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Summary. In the context of discrete districting problems with geographical con-
straints, we demonstrate that determining an unbiased districting turns out to be a
computationally intractable (NP-complete) problem. This raises doubts as to whether
an independent jury will be able to come up with a “fair” redistricting plan in case
of a large population. We also show that, in the absence of geographical constraints,
an unbiased districting can be implemented by a simple alternating-move game among
the two parties.
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1 Introduction

Districting is well-known to be a critical determinant of the representation of parties
in legislatures. The process of how the shape and structure of districts is brought
about has therefore received considerable interest both from political scientists and
economists, see e.g. Besley and Preston (2007), Coate and Knight (2007), Friedman
and Holden (2008), Gelman and King (1994), Gilligan and Matsusaka (2006), Gul and
Pesendorfer (2007), Sherstyuk (1998) and Shotts (2002) for recent contributions. From
an economic perspective the districting problem becomes particularly salient when
the political parties themselves can actively and strategically influence the shape and
structure of districts. This is the case in most US states in which the legislature has
primary responsibility for creating a redistricting plan, often subject to approval by
the state governor. By consequence, the literature has focused on strategically optimal
gerrymandering, i.e. the optimal manipulation of districts from the viewpoint of the
involved parties.

In five states, however, congressional redistricting is carried out by an independent
bipartisan commission (in Arizona, Hawaii, Idaho, New Jersey and Washington). More-
over, Iowa and Maine give independent bodies the authority to propose redistricting
plans, which have to be approved by legislature.1 Accordingly, the present paper asks
whether and how a “fair” districting can be achieved by an impartial and independent
arbiter or jury. Specifically, a districting will be called unbiased if the number of dis-
tricts won by a party (by simple majority) is proportional to its share of votes in the
entire population. While this problem has an easy solution in the absence of further
constraints, our main result shows that finding an unbiased districting represents an
NP-complete problem in the case of geographical constraints, such as e.g. connected-
ness of districts.2 In states with a large population and many districts it can be thus
very difficult to find a “fair” districting plan. In case of congressional elections in the
United States, striking examples are California with 53 representatives (districts) and
Texas with 32 representatives.

We also investigate whether an unbiased districting can be implemented by the
parties themselves through an appropriate institutional design. To this behalf, we in-
troduce a simple alternating-move game in which two parties sequentially determine
the districts. Compared to the setting with an independent jury, the informational re-
quirements are different, and arguably much weaker in this case since only the involved
parties have to be informed about the distribution of their respective supporters. We
show that an unbiased districting results as the (essentially unique) subgame-perfect
equilibrium in the absence of geographical constraints.

The remainder of the paper is organized as follows. The next section presents our
framework with basic definitions and our notation. Section 3 contains our main result,
the NP-completeness of determining an unbiased districting plan with geographical
constraints. In fact, we show by example that an unbiased districting may not even
exist in some cases. In Section 4, we investigate the simple alternating move game
described above. Section 5 offers some concluding remarks.

1For more details on redistricting practice, also outside the US, see e.g.
http://en.wikipedia.org/wiki/Redistricting (accessed: 01/15/2008).

2In a recent contribution, Altman (2007) also points out that many problems related to districting
are NP-hard. He does not consider the specific problem of producing an unbiased districting, though.
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2 The Framework

We assume that a set of voters has to be partitioned into a given number of equal
districts in each of which candidates of two parties, say parties A and B, compete for
winning a seat. A district is “won” by a candidate if he/she receives the majority
of votes. We shall denote the number of voters by n and the set of voters by N :=
{1, ..., n}. Similarly, the number of districts is denoted by d and the set of districts by
D := {1, ..., d}. We assume that d divides n.3

We assume that the voters have deterministic and known party preferences. This is
clearly a simplification of reality which, however, allows us to obtain several insightful
results. Relaxing these assumptions could be the aim of further research. The voters’
party preferences are summarized by the mapping v : N → {A,B} with v(j) = A
interpreted as “voter j votes for (prefers) party A.” The number of supporters of
parties A and B are denoted by nA and nB , respectively. Let us assume for simplicity
that there exists a positive integer k such that n = d(2k + 1). Thus, each district must
consist of 2k + 1 voters and, assuming full participation, each district is won by either
party A or party B. In particular, we exclude in all districts the possibility of a draw.

Most of the literature investigates districting problems without geographical con-
straints (an exception is Sherstyuk, 1998). We introduce the following simple but quite
general framework that allows us to incorporate geographical constraints.

Definition (Geography) A non-empty family S ⊂ 2N of subsets of N is called a
geography if (i) for all S ∈ S, #S = 2k + 1, and (ii) there exist S1, . . . , Sd ∈ S such
that {S1, ..., Sd} forms a partition of N .

Definition (Districting) For a given geography S ⊂ 2N a mapping f : N → D is
called a districting if f−1(i) ∈ S for all i ∈ D and ∪i∈Df−1(i) = N .

Observe that if S consists of all 2k + 1 sized subsets of N , then we obtain as a special
case districting without geographical constraints.

A districting f and voters’ preferences v jointly determine the number of districts
won by parties A and B, which we denote by F (f, v, A) and F (f, v,B), respectively.
Party A wins the (congressional) election if F (f, v, A) > F (f, v,B) and loses the elec-
tion if F (f, v, A) < F (f, v,B). The following definition is central to our approach to
“fair” destricting. In what follows bxc stands for the largest integer not greater than
x and dxe stands for the smallest integer not less than x, for any real number x.

Definition (Biasedness) For given voters’ preferences v : N → {A,B} a districting
f : N → D is unbiased if F (f, v, A) = bdnA

n c or F (f, v, A) = ddnA

n e. A districting is
biased if it is not unbiased.

Thus, a districting plan is unbiased if the number of districts won by each party respects
their relative strength in the population as close as possible. Without geographical con-
straints, an unbiased districting can be found quite easily.

Proposition 1 An unbