [xi ∈ H ⇔ yi ∈ H], then
f(y1, ..., yn) ∈ H.

An aggregator is called Arrowian if it satisfies unanimity and independence. While
evidently demanding, independence is motivated by a number considerations. In no
small part, the widespread interest in aggregation procedures that satisfy this condition
derives from the prevalence of binary voting mechanisms in practice. Independence
has evident advantages of informational parsimony. In many contexts, independence
reflects informational robustness. For example, in the context of preference aggregation,
Arrow (1951) motivated his independence assumption philosophically by reference to
an “ordinalist” view of individual preferences on which the use or imputation of utility
differences (as in the Borda rule, for example) is not behaviorally meaningful. Likewise,
in the context of aggregating evaluations on a line, the median – a classical positive
example of an Arrowian aggregator – is well-defined in terms of the ordinal geometric
structure of the line only, while the mean, for example, relies on additional cardinal
distance information.

Furthermore, independence guarantees robustness with respect to the agenda and
insensitivity with respect to the sequence in which the issues are elicited (“path-
independence”); see, among others, List (2004).

In this paper, we will be concerned with Arrowian aggregators that satisfy in addi-
tion the following monotonicity condition.

Monotonicity If f(x1, ..., xi, ..., xn) ∈ H and yi ∈ H, then f(x1, ..., yi, ..., xn) ∈ H.

In the presence of independence, monotonicity is an extremely compelling condition.
The conjunction of independence and monotonicity is equivalent to the following single
condition.

Monotone Independence If f(x1, ..., xn) ∈ H and, for all i ∈ N , [xi ∈ H ⇒ yi ∈ H],
then f(y1, ..., yn) ∈ H.

Note that under monotonicity, unanimity can be deduced from the weaker require-
ment that the aggregator is onto, i.e. that any element of X is in the range of f .

Besides its evident appeal as a condition on satisfactory aggregation, a crucial ad-
vantage of assuming monotonicity for the purpose of the present paper is the existence
of a unified characterization of all monotone Arrowian aggregators, as described in Sec-
tion 2.4 below. Moreover, strategy-proofness on rich domains of preferences requires
not only independence but even monotone independence, as detailed in Section 4 below.

2.3 Application: Aggregation of Preferences

It is well-known that the classical problem of preference aggregation is a special case
of the binary aggregation framework considered here. Specifically, let A = {a, b, ...} be
a finite set of alternatives and let R be a family of binary relations on A. For each pair
a, b ∈ A let

H(a,b) := {R ∈ R : aRb},

and denote by HR the family of all such properties and their complements. A binary
relation on A can thus be identified with a certain combination of properties, and
the family R can thus be naturally endowed with the structure of property space
(R,HR). Different requirements on the members of the family R give rise to different
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property spaces. For instance, transitivity of the binary relations in R implies that
{H(a,b), H(b,c), H

c
(a,c)} is an inconsistent combination of properties. As an example,

consider the set Lin(A) of all strict linear orderings on A. In the case of linear orderings
� on A, the property Hc

(a,b) can be identified with H(b,a), for all distinct a, b. The

space (Lin(A),HR) can thus be embedded in the #A·(#A−1)
2 -dimensional hypercube,

see Figure 1 for the case #A = 3.

c - a � b
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Figure 1: The property space (Lin(A),HR) for #A = 3

Note that the independence condition on (Lin(A),HR) takes the usual Arrowian
“independence of irrelevant alternatives” format according to which the social rank-
ing between two alternatives only depends on the individual ranking between these
two alternatives. In particular, by Arrow’s theorem, all Arrowian aggregators on
(Lin(A),HR) are dictatorial.

It bears emphasizing that an aggregation problem is well-specified only once a
particular family of sets H satisfying conditions H1 – H3 is pinned down. The set X
is thus endowed with the structure of a property space, just as one endows a set with
a topology. Just as it is meaningless to ask whether a function is continuous in the
absence of a specified topology, it is meaningless to ask whether Arrowian aggregation
is possible tout court. The mathematical structure of the set X may be suggestive of a
particular property space structure H but cannot by itself determine it.

Consider for instance the set of weak orderings (reflexive, transitive and complete
binary relations) Weak(A) on a ground set A. While the above framing of the proper-
ties Ha,b in terms of instances of the relation “is weakly preferred to” is natural, other
framings are possible and not necessarily absurd.4

For example, for each non-empty subset L ⊆ A and each weak ordering � on A,
say that L is a lower contour set of � if L = {a ∈ A : b � a} for some b ∈ A. Moreover,
for each non-empty subset L ⊆ A consider the pair of properties

HL := {�∈ Weak(A) : L is a lower contour set of �}

and its complement Hc
L :=Weak(A) \HL, and denote by HL := {HL, H

c
L}∅6=L⊆A the

family of all such properties. Evidently, each weak ordering is uniquely identified by
the family of its lower contour sets; in particular, HL satisfies H3. Note also that the

4A “pseudo-Arrowian” theorem for (Weak(A),HR) has been derived from Theorem 1 below in
Nehring (2003). It is only pseudo-Arrowian since the implied independence condition is evidently
stronger than the usual binary IIA condition for domains in which indifferences are permitted. For
approaches that use Arrow’s original binary IIA condition in the case of weak orderings within the
judgement aggregation framework, see Dietrich and List (2007) and Dokow and Holzman (2010b).
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family of lower contour sets of each weak ordering is totally ordered by set inclusion,
i.e. forms a chain. Conversely, each chain of non-empty subsets that contains the set A
corresponds to a (unique) weak ordering with the given chain as the family of its lower
contour sets.

Intriguingly, while (Weak(A),HR) is dictatorial, in (Weak(A),HL) even issue-by-
issue majority voting is consistent as shown in Section 3.3 below. We leave it to the
reader to judge whether this ‘solves’ Arrow’s impossibility problem, and if not, why
not.

2.4 Characterization of All Monotone Arrowian Aggregators:
The Intersection Property

In this subsection, we review the characterization of all monotone Arrowian aggre-
gators obtained in Nehring and Puppe (2007). A family of winning coalitions is a
non-empty family W of non-empty subsets of the set N of all individuals satisfying
[W ∈ W and W ′ ⊇ W ] ⇒ W ′ ∈ W. A structure of winning coalitions on (X,H)
assigns a family of winning coalitions WH to each property satisfying the following
condition,

W ∈ WH ⇔ (N \W ) 6∈ WHc . (2.1)

In words, a coalition is winning for H if and only if its complement is not winning
for the negation of H. Using (2.1) and the fact that families of winning coalitions are
closed under taking supersets, we obtain

WHc = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ WH}. (2.2)

To derive (2.2) from (2.1), let W be such that W ∩W ′ 6= ∅ for all W ′ ∈ WH . Then,
in particular N \W 6∈ WH , hence by (2.1), W ∈ WHc . Conversely, let W ∈ WHc and
W ′ ∈ WH ; by contradiction, suppose that W ∩W ′ = ∅, then W ′ ⊆ (N \W ), hence by
monotonicity, N \W ∈ WH in violation of (2.1).

Each structure of winning coalitions W determines a correspondence fW given by

fW (x1, ...xn) := ∩{H : {i : xi ∈ H} ∈ WH},

which we will refer to as “voting by issues” associated with W. Clearly, by H3,
fW (x1, ...xn) contains at most one point. It may however be empty reflecting in-
consistency of the outcome of the issue-wise votes. Indeed, it is easily seen that f is a
monotone Arrowian aggregator if and only if it is consistent (non-empty-valued) voting
by issues for some structure of winning coalitions W.

Characterizing the class of monotone Arrowian aggregators thus amounts to char-
acterizing when voting by issues is consistent. This can be done by focusing on the
minimal (“critical”) inconsistencies that characterize the property space. These are
given by the “critical families” of (X,H) as follows.

Say that a family G is inconsistent if ∩G = ∅. G is critical if it is minimally
inconsistent, i.e. if it is inconsistent and for all G ∈ G, ∩(G \ {G}) 6= ∅. Observe that
all pairs {H,Hc} of complementary properties are critical; they are referred to as the
trivial critical families. An example of a non-trivial critical family in the case of the
aggregation of linear orderings is the combination of properties {H(a,b), H(b,c), H

c
(a,c)}

since a � b, b � c and (not a � c) are jointly inconsistent by transitivity, while any
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two of these preference judgements are mutually consistent.

Definition (Intersection Property) A structure of winning coalitions W satisfies
the Intersection Property if for any critical family {G1, ..., Gl} ⊆ H, and any selection
Wj ∈ WGj

,
l⋂

j=1

Wj 6= ∅.

The following result is proved in Nehring and Puppe (2007, Prop. 3.4) and Nehring
and Puppe (2002, Prop. 3.5). We include the proof here again to make the exposition
self-contained.

Proposition 2.1 Let (X,H) be a property space. A mapping f : Xn → X is a
monotone Arrowian aggregator on (X,H) if and only if it is voting by issues fW with
W satisfying the Intersection Property.

Proof For sufficiency, let f = fW with W satisfying the Intersection Property. Sup-
pose, by way of contradiction, that there exists a profile (x1, ...xn) at which voting by
issues is inconsistent, i.e. such that fW (x1, ...xn) = ∩{H : {i : xi ∈ H} ∈ WH} = ∅.
Take a minimally inconsistent subset of these properties, i.e. a critical family G such
that {i : xi ∈ H} ∈ WH for all H ∈ G. By the Intersection Property, these winning
coalitions WH = {i : xi ∈ H} must have at least one individual in common; but this
individual must affirm all properties in G, i.e. for some i, xi ∈ ∩H∈GH, contradicting
the criticality of G.

For necessity, suppose that there exists a critical family G and a selection of winning
coalitions Wj ∈ WGj with empty intersection. We show that fW is inconsistent by
constructing a profile (x1, ..., xn) at which each of the properties in G is affirmed.

Since ∩Wj = ∅, for each i there exists ji such that i /∈ Wji
. That is, i is not

required for a positive vote on Gji
. On the other hand, by the criticality (that is:

minimal inconsistency) of G, ∩j:j 6=ji
Gj 6= ∅. Assign i an evaluation xi ∈ ∩j:j 6=ji

Gj .
This ensures that i lends his support to all other properties in G where his support
may be required.

Indeed, we will verify that fW(x1, ..., xn) = ∅, the desired inconsistency. To see
this, note that for any j and any i ∈ Wj , ji 6= j. By construction, this implies that
xi ∈ Gj . In other words, Wj ⊆ {i : xi ∈ Gj}. By monotonicity of W, it follows that
{i : xi ∈ Gj} is itself a winning coalition. And thus, by the criticality of G, obviously
fW(x1, ..., xn) ⊆ ∩G = ∅, as claimed.

Note that the proof of necessity of the Intersection Property relies on the assumed
monotonicity. A comparably simple characterization of all Arrowian aggregators with-
out monotonicity is not known.

The Anonymous Case
The Intersection Property takes a particularly simple form in the anonymous case.
An aggregator f : Xn → X is anonymous if it is invariant with respect to permu-
tations of agents. Under anonymity, voting by issues is characterized by a family
{mH : H ∈ H} of absolute quotas, where mH := min{#W : W ∈ WH}. Note that,
by (2.1), mH + mHc = n + 1. It is easily verified that the Intersection Property on
an anonymous structure of winning coalitions is equivalent to the following system of
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linear (in)equalities on the absolute quotas mH ,

for all H ∈ H : mH +mHc = n+ 1 (2.3)

for all critical families G :
∑
H∈G

(n−mH) < n. (2.4)

The existence of an anonymous monotone Arrowian aggregator is thus described
by an integer programming problem. This can be restated and simplified into a linear
programming problem by considering relative quotas, as follows. For each q ∈ [0, 1]
denote by Wq := {W ⊆ N : #W > q · n}.
Proposition 2.2 Let (X,H) be a property space and let {qH : H ∈ H} be a system
of relative quotas such that, for all H ∈ H, qH + qHc = 1 and qH · n is not an integer
other than 0 or n. If, for every critical family G,∑

H∈G
(1− qH) ≤ 1, (2.5)

then the structure {WqH
: H ∈ H} of winning coalitions defines an anonymous and

monotone Arrowian aggregator. Conversely, any anonymous and monotone Arrowian
aggregator can be described by relative quotas {qH : H ∈ H} such that (i) for all H ∈ H,
qH + qHc = 1, (ii) for all H ∈ H, qH · n is not an integer other than 0 or n, and (iii)
for every critical family G, (2.5) is satisfied.

The role of the integer condition (ii) is to ensure that the families W1−qH
and WqH

are adjoint in the sense of condition (2.1). This becomes important in situations in
which all anonymous social choice functions require some quota qH to be equal to 1

2 ,
i.e. majority voting on H; clause (ii) implies in this case that n must be odd, which
makes intuitive sense since majority voting is well-defined only for an odd number of
individuals. The second part of Proposition 2.2 relies on the observation that if the
absolute quotas mH satisfy conditions (2.3) and (2.4), the relative quotas qH defined
by qH := mH−1

n−1 satisfy conditions (i) and (2.5).
Proposition 2.1 immediately entails a characterization of those property spaces that

admit issue-by-issue majority voting as an Arrowian aggregator. Issue-by-issue major-
ity voting is voting by issues fW with WH =W 1

2
for all H ∈ H.

Definition (Median Space) A property space (X,H) is called a median space if all
critical families have cardinality two.5

Proposition 2.3 Issue-by-issue majority voting is consistent on (X,H) if and only if
(X,H) is a median space and n is odd.

As stated, this result is due to Nehring and Puppe (2007, Corollary 5) who also discuss
the related literature on median spaces in combinatorial mathematics (see, e.g., van de
Vel, 1993). This literature contains results that can be viewed as broadly equivalent to
the sufficiency part of the proposition (see in particular McMorris, Mulder and Powers
(2000, Theorem 4)). There does not appear a formal counterpart to the necessity claim
of the Proposition 2.3 – perhaps because the mathematical literature on consensus lacks
the general notion of a property space. Applying a lesser standard of formal rigor, the
gist of Proposition 2.3, especially on the side of necessity, might be attributed to the
insightful early paper by Gilbaud (1952).

5In Nehring and Puppe (2007), this is shown to be equivalent to the standard definition (adopted
there) in terms of a ternary betweenness relation.

8



2.5 Example: Comprehensive Subsets of the Hypercube

The power of the Intersection Property can be further illustrated in the case of “compre-
hensive” subsets of the hypercube, as follows. Say that X ⊆ {0, 1}K is comprehensive
if x ∈ X implies x̂ ∈ X whenever xk = 1 ⇒ x̂k = 1. Thus, the point (1, 1, ..., 1) is the
“default ” evaluation, and if an evaluation x is feasible so is any evaluation x̂ that is
closer to the default.

Electing Candidates
A possible interpretation is in terms of electing members of a committee; another inter-
pretation in terms of acyclic relations is discussed shortly. In the case of committees,
each coordinate corresponds to a candidate for a position in a committee, with xk = 1
(resp. xk = 0) denoting election (resp. non-election) of candidate k, and the set X
describes the feasible committees. Denote, for all k, by Hk

1 the committees that contain
candidate k, and by Hk

0 the committees that do not contain candidate k.
It is clear that any inconsistency results from the joint exclusion of certain can-

didates. Any minimal inconsistency results thus from the joint exclusion of certain
candidates at least one of whom needs to be elected. Critical families are thus con-
tained in {H1

0 , ...,H
K
0 }. Consider the case of anonymous aggregators fq with a uniform

quota qHk
0

= q for all k. Clearly, consistency is achievable by making it sufficiently
hard for any candidate to be rejected, e.g. by setting q = 1. What is the smallest
uniform quota q that ensures consistency, hence leads to a well-defined Arrowian ag-
gregator? According to the anonymous Intersection Property, fq is consistent if and
only if q ·#G ≥ #G − 1 for any critical family G, hence if

q ≥ 1− 1
κ
,

where κ is the size of the largest critical family.

Anonymous Aggregation of Acyclic Orderings
As an example in the context of preference aggregation consider the family of all acyclic
(strict) orderings Acy(A) embedded in the [#A ·(#A−1)]-dimensional hypercube with
Ha�b corresponding to the property “a � b” for every ordered pair (a, b), and Hc

a�b

corresponding to “not (a � b).” The subset Acy(A) is comprehensive with the empty
relation as default since removing binary comparisons from an acyclic ordering keeps
the ordering acyclic. As above, the Intersection Property thus immediately implies the
existence of anonymous monotone Arrowian aggregators.6

2.6 Conditional Entailment

When does a given property space admit non-dictatorial monotone Arrowian aggre-
gators? Or anonymous monotone Arrowian aggregators? Or monotone Arrowian ag-
gregators of some other kind? Note that while the Intersection Property characterizes
the consistency of particular voting-by-issue schemes fW as the canonical candidates
for monotone Arrowian aggregation, it does not, of course, say anything directly about
their existence. In a few cases such as in the case of comprehensive sets, the existence

6The aggregation of orderings into acyclic social orderings has been first studied by Mas-Colell and
Sonnenschein (1972); see Moulin (1988) for an overview of the results.
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question is straightforward. In general, however, it depends on the global combinato-
rial structure of the entire class of critical families, and on the specific requirements
imposed on the aggregator.

It turns out that much of the relevant structure can be compactly summarized
by a relation of “conditional entailment” between properties as follows. Say that H
conditionally entails G, written as H ≥0 G if H 6= Gc and there exists a critical
family containing both H and Gc. Intuitively, H ≥0 G thus means that, given some
combination of other properties, property H entails property G. More precisely, let
H ≥0 G, i.e. let {H,Gc, G1, ..., Gl} be a critical family; then with A = ∩l

j=1Gj one has
both A ∩ H 6= ∅ (“property H is compatible with the combination A of properties”)
and A ∩ Gc 6= ∅ (“property Gc is compatible with A as well”) but A ∩ H ∩ Gc = ∅
(“properties H and Gc are jointly incompatible with A”). Note that, by definition,
H ≥0 G⇔ Gc ≥0 Hc, that is, ≥0 is “negation adapted.” We write ≥ for the transitive
closure of ≥0, and ≡ for the symmetric part of ≥.

As a simple example, consider once again the family {H(a,b), H(b,c), H
c
(a,c)} in case

of aggregation on (Lin(A),HR). Criticality of this family can be paraphrased as saying
that, conditional on a � b, b � c entails a � c.

The key role of the conditional entailment relation in our context derives from the
following lemma.

Lemma 1 (Contagion Lemma) If {WH}H∈H satisfies the Intersection Property and
H ≥ G, then WH ⊆ WG.

Proof By transitivity, it suffices to show that H ≥0 G ⇒ WH ⊆ WG. Thus, suppose
that {H,Gc} ⊆ G for some critical family G. By the Intersection Property, W ∩W ′ 6= ∅
for any W ∈ WH and any W ′ ∈ WGc , hence by (2.2), WH ⊆ WG.

One can visualize the conditional entailment relation by means of a directed graph
on the set of all properties such that an edge goes from H to G if and only if H ≥0 G.
Figure 2 shows two examples. The graph in Fig. 2(a) shows the entailment relation
induced by the comprehensive subset of {0, 1}3 in which only the point (0, 0, 0) is
infeasible, corresponding to the critical family {H1

0 , H
2
0 , H

3
0}. Note that, by definition,

a property is never connected by an edge with its complementary property.
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Figure 2: Two Conditional Entailment Graphs

The graph in Fig. 2(b) shows the conditional entailment relation of the property
space (Lin(A),HR) shown in Fig. 1 which is isomorphic to the feasible set {0, 1}3 \
{(0, 0, 0), (1, 1, 1)}.
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Observe that different property spaces can give rise to the same conditional entail-
ment relation, thus there is a loss of information entailed by moving from the collection
of all critical families to the conditional entailment relation. It is remarkable that the
information contained in the latter is nevertheless sufficient for most of the character-
ization results to be presented now.

3 Characterization Results

3.1 Non-Dictatorial Aggregation

Given a monotone Arrowian aggregator f on (X,H), an individual i is said to have
a veto on property H if xi ∈ Hc ⇒ f(x1, ..., xn) ∈ Hc, for all (x1, ..., xn). Evidently,
individual i has a veto on H if and only if {i} ∈ WHc . The aggregator f is called dic-
tatorial if there exists some individual i such that, for all x1, ..., xn, f(x1, ..., xn) = xi.
Evidently, f is dictatorial if and only if some individual i has a veto on all properties,
i.e. if and only if {i} ∈ WH for all H ∈ H.

Definition (Total Blockedness) Say that (X,H) is totally blocked if, for all H,G ∈
H, H ≥ G, i.e. if there exists a sequence of conditional entailments from every property
to every other property.

In graph-theoretic terms, total blockedness simply says that between any two prop-
erties there is a directed path of conditional entailments. Evidently, spaces with the
conditional entailment graph in 2(b) are totally blocked, while those in 2(a) are not.

Theorem 1 A property space (X,H) admits non-dictatorial and monotone Arrowian
aggregators if and only if it is not totally blocked.

Proof of necessity By the Contagion Lemma 1, all winning coalitions must be the
same, WH = W0 for all H ∈ H; in the later (standard) terminology, the Arrowian
aggregator must be neutral. This does not bode well for the possibility of non-dictatorial
aggregation, since very little flexibility is left. And, indeed, the following “Veto Lemma”
forces a dictatorship, since total blockedness is easily seen to imply the existence of a
critical family with at least three elements.

Lemma 2 (Veto Lemma) Suppose that a structure of winning coalitions satisfies
the Intersection Property and that {G1, G2, G3} ⊆ G for some critical family G. If
WGc

1
⊆ WG2 , then {i} ∈ WGc

3
for some i ∈ N .

Proof of Lemma 2 Let W̃1 be a minimal element of WG1 , and let i ∈ W̃1. By (2.2)
and minimality of W̃1, one has (W̃ c

1 ∪ {i}) ∈ WGc
1
. By assumption, WGc

1
⊆ WG2 ,

hence (W̃ c
1 ∪ {i}) ∈ WG2 . Now consider any W3 ∈ WG3 . By the Intersection Property,

∩3
j=1Wj 6= ∅ for any selection Wj ∈ WGj

. In particular, W̃1 ∩ (W̃ c
1 ∪ {i}) ∩W3 6= ∅.

Since W̃1 ∩ (W̃ c
1 ∪ {i}) = {i}, this means i ∈ W3 for all W3 ∈ WG3 . By (2.2), this

implies {i} ∈ WGc
3
.

Note the simplicity of the argument (with the Intersection Property in the back-
ground, of course): The Contagion Lemma forces the monotone Arrowian aggregator
to be neutral. Neutrality in the presence of critical families of cardinality greater than
two implies a veto, hence a dictatorship.
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Since, moreover, by the sufficiency part of Theorem 1 (proved in the appendix),
total blockedness characterizes dictatorial problems, Theorem 1 shows in fact that,
if an Arrowian impossibility can be demonstrated for a particular space at all, the
proof can always take this simple form once total blockedness of the space has been
established.

To establish total blockedness of a given space is typically fairly straightforward,
as it involves coming up with sufficiently many instances of conditional entailment; in
particular, it is not necessary to determine the set of critical families exhaustively. By
contrast, in order to show that a domain is non-dictatorial, in principle one needs to
determine the transitive hull of the entire conditional entailment relation; this may be
difficult. However, an easily verifiable and frequently applicable sufficient condition
is that there be at least one property not contained in any non-trivial critical family.
Indeed, if H is only contained in the trivial critical family {H,Hc}, one has H 6≥0 G
for all G, and therefore H 6≥ Hc, which implies that the underlying property space is
not totally blocked.

3.2 Locally Non-Dictatorial and Anonymous Aggregation

As a possibility result, Theorem 1 is not completely satisfactory since non-dictatorial
aggregation rules can still be rather degenerate, e.g. by giving almost all decision power
to one agent, or by specifying different “local” dictators for different issues. In this
subsection, we therefore characterize the problems for which locally non-dictatorial
monotone Arrowian aggregators exist. It turns out that this is also exactly the class
of problems for which anonymous monotone Arrowian aggregators exist.

An aggregator f is called locally dictatorial if there exists an individual i and
an issue (H,Hc) such that i has a veto on H and on Hc, i.e. for all x1, ..., xn,
f(x1, ..., xn) ∈ H ⇔ xi ∈ H. Note that there may exist several local dictators (over
different issues); also observe that an anonymous aggregator is necessarily locally non-
dictatorial.

Definition (Blockedness, Unblockedness, Quasi-Unblockedness) Say that a
property H ∈ H is blocked if H ≡ Hc, i.e. if there exists a sequence of conditional
entailments from H to its complement Hc, and vice versa. Call a property space
(X,H) blocked if some H ∈ H is blocked; otherwise, if no H is blocked, (X,H) is
called unblocked. Finally, for each G ∈ H, let H≡G := {H ∈ H : H ≡ G}, and say
that a property space is quasi-unblocked if for any G ∈ H and any critical family G,
#(H≡G ∩ G) ≤ 2, whenever G is blocked.

Evidently, quasi-unblockedness is intermediate in strength between not total blocked-
ness and unblockedness. Examples of unblocked spaces are the property spaces corre-
sponding to the entailment graph shown in Fig. 2(a). More generally, all comprehensive
sets of feasible committees (cf. first example in Section 2.5 above) give rise to unblocked
spaces.

Theorem 2 Let (X,H) be a property space. The following are equivalent.
(i) (X,H) admits locally non-dictatorial and monotone Arrowian aggregators.
(ii) (X,H) admits anonymous and monotone Arrowian aggregators.
(iii) (X,H) is quasi-unblocked.

A noteworthy corollary of Theorem 2 is the fact that any property space that admits
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locally non-dictatorial monotone Arrowian aggregators even admits anonymous such
aggregators.

In Appendix A, we show that there are spaces that are quasi-unblocked yet blocked.
However, these appear quite contrived, and it seems unlikely that they are relevant in
applications. Moreover, on such spaces anonymous aggregation rules exist only for an
odd number of agents; hence, the possibility obtained in these cases is not robust.7

A cleaner and more satisfying characterization is obtained for property spaces ad-
mitting anonymous rules for an arbitrary number of agents, as follows.

Definition (Median Point) Let (X,H) be a property space. An element x̂ ∈ X is
called a median point if, for any critical family G, #{G ∈ G : x̂ ∈ G} ≤ 1.

Thus, a state is a median point if every critical family contains at most one of its con-
stituent properties. Note that the default in a comprehensive subset of the hypercube
is always a median point. The set of all median points is denoted by M(X). The notion
of a median point and its characterization in Proposition 3.1 below are due to Nehring
(2010); see also Nehring and Puppe (2002, Section 6) for the original statement.

In median spaces, and only in these, every element is a median point. Indeed, if
all critical families have exactly two elements then evidently each point is a median
point. Moreover, if G is a critical family with at least three elements and G ∈ G,
then any x ∈ ∩(G \ {G} 6= ∅ is not a median point. Median spaces are important
for the theory of abstract Arrowian aggregation by securing the possibility of various
neutrality properties, see Section 3.3 below.

The characterization of the spaces that admit anonymous monotone Arrowian ag-
gregators relies on the following characterization of unblocked spaces.

Proposition 3.1 A property space (X,H) is unblocked if and only if M(X) 6= ∅, i.e. if
and only if (X,H) admits at least one median point.

Median points play a central role in our present context because they are canonically
associated with unanimity rules. An Arrowian aggregator f is called a unanimity rule
if there exists x̂ ∈ X such that for all H ∈ Hx̂,

f(x1, ..., xn) ∈ H ⇔ xi ∈ H for some i ∈ N. (3.1)

That is, each of the properties H in Hx̂ (ie. the constituent properties of x̂) holds in
the aggregate unless there is unanimous agreement on Hc.

Clearly, a state x̂ such that (3.1) is satisfied for all H ∈ Hx̂ is uniquely determined
and is referred to as the status quo. Henceforth, we denote the unanimity rule with
status quo x̂ by fx̂. Note that the properties determined in (3.1) may not be jointly
consistent, so that an Arrowian unanimity rule of the form fx̂ may or may not exist.

Proposition 3.2 A property space (X,H) admits an Arrowian unanimity rule of the
form fx̂ if and only if x̂ ∈M(X).

The following result summarizes the characterizations entailed by Propositions 3.1
and 3.2, and shows that the existence of median points is also necessary for the existence
of anonymous monotone Arrowian aggregators for any number of individuals.

7Arguably, as pointed out by an editor, the non-robustness is itself not that robust, in that “nearly
anonymous” monotone Arrowian aggregators exist on quasi-unblocked yet blocked spaces also for an
even number of agents: simply make “odd” out of “even” by giving one agent two votes, and all others
one.
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Theorem 3 Let (X,H) be a property space. The following are equivalent.
(i) (X,H) admits anonymous and monotone Arrowian aggregators for some even n.
(ii) (X,H) admits anonymous and monotone Arrowian aggregators for all n ≥ 2.
(iii) (X,H) admits some Arrowian unanimity rule.
(iv) (X,H) is unblocked.
(v) (X,H) admits a median point.

Examples
1. The Discursive Dilemma A special class of aggregation problems arises by con-
sidering a set of binary propositions that can be split into a set of “premises” and a set
of “conclusions” which depend on the evaluation of the premises. A simple example
arises by taking a conclusion d that is logically equivalent to the conjunction of its
premises c1 and c2. The so-called “discursive dilemma” (see List and Pettit (2002),
following Pettit (2001) and Kornhauser and Sager (1986)) consists in the observation
that in this case natural aggregation methods, such as proposition-wise majority vot-
ing, may yield inconsistent collective judgements. If one embeds the problem in the
3-dimensional hypercube with the conclusion corresponding to the third coordinate,
one obtains the feasible set {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}, where “1” stands for
affirmation and “0” for negation of the corresponding proposition. As is easily seen,
negating all propositions (i.e. the point (0, 0, 0)) constitutes a median point. Hence the
Arrowian unanimity rule according to which all propositions are collectively negated
unless there is unanimous agreement to affirm them is consistent. It can easily be
shown that this is in fact the only anonymous monotone Arrowian aggregator in this
case. For extensions of this basic finding, see Nehring and Puppe (2008, 2010), Dokow
and Holzman (2009), and Dietrich and Mongin (2010).
2. Electing Candidates (cont.) Consider again the K-dimensional hypercube and
the subset X(K;k,k′) ⊆ {0, 1}K of all binary sequences with at least k and at most k′

coordinates having the entry 1, where 0 ≤ k ≤ k′ ≤ K. Thus, feasible committees
must have at least k and at most k′ members.

If k = 0 and k′ = K, we obtain the full hypercube in which evidently every point is
a median point. Next, assume that k > 0. If k′ = K, the underlying subset is compre-
hensive and the non-trivial critical families are exactly the subsets of {H1

0 , H
2
0 , ...,H

K
0 }

with K − k + 1 elements (“if already K − k candidates have been rejected, then all of
the remaining candidates must be elected”). As noted above, the default of a compre-
hensive subset is always a median point, hence the Arrowian unanimity rule according
to which all candidates are elected unless there is unanimous agreement to reject them
is consistent.

Let now 0 < k ≤ k′ < K. Then, in addition to all subsets of {H1
0 , H

2
0 , ...,H

K
0 } with

K − k + 1 elements also the subsets of {H1
1 , H

2
1 , ...,H

K
1 } with k′ + 1 elements form

critical families. The corresponding spaces are totally blocked whenever K ≥ 3 since
one has Hk

0 ≥0 Hj
1 and Hk

1 ≥0 Hj
0 for all distinct k, j (see Fig. 2(b) for the conditional

entailment graph if K = 3). By Theorem 1, any monotone Arrowian aggregator is
dictatorial.

As a variation of this example, consider a non-empty subset J ⊆ {1, ...,K} repre-
senting a subgroup of candidates, and suppose that at least one candidate from the
set of all candidates has to be elected, but at most m out of the subgroup J , where
1 ≤ m ≤ #J . Denote the corresponding subspace by X(K;m,J). If #J < K, none of
the spaces X(K;m,J) is totally blocked. Indeed, for all k 6∈ J , the property “candidate

14



k is elected” is not an element of any non-trivial critical family. Thus, by the remark
after Theorem 1 above, the space is not totally blocked. On the other hand, if #J > 2,
then the subspace corresponding to the coordinates in J is totally blocked. It can
be shown that, therefore, all monotone Arrowian aggregators on X(K;m,J) are locally
dictatorial whenever 2 < #J < K. On the other hand, if #J = 2 the corresponding
spaces admit at least one median point. Hence by Theorem 3, there exist anonymous
monotone Arrowian aggregators in this case.

As another variation, suppose that l of the K candidates are women and that a
regulation requires that at least as many women be hired as men. Evidently, the state
in which all women and no men are elected is a median point. There may be other
median points, but in general the space is not a median space; for instance, the space
that results from taking l = 2 and K = 3 is isomorphic to the space X(3;1,3) above,
since there is only one infeasible state, the state in which the man is elected while both
women are rejected.

3.3 Neutral Aggregation

The unanimity rules considered in the previous subsection treat properties in an ex-
tremely asymmetric way. It is therefore natural to ask when a property space admits
monotone Arrowian aggregators that treat properties symmetrically. This question is
answered in this subsection.

Definition (Neutrality, Unbiasedness, Uniformity) Let xi, yi, i = 1, ..., n, and
two properties H and H ′ be given such that, for all i, xi ∈ H ⇔ yi ∈ H ′. An aggrega-
tor f is called neutral with respect to H and H ′ if in this situation f(x1, ..., xn) ∈ H ⇔
f(y1, ..., yn) ∈ H ′. An aggregator f is called neutral within issues or unbiased if, for all
H, f is neutral with respect to H and Hc; moreover, f is called neutral across issues
or uniform if, for all H and H ′, f is neutral with respect to H and H ′ or with respect
to Hc and H ′; finally, f is called (fully) neutral if it is neutral with respect to all H
and H ′.

Examples of aggregators that are uniform but not unbiased are the unanimity rules,
or more generally, supermajority rules with a uniform quota > 1/2 for each issue.
An example of an aggregator that is unbiased but not uniform is weighted issue-by-
issue majority voting where the weights differ across issues. Specifically, let H =
{H1, H

c
1 , ...,HK , H

c
K}; for all k and i, denote by wk

i ≥ 0 the weight of voter i in issue
k, and assume that

∑
i w

k
i = 1 for all k = 1, ...,K. Weighted issue-by-issue majority

voting is defined by

f(x1, ..., xn) ∈ Hk :⇔
∑

i:xi∈Hk

wk
i > 1/2.

The difference in weights across issues may be the natural result of voters having
different stakes and/or different expertise in different dimensions.

Theorem 4 Let (X,H) be a property space.
a) (X,H) admits non-dictatorial and uniform monotone Arrowian aggregators if and
only if (X,H) admits a median point.
b) (X,H) admits locally non-dictatorial and unbiased monotone Arrowian aggregators
if and only if (X,H) is a median space.
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c) (X,H) admits non-dictatorial and neutral monotone Arrowian aggregators if and
only if (X,H) is a median space.

The important role of median spaces in the context of neutral Arrowian aggregation
has already been emphasized in Nehring and Puppe (2007), where part c) of Theorem
4 is proved.

Note that, in accordance with part b), non-dictatorial and unbiased aggregators
may exist also outside the class of median spaces. In particular, if a property space
can be decomposed into components that do not interact with each other one can
specify different local dictators on different components. On the other hand, if a
space is “indecomposable” one obtains the stronger result that already the existence of
non-dictatorial and unbiased monotone Arrowian aggregators requires a median space.
Here, (X,H) is called decomposable if H can be partitioned into two non-empty sub-
families H1 and H2 such that each critical family is either entirely contained in H1 or
entirely contained in H2; otherwise, (X,H) is called indecomposable. One can easily
show that a property space is decomposable if and only if it can be represented as the
Cartesian product of (at least) two property spaces. In the context of Arrowian (i.e. in-
dependent) aggregation, indecomposability can be assumed without loss of generality,
since the admissible Arrowian aggregators on a decomposable space are derived from
combining the admissible Arrowian aggregators on its components; this is a straight-
forward implication of the Intersection Property.

Proposition 3.3 Suppose that (X,H) is indecomposable. Then, any monotone Ar-
rowian aggregator that is unbiased is also uniform, hence neutral.

Example: Neutral Aggregation of Weak Orderings Consider again the property
space (Weak(A),HL) defined in Section 2.3 above. In this space, all non-trivial critical
families have the form {HL, HL′} for L,L′ ⊆ A with L 6⊆ L′ and L′ 6⊆ L. In particular,
all critical families have exactly two elements, i.e. the space is a median space. By
Theorem 4, (Weak(A),HL) admits neutral monotone Arrowian aggregators; for in-
stance, issue-by-issue majority voting with an odd number of individuals is consistent
on (Weak(A),HL). Moreover, the space (Weak(A),HL) is indecomposable, hence any
unbiased monotone Arrowian aggregator is fully neutral by Proposition 3.3.

3.4 Independence without Monotonicity

The proofs of our main characterization results provided in the appendix rely on the
characterization of all monotone Arrowian aggregators in terms of the Intersection
Property. We have already noted that the monotonicity condition is crucial in this char-
acterization. While the monotonicity condition seems conceptually uncontroversial,
mathematically, it may be interesting to explore the aggregation possibilities without
it. Some results have already been established in that direction. Dokow and Holzman
(2010a) identify a condition (“non-affineness”) that together with total blockedness
characterizes the aggregation problems on which all Arrowian aggregators (with or
without monotonicity) are dictatorial. In a similar vein, Dietrich and List (2007, 2010)
show how Theorem 4b) and 4c) can be adapted to the non-monotone case. Finally,
Dietrich and List (2009) show that Theorem 3 remains valid also without the mono-
tonicity requirement.
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4 Application: Preference Aggregation on Restricted
Domains

4.1 Strategy-Proof Social Choice on Generalized Single-Peaked
Domains

The results of the present paper allow one to derive corresponding results on the exis-
tence of strategy-proof social choice functions on a large class of domains, the “general-
ized single-peaked domains” introduced in Nehring and Puppe (2002, 2007), as follows.

Definition (H-Betweenness) Let (X,H) be a property space, and let x, y, z ∈ X.
Say that y is H-between x and z if Hy ⊇ (Hz ∩ Hx), i.e. if y shares all properties
common to x and z.

Definition (Generalized Single-Peakedness) Consider �∈ Lin(X) with top ele-
ment (“peak”) x∗ ∈ X. The preference ordering � is called generalized single-peaked
on (X,H) if, for all distinct y, z,

y � z whenever y is H-between x∗ and z.

The class of all generalized single-peaked preferences on (X,H) is denoted by S(X,H).

Thus, a preference is generalized single-peaked on (X,H) whenever points that share
more properties with the ideal point are strictly preferred. The underlying geometric
intuition is especially transparent in those cases in which the betweenness of H is
derived from its graph. This includes many naturally occurring domains of generalized
single-peaked preferences. The graph ΓH of a property space (X,H) is the set of pairs
of points {x, z} without any other points between them: y H-between x and z implies
y ∈ {x, z}. For any graph Γ on X, y is graphically between, or Γ-between, x and z if
it is on a shortest path connecting x and z. The property space (X,H) is said to be
graphic if its property and graphic betweenness coincide.

The three property spaces shown in Fig. 3 are graphic, defining important and
frequently studied classes of generalized single-peaked domains.
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Figure 3: Graphic Property Spaces

The linear graph in Fig. 3(a) corresponds to the collection of all properties of the form
“lying to the left of” (resp. “lying to the right of”) some given point. Evidently, y is
between x and z in Fig. 3(a), and a preference ordering is generalized single-peaked
if and only if it is single-peaked in the usual sense. The domain S(X,H) is thus the
classical domain of single-peaked preferences introduced by Black (1958) and further
studied in Moulin (1980).
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The graph in Fig. 3(b) corresponds to the hypercube X = {0, 1}K (depicted here
for K = 3). The displayed triple of points again provides an instance of betweenness
with y between x and z. As is easily seen, a preference ordering � is generalized
single-peaked if and only if it is separable in the sense that, for all x, y ∈ {0, 1}K and
all k = 1, ...,K, x � (x−k, yk) ⇔ (y−k, xk) � y. Thus, in this case the domain S(X,H)

coincides with the domain of all separable preferences studied in Barberà, Sonnenschein
and Zhou (1991).

Finally, the complete graph shown in Fig. 3(c) corresponds to the property space
(X,H) with H = {{x}, X \{x} : x ∈ X}. Evidently, no point is ever between two other
points, hence the domain S(X,H) of all generalized single-peaked preferences coincides
with the unrestricted preference domain Lin(X).

Consider now a social choice function (scf) of the form F : Dn → X for some
D ⊆ S(X,H). The scf F is said to satisfy “peaks only” if it only depends on the top
elements of the preference orderings. In this case, the scf F induces an aggregator
f : Xn → X by letting f(x1, ..., xn) := F (�1, ...,�n) where the xi are the top elements
of the �i.

In Nehring and Puppe (2002, 2007) it is shown that an scf F defined on a sufficiently
rich domain of generalized single-peaked preferences on (X,H) is strategy-proof and
onto if and only if (i) it satisfies peaks only, and (ii) the induced aggregator f satisfies
independence, monotonicity and unanimity, i.e. is a monotone Arrowian aggregator
on (X,H).8 The question of the existence of strategy-proof scfs on generalized single-
peaked domains of a certain type thus boils down to the question of the existence of
appropriate monotone Arrowian aggregators. In particular, Theorem 1 above provides
the necessary and sufficient condition of when a generalized single-peaked domain on
a property space only admits dictatorial strategy-proof and onto scfs. We thus obtain
the following result.

Theorem 5 A property space (X,H) admits only dictatorial strategy-proof and onto
scfs F : Sn

(X,H) → X if and only if (X,H) is totally blocked.

Since the unrestricted preference domain is a special generalized single-peaked domain,
Theorem 5 constitutes a maximal generalization of the Gibbard-Satterthwaite theorem
to domains of generalized single-peaked preferences.9 Similarly, Theorems 2 - 4 entail
corresponding characterizations of the generalized single-peaked domains that admit
locally non-dictatorial, anonymous and neutral strategy-proof and onto scfs, respec-
tively.10

4.2 Arrowian Aggregation on Domains of Single-Peaked Pref-
erences

We have noted that the characterization of dictatorial monotone Arrowian aggregation
provided by Theorem 1 applies to standard preference domains such as the set of all

8The proof of the “peaks only” property is based on prior work by Barberà, Masso and Neme
(1997), and others.

9A weaker generalization of the Gibbard-Satterthwaite theorem to domains of generalized single-
peaked preferences has been obtained in Nehring and Puppe (2007). Aswal, Chatterji and Sen (2003)
provide a generalization of the Gibbard-Satterthwaite theorem in a different direction; their result is
neither implied, nor implies our Theorem 1 above.

10This is described in detail with further examples in the unpublished manuscript Nehring and
Puppe (2005).
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linear orders Lin(A) on a set A of alternatives. An issue that has attracted fairly
wide attention is the possibility of achieving positive results by restricting the domain
of preferences. We will demonstrate the versatility of the tools and results developed
here by studying the possibility of Arrowian preference aggregation on the class of
preferences that are single-peaked relative to a graph.

Let A be a set of alternatives, and let Γ ⊆ A × A be a (non-directed) connected
graph on A. Recall that, for any graph Γ on A, y is graphically between x and z if it
is on a shortest path connecting x and z.

Definition (Graphic Single-Peakedness) A strict linear ordering � on A with top
element x∗ will be called single-peaked with respect to Γ if, for all distinct y, z,

y � z whenever y lies graphically between x∗ and z.

The class of all linear orderings on A that are single-peaked with respect to Γ is denoted
by S(A,Γ).

Quite a few graphs do not come from property spaces; conversely, not every property
space is graphic. Hence, the preference domains considered here and in the previous
subsection are mutually incomparable. However, the domain of overlap appears to
contain most of the natural instances of generalized single-peakedness (relative to either
notion of betweenness).11

One could apply the results of the present paper directly to obtain results on mono-
tone Arrowian aggregators that map profiles of single-peaked preferences to single-
peaked preferences, i.e. to aggregators of the form f : Sn

(A,Γ) → S(A,Γ).12 This may
not be viewed as fully satisfactory, especially if an impossibility is derived, since one
main rationale for imposing restrictions on group preferences is the enabling of a well-
defined optimum for all choice sets. This rationale motivates only transitivity but not
single-peakedness constraints. Thus it is more natural to study aggregators of the form
f : Sn

(A,Γ) → Lin (A).
At first sight, this seems to render the methods and results here inapplicable but this

inference would be too rash. To describe the appropriate adaptation of our method-
ology to this case, consider monotone Arrowian aggregators of the form f : Y n → X
where (X,H) is a property space and Y ⊆ X. It is still true that any monotone
Arrowian aggregator takes the form of consistent voting by issues. The Intersection
Property is still (trivially) sufficient for consistency, but no longer necessary since some
inconsistencies may be precluded from materializing due to the domain restriction to
Y . To overcome this difficulty we provide a modified necessary condition that, although
not sufficient for consistency, is powerful enough to derive dictatorship in many cases,
as follows.

Definition (Effective Critical Family) Say that G is an effective critical family if
11A necessary and sufficient condition for when a graph (A, Γ) can be endowed with the structure of

a property space (A,H) such that the notions of Γ-betweenness and H-betweenness coincide, i.e. such
that S(A,Γ) = S(A,H), is given in Nehring and Puppe (2007, Fact 2.2).

12Note that while the domains of individual preferences are single-peaked linear orderings on a
property space (X,H) both here and in the previous subsection, the aggregation exercise is very
different due to the “peaks only” condition in the previous subsection which implies that the strategy-
proof aggregation of preferences reduces to a monotone aggregation of peaks. For instance, in case
of the K-dimensional hypercube the number of properties is 2K in the context of strategy-proof
social choice (with “peaks only”) while here every pair of distinct elements of the hypercube defines a
property, thus there are 2K · (2K − 1)/2 properties in our present context.
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∩G = ∅ and, for all G ∈ G, (∩G \ {G}) ∩ Y 6= ∅.
Definition (Restricted Intersection Property) A structure of winning coalitions
W satisfies the restricted Intersection Property if, for any effective critical family
{G1, ..., Gl} ⊆ H and any selection Wj ∈ WGj

,

l⋂
j=1

Wj 6= ∅.

Thus, a critical family is effective if its criticality, i.e. the consistency of any proper
subfamily, can be verified by means of elements in the restricted domain Y . This
modified concept will prove useful via the following result, the proof of which duplicates
the argument for the necessity of the original Intersection Property for consistency given
in Proposition 2.1 above.

Proposition 4.1 Let (X,H) be a property space and Y ⊆ X. Any monotone Arrowian
aggregator f : Y n → X takes the form of voting by issues with a structure of winning
coalitions satisfying the restricted Intersection Property.

Say that a property H restricted conditionally entails a property G, written as
H ≥0

Y G if H 6= Gc and there exists an effective critical family containing both H
and Gc. Moreover, denote by ≥Y the transitive closure of the restricted conditional
entailment relation, and say that Y is totally blocked in (X,H) if, for all H,G ∈ H,
H ≥Y G.

The restricted Intersection Property may be far from characterizing monotone Ar-
rowian aggregators f : Y n → X in general, but it will be powerful if the restricted
conditional entailment relation is rich. For example, from Proposition 4.1 and the
proof of Theorem 1 above it is immediate that if Y is totally blocked in (X,H) then
the only monotone Arrowian aggregators f : Y n → X are dictatorships.

We apply this now to the aggregation of preferences that are single-peaked with
respect to a graph, viewed as a subset of the set (Lin(A),HR) of all linear orderings
with the standard “relational” property space structure.

Definition (Bi-Connectedness) Say that a graph (A,Γ) is bi-connected if it is con-
nected even after removal of a single vertex and all of its edges.

For instance, the line in Fig. 3(a) is clearly not bi-connected, while the hypercube graph
on {0, 1}K (see Fig. 3(b) for the case K = 3) is bi-connected for all K ≥ 2, and the
complete graph (cf. Fig. 3(c)) is bi-connected whenever #A ≥ 3.

Theorem 6 Let (A,Γ) be a connected graph, and S(A,Γ) the set of all single-peaked
preferences on A with respect to Γ. Suppose that Lin(A) is endowed with the standard
(relational) property structure HR.
a) If (A,Γ) is bi-connected, then any monotone Arrowian aggregator f : Sn

(A,Γ) →
Lin(A) is dictatorial.
b) If (A,Γ) has a vertex with only one neighbor, then there exist non-dictatorial mono-
tone Arrowian aggregators f : Sn

(A,Γ) → Lin(A).
c) There exist locally non-dictatorial monotone Arrowian aggregators f : Sn

(A,Γ) →
Lin(A) if and only if (A,Γ) is a line. In this case, issue-by-issue majority voting is
consistent.
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The paradigmatic cases to which part b) applies are acyclic graphs, i.e. trees. The
consistency of issue-by-issue majority voting on the line asserted in part c) has already
been observed in the literature (see Moulin (1988)).13

The application to “concrete Arrowian” aggregation presented in this subsection
takes a step beyond the rest of the paper and most of the existing literature on judge-
ment aggregation by considering situations in which the domain of individual evalua-
tions (single-peaked orderings) may be strictly smaller than that of social evaluations
(allowed to be any linear ordering). The Intersection Property continues to be suffi-
cient but ceases to be necessary for monotone Arrowian aggregation. By contrast, the
introduced “restricted” Intersection Property is necessary and not sufficient, but it is
strong enough to obtain the almost-characterization in Theorem 6. Especially for the
fans of impossibility theorems, the restricted Intersection Property could be useful in
the further study of abstract Arrowian aggregation with restricted domains.

13Theorem 6 falls short of a full characterization, since a gap is left between the sufficient conditions
for dictatorship given in part a) and those for non-dictatorship in b). An example of a graph that is not
covered by the theorem is the union of two disjoint triangles linked by a single edge. We conjecture
that all domains with missing characterization are dictatorial; that is, for a connected graph Γ all
monotone Arrowian aggregators f : Sn

(A,Γ)
→ Lin(A) are dictatorial if and only if all all vertices

have at least two neighbors. Since the verification of this conjecture appears to involve additional,
somewhat ad-hoc arguments, we did not pursue this further.
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Appendix A: Anonymity without Median Points

Consider the subspace X ⊆ {0, 1}5 shown in Figure 4 below. The two cubes to the
right correspond to a “1” in coordinate 4 (i.e. to the property H4

1 ), similarly, the two
top cubes correspond to a “1” in coordinate 5 (i.e. to H5

1 ). Missing points of the 5-
hypercube are indicated by blank circles. For the purpose of better illustration, the
edges connecting different points across the four subcubes have been omitted in the
figure.
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Figure 4: A quasi-unblocked space without median points

This space is characterized by the following critical families: G1 = {H1
1 , H

3
0 , H

4
1},

G2 = {H1
1 , H

3
1 , H

5
1}, G3 = {H1

0 , H
2
0 , H

4
1}, G4 = {H1

0 , H
2
1 , H

5
1}, G5 = {H2

0 , H
3
0 , H

4
1},

G6 = {H2
1 , H

3
1 , H

5
1} and G7 = {H4

1 , H
5
1}. For instance, the criticality of {H4

1 , H
5
1} = G7

reflects the fact that the top-right cube contains no element of X, and is a maximal
subcube with this property. As is easily verified, one has Hk

0 ≡ Hk
1 for k = 1, 2, 3,

i.e. the first three coordinates are blocked. For instance, one has H1
0 ≥0 H2

1 and
H2

0 ≥0 H1
1 due to criticality of G3, etc. By Proposition 3.1, the underlying space

admits no median points. Nevertheless, denoting by qk
1 the quota corresponding to

Hk
1 , the following anonymous choice rule is easily seen to be consistent if the number

of voters is odd: The final outcome lies in the top left subcube if and only if all voters
endorse property H5

1 (i.e. q5
1 = 1); similarly, the choice is in the bottom right subcube

if and only if all voters endorse H4
1 (i.e. q4

1 = 1). In all other cases, the outcome lies
in the bottom left subcube (q5

0 = q4
0 = 0). In addition, the location of the outcome

within any of the three admissible subcubes is decided by majority vote in each of the
first three coordinates (q1

1 = q2
1 = q3

1 = 1
2 ). By Proposition 2.2 this rule is in fact the

only anonymous and monotone Arrowian aggregator in the present example. Note in
particular that, in accordance with Theorem 3, there is no anonymous rule for an even
number of voters.
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Appendix B: Remaining Proofs

We start with the following lemma that turns out to be very useful in the subsequent
proofs. Let (X,H) be a property space. Partition H as follows.

H0 := {H ∈ H : H ≡ Hc},
H+

1 := {H ∈ H : H > Hc},
H−1 := {H ∈ H : Hc > H},
H2 := {H ∈ H : neither H ≥ Hc nor Hc ≥ H}.

Thus, H0 is the family of all blocked properties, H+
1 denotes the family of all those

properties the complement of which can be reached by a sequence of conditional en-
tailments, but not vice versa. The family of the complements of the properties in H+

1

is denoted by H−1 , and the remaining properties are collected in H2.

Lemma 3 a) For any critical family G, if G ∈ G ∩H−1 , then G \ {G} ⊆ H+
1 .

b) For any critical family G, if G ∩ H0 6= ∅, then G ⊆ H0 ∪H+
1 .

c) Take any H̃ ∈ H2. Then there exists a partition of H2 into H−2 and H+
2 with

H̃ ∈ H−2 such that G ∈ H−2 ⇔ Gc ∈ H+
2 , and for no G ∈ H−2 and H ∈ H+

2 , G ≥ H.

Proof of Lemma 3 a) Suppose G ∈ G ∩H−1 , i.e. Gc > G. Consider any other H ∈ G.
We have H ≥ Gc > G ≥ Hc, hence H > Hc, i.e. H ∈ H+

1 .
b) Suppose G ∈ G∩H0 and let H ∈ G be different from G. We have H ≥ Gc ≡ G ≥ Hc,
hence H ≥ Hc. But this means H ∈ H0 ∪H+

1 .
c) The desired partition into H−2 = {G1, ..., Gl} and H+

2 = {Gc
1, ..., G

c
l } will be con-

structed inductively. Set G1 = H̃, and suppose that {G1, ..., Gr}, with r < l, is deter-
mined such that Gj 6≥ Gc

k for all j, k ∈ {1, ..., r}. Take any H ∈ H2\{G1, G
c
1, ..., Gr, G

c
r}

and set

Gr+1 :=
{
H if for no j ∈ {1, ..., r} : Gj ≥ Hc

Hc if for some j ∈ {1, ..., r} : Gj ≥ Hc

First note that Gr+1 6≥ Gc
r+1 since H ∈ H2. Thus, the proof is completed by showing

that for no k ∈ {1, ..., r}, Gk ≥ Gc
r+1 (and hence also not Gr+1 ≥ Gc

k). To verify this,
suppose first that Gr+1 = H; then, the claim is true by construction. Thus, suppose
Gr+1 = Hc; by construction, there exists j ≤ r with Gj ≥ Hc, hence also H ≥ Gc

j .
Assume, by way of contradiction, that Gk ≥ Gc

r+1, i.e. Gk ≥ H. This would imply
Gk ≥ H ≥ Gc

j , in contradiction to the induction hypothesis.

We first use Lemma 3 to prove Proposition 3.1, and then move on to the proof of
Theorem 1. Proposition 3.1 is due to Nehring (2010); we include its proof here to make
the exposition self-contained.

Proof of Proposition 3.1 Suppose that (X,H) is unblocked, i.e. suppose that H0

is empty. Partition H into H−1 , H+
1 , H−2 and H+

2 according to Lemma 3. Then, any
critical family G can meet H−1 ∪H

−
2 at most once. Indeed, by Lemma 3a), H ∈ G ∩H−1

implies G \ {H} ⊆ H+
1 . Furthermore, if {H,H ′} ⊆ G ∩H−2 , one would obtain H ′ ≥ Hc

which contradicts the construction of H−2 . But this implies that ∩(H−1 ∪ H
−
2 ) is non-

empty (otherwise it would contain a critical family), and by H3, it consists of a single
element, say x̂. By definition, x̂ ∈M(X).

Conversely, let x̂ ∈M(X), and consider any H ∈ Hx̂. By definition, H ≥0 G means
that {H,Gc} ⊆ G for some critical family G. Since x̂ ∈M(X), G contains at most one

23



element of Hx̂, hence Gc 6∈ Hx̂, which implies G ∈ Hx̂. This observation immediately
implies H 6≡ Hc. Hence, (X,H) is unblocked.

Proof of Theorem 1 (Sufficiency of Non-Total Blockedness) Let (X,H) be not
totally blocked and partition H as above. If H+

1 ∪H
−
1 is non-empty, setWH = 2N \{∅}

for all H ∈ H−1 and WH = {N} for all H ∈ H+
1 ; moreover, choose a voter i ∈ N and

set WG = {W ⊆ N : i ∈ W} for all other G ∈ H. Clearly, the corresponding voting
by issues is non-dictatorial. It also satisfies the Intersection Property. Indeed, the only
problematic case is when a critical family G contains elements of H−1 . However, by
Lemma 3a), if G ∈ G ∩ H−1 , we have G \ {G} ⊆ H+

1 , in which case the Intersection
Property is clearly satisfied.

Next, suppose that H+
1 ∪H

−
1 is empty, and consider first the case in which both H0

and H2 are non-empty. By Lemma 3b), no critical family G can meet both H0 and H2.
Hence, we can specify two different dictators on H0 and H2, respectively, by setting
WH = {W : i ∈W} for all H ∈ H0 and WG = {W : j ∈W} for all G ∈ H2 with i 6= j.
Clearly, the Intersection Property is satisfied in this case.

Now suppose thatH2 is also empty, i.e.H = H0. Since (X,H) is not totally blocked,
H is partitioned in at least two equivalence classes with respect to the equivalence
relation ≡. Since, obviously, no critical family can meet two different equivalence
classes, we can specify different dictators on different equivalence classes while satisfying
the Intersection Property.

Finally, if H0 is empty, (X,H) admits a median point x̂ by Proposition 3.1. Set
WH = 2N \ {∅} for all H ∈ Hx̂ and WH = {N} for all H 6∈ Hx̂. By the Intersection
Property the corresponding voting by issues is consistent. Evidently, it coincides with
the Arrowian unanimity rule fx̂ which is non-dictatorial. This completes the proof of
Theorem 1.

Proof of Theorem 2 Obviously, (ii) implies (i). Thus, it suffices to show that (i)
implies (iii), and that (iii) implies (ii).
“(i) ⇒ (iii)” We prove the claim by contraposition. Assume that (X,H) is not quasi-
unblocked. This means that there exists G ∈ H with G ≡ Gc and some critical family G
such that (H≡G ∩G) ⊇ {H,H ′, H ′′} for three distinct H,H ′, H ′′. Consider a structure
of winning coalitions satisfying the Intersection Property. By Lemma 1, WH = WG

for all H ∈ H≡G. By Lemma 2, applied to the critical family G ⊇ {H,H ′, H ′′}, there
exists i, such that {i} ∈ WH for all H ∈ H≡G. Hence, i is a dictator on H≡G, which
proves the claim.
“(iii) ⇒ (ii)” We will construct an anonymous Arrowian aggregator by specifying an
appropriate structure of winning coalitions, provided that (X,H) is quasi-unblocked.
Partition H as in Lemma 3 above. Let n be odd, and set

WH = {W : #W > n/2} if H ∈ H0,
WH = 2N \ {∅} if H ∈ H−1 ∪H

−
2 ,

WH = {N} if H ∈ H+
1 ∪H

+
2 .

Clearly, this structure of winning coalitions is anonymous; we will show that it satisfies
the Intersection Property. Let G be a critical family; we distinguish three cases.
Case 1: G ∩ (H−1 ∪ H

−
2 ) 6= ∅. If G ∈ G ∩ H−1 , then by Lemma 3a), G \ {G} ⊆ H+

1 ,
and the Intersection Property is clearly satisfied. Thus, suppose that there exists
H ∈ G∩H−2 . By Lemma 3b), we must have G∩H0 = ∅, and by Lemma 3a), G∩H−1 = ∅.
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Hence, if there exists H ′ ∈ G \ {H} with WH′ 6= {N}, we must have H ′ ∈ H−2 . But
then H ≥ (H ′)c contradicts the construction of H−2 and H+

2 in Lemma 3c). Thus, if
H ∈ G ∩ H−2 , one has WH′ = {N} for any other element H ′ ∈ G, in which case the
Intersection Property is satisfied.
Case 2: G∩H0 6= ∅. First, observe that G1 ≡ G2 whenever {G1, G2} ⊆ G∩H0. Indeed,
G1 ≡ G2 follows at once from G1 ≥ Gc

2, G2 ≥ Gc
1, G1 ≡ Gc

1 and G2 ≡ Gc
2. Thus, by

quasi-unblockedness, G can contain at most two elements of H0. By Lemma 3b), for
any H ∈ G \H0 one has WH = {N}. Hence, the Intersection Property is also satisfied
in Case 2.
Case 3: If G does not meet H0, H−1 and H−2 , then G ⊆ (H+

1 ∪ H
+
2 ), in which case the

Intersection Property is trivially satisfied. This completes the proof of Theorem 2.

Proof of Proposition 3.2 Let fx̂ be an Arrowian unanimity rule and consider the set
Hx̂ of all properties possessed by x̂. As is easily verified, fx̂ corresponds to voting by
issues with WH = 2N \ {∅} for all H ∈ Hx̂ and WH = {N} for all H 6∈ Hx̂. Suppose
that there exists a critical family G and two distinct H,H ′ with H,H ′ ∈ Hx̂ ∩ G; then
one can choose W ∈ WH and W ′ ∈ WH′ with W ∩W ′ = ∅, violating the Intersection
Property. Thus, #(Hx̂ ∩ G) ≤ 1 for every critical family G, i.e. x̂ ∈M(X).

Conversely, it is immediate from the Intersection Property (and already observed
at the end of the proof of Theorem 1 above) that for any median point x̂ ∈ M(X)
voting by issues with WH = 2N \ {∅} for all H ∈ Hx̂ and WH = {N} for all H 6∈ Hx̂

is consistent. Evidently, it corresponds to the Arrowian unanimity rule fx̂.

Proof of Theorem 3 The equivalences “(iv) ⇔ (v)” and “(iii) ⇔ (v)” follow at once
from Propositions 3.1 and 3.2, respectively. The implications “(iii) ⇒ (ii)” and “(ii)
⇒ (i)” are evident. Thus, the proof is completed by verifying the implication “(i) ⇒
(iv).” This is done by contraposition. Thus, assume that H is blocked, i.e. H ≡ Hc.
By Lemma 1 this impliesWH =WHc for any structure of winning coalitions satisfying
the Intersection Property. Under anonymity, this implies, using (2.1), WH = WHc =
{W ⊆ N : #W > n/2}, which is compatible with (2.2) only if the number of voters is
odd. This completes the proof of Theorem 3.

Proof of Theorem 4 a) By Proposition 3.2, if there exists a median point there also
exists an Arrowian unanimity rule, and any such rule is uniform and non-dictatorial.

Conversely, let f : Xn → X be voting by issues satisfying the Intersection Property.
We show by contraposition that if f is non-dictatorial and uniform, then (X,H) must
admit a median point. By contradiction, assume there is none. By Proposition 3.1,
some property H is blocked, i.e. H ≡ Hc. By Lemma 1, this implies WH = WHc ,
hence f is fully neutral, i.e. WH = W0 for all H and some fixed W0. Since (X,H) is
not a median space, there exists a critical family G with at least three elements, say
G ⊇ {G1, G2, G3}. By Lemma 2, {i} ∈ WGc

3
=W0, i.e. voter i is a dictator.

b) Median spaces are characterized by the property that all critical families have car-
dinality two. By the Intersection Property this implies that issue-by-issue majority
voting with an odd number of agents is consistent on any median space, and evidently,
issue-by-issue majority voting with an odd number of agents is neutral, in particular
unbiased.

Conversely, let f : Xn → X be voting by issues satisfying the Intersection Property.
We show by contraposition that if f is locally non-dictatorial and unbiased, then (X,H)
must be a median space. Thus, suppose that (X,H) is not a median space. Then
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there exists a critical family G with at least three elements, say G ⊇ {G1, G2, G3}, in
particular, Gj ≥ Gc

k for distinct j, k ∈ {1, 2, 3}. By Lemma 1, WGj
⊆ WGc

k
for distinct

j, k ∈ {1, 2, 3}. Under unbiasedness this implies at once that W assigns identical
families of winning coalitions to G1, G2, G3 and their respective complements. By
Lemma 2 above, {i} ∈ WGc

3
, i.e. voter i is a local dictator.

c) As in part b), an underlying median space guarantees the existence of a fully neutral
aggregator. The converse follows from part b) together with the observation that, under
full neutrality, a local dictator must even be a global dictator. This completes the proof
of Theorem 4.

Proof of Proposition 3.3 Suppose that (X,H) is indecomposable, and consider any
two properties H and G. Since (X,H) is indecomposable, there exists a sequence
H1, H2, ...,Hl such that H = H1, Hl = G and such that for each j = 1, ..., l− 1 there is
a critical family Gj that contains either Hj and Hj+1, or Hc

j and Hj+1, or Hj and Hc
j+1,

or Hc
j and Hc

j+1. The claim thus follows immediately from the Intersection Property
and Lemma 1.

Proof of Proposition 4.1 The proof is obtained by a straightforward adaption of the
proof of necessity of the Intersection Property for consistency given in Proposition 2.1
above.

Proof of Theorem 6 a) Let (A,Γ) be a bi-connected graph, and consider a monotone
Arrowian aggregator f : Sn

(A,Γ) → Lin(A). A subset C ⊆ A is identified with its induced
subgraph. Thus C is a cycle if the corresponding induced subgraph is a cycle. A cycle
C ⊆ A is geodesic if the graph distance on C equals the graph distance on A, where the
“graph distance” between two points is simply the number of edges of a shortest path
that connects them. For each pair (a, b) ∈ A × A, denote by Ha�b := {�∈ Lin(A) :
a � b}. The proof proceeds in several steps. First, we establish the following.

Claim 1 Let C be an geodesic cycle. For any triple of distinct points {a, b, c} ⊆ C,
G = {Ha�b, Hb�c, Hc�a} is an effective critical family.
Proof of Claim 1 Evidently, by transitivity, ∩G = ∅. We thus have to show that S(A,Γ)

has an element in common with the intersection of each pair of G. If neither of the
three points a, b, c lies on a shortest path connecting the two others points (on C and
therefore by assumption also on (A,Γ)) this is obvious since single-peakedness imposes
no restriction. Thus suppose that one point lies on a shortest path connecting the other
two points, w.l.o.g. suppose that b lies on a shortest path connecting a and c.

The set Ha�b ∩ Hb�c ∩ S(A,Γ) is non-empty since it contains any single-peaked
preference �∈ S(A,Γ) with peak a.

The set Hb�c ∩ Hc�a ∩ S(A,Γ) is non-empty since it contains any single-peaked
preference �∈ S(A,Γ) with peak at b and such that c � a. Such preferences exist by
Szpilrajn’s theorem since �b ∪{(c, a)} is acyclic, where �b denotes the partial order
induced by single-peakedness and the fact that b is the top alternative, i.e. e �b f if
and only if e is on a shortest path between b and f .

To see thatHc�a∩Ha�b∩S(A,Γ) is non-empty, let e be a point on C that is maximally
distant from b. Then �e ∪{(c, a), (a, b)} is acyclic. Hence, appealing to Szpilrajn’s
theorem again, any linear extension of this relation is contained in Hc�a∩Ha�b∩S(A,Γ).

The next two claims show that the family H′ = {Ha�b : {a, b} ∈ Γ} is “totally blocked”
with respect to ≥S(A,Γ) .

26



Claim 2 Let {a, b} and {c, d} be any pair of edges contained in a common cycle in
(A,Γ). Then Ha�b ≥S(A,Γ) Hc�d.
Proof of Claim 2 The proof is by induction on the length of the cycle. It holds vacuously
for cycles of length l ≤ 2 since such cycles do not exist. Consider a cycle C = {a1, ..., al}
with a1Γa2Γ...ΓalΓa1 of length l, and assume that the claim holds for all cycles of length
strictly less than l.

If C is geodesic, then the assertion follows straightforwardly from Claim 1. If C
is not geodesic, there exist ak, ak′ ∈ C with k < k′ such that dΓ(ak, ak′) < (k′ − k),
where dΓ denotes the graph distance. For illustration, see Figure 5 which shows a
non-geodesic cycle (a1Γa2Γa3Γa4Γa1) in a graph with five edges on four vertices; in
the figure one has k = 2 and k′ = 4 and dΓ(a2, a4) = 1.
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Figure 5: A Non-geodesic Cycle

Let {ak, b1, ..., bm, ak′} denote a shortest path from ak to ak′ . Then the sets C ′ :=
{ak, b1, ..., bm, ak′ , ak′+1, ...al, a1, ...ak−1} and C ′′ := {ak, b1, ..., bm, ak′ , ak′−1, ...ak+1}
are paths of length strictly less than l and such that C ⊂ C ′ ∪ C ′′. If {a, b} and {c, d}
are edges both of C ′, or both of C ′′, we are done by induction assumption. Suppose
thus that {a, b} is an edge of C ′ while {c, d} is an edge of C ′′. Then by the induction
assumption Ha�b ≥S(A,Γ) Hak�b1 and Hak�b1 ≥S(A,Γ) Hc�d, hence Ha�b ≥S(A,Γ) Hc�d

by transitivity.

Claim 3 Any two edges {a, b} and {c, d} of (A,Γ) are contained in a common cycle.
Proof of Claim 3 This is a straightforward consequence of Menger’s Theorem (see,
e.g. Diestel (2005, p.62)) according to which in a bi-connected graph, any two vertices
can be connected by two vertex-disjoint paths, as follows.

Suppose without loss of generality that dΓ(b, c) ≤ min{dΓ(a, c), dΓ(a, d), dΓ(b, d)}.
Let π = {b, e1, ..., em, c} be a shortest path from b to c. Clearly π contains neither a
nor d. Hence π′ = {a, b, e1, ..., em, c, d} is a path from a to d. By Menger’s Theorem,
there are two paths π′′ and π′′′ connecting a and d such that π′′ ∩ π′′′ = {a, d}. If
π′′ ∩ {b, c} = ∅ or π′′′ ∩ {b, c} = ∅, the asserted cycle is given by π′ ∪ π′′ or π′ ∪ π′′′.
If π′′ ∩ {b, c} = {b, c} or π′′′ ∩ {b, c} = {b, c}, the asserted cycle is given by π′′ ∪ π′′′.
Otherwise, without loss of generality, π′′ ∩ {b, c} = {b} and π′′′ ∩ {b, c} = {c}. Let π̃′′

denote the path from a to d replacing the subpath in π′′ from a to b by the edge {a, b}.
Likewise, let π̃′′′ denote the path from a to d replacing the subpath in π′′ from c to d
by the edge {c, d}. Then π̃′′∩ π̃′′′ = {a, d}. The asserted cycle is thus given by π̃′′∪ π̃′′′.
Combining Claims 2 and 3, we obtain that H′ is totally blocked with respect to ≥S(A,Γ) .
Hence by Theorem 1, f is dictatorial on H′ with dictator i∗.
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Take any pair {a, b} that is not an edge of Γ. To complete the proof that f is
dictatorial on all of H, we need to show that {i∗} ∈ Wa�b for any such {a, b}. To verify
this, take any profile (�1,�2, ...,�n) of single-peaked preferences such that i∗ has peak
a and all i 6= i∗ have peak b. Since i∗ is a dictator on H′ for all edges (c, d) such that c
is Γ-between a and d, we have

f(�1, ...,�n) ⊆ Hc�d. (B.1)

Consider any shortest path π = {e0, e1, ..., en} from a to b, setting a = e0 and
b = en. By (B.1), f(�1, ...,�n) ⊆ Hem�em+1 for m = 0, ..., n − 1. By transitivity of
f as a linear order, therefore f(�1, ...,�n) ⊆ Ha�b. Since {i∗} = {i :�i∈ Ha�b} it
follows that {i∗} ∈ Wa�b. This completes the proof of Part a).
b) Let a ∈ A be such that it has only one neighbor in the graph, say b. Then, b is
Γ-between a and all c ∈ A \ {a}. A consistent and non-dictatorial voting by issues rule
is obtained by setting WHa�b

= {N}, WHb�a
= 2N \ {∅}, and dictatorship of some

i elsewhere. Clearly, if i’s peak is not on a, i’s entire preference ordering is adopted;
the same applies if all voters (including i) have their peak at a. If i’s peak is at a
but some other voter’s peak is not at a, then b is the peak of the social ordering while
all other comparisons follow i’s preference (in particular a is socially the second best
alternative).
c) Suppose f is locally non-dictatorial. By Claims 1 and 2 of the proof of part a), Γ
cannot contain a cycle. Thus, Γ must be acyclic, i.e. a tree. Unless it is a line, there are
three alternatives {a, b, c} neither of which is between the other two. By consequence,
the triples of properties {Ha�b, Hb�c, Hc�a} and {Hb�a, Hc�b, Ha�c} are both critical
families implying local dictatorship in view of Theorem 2.

Conversely, if (A,Γ) is a line, then all critical families have the form {Ha�b, Hc�b},
where b is Γ-between a and c. Therefore, S(A,Γ) is a median space, and issue-by-issue
majority defines a consistent aggregation method by Proposition 2.3.
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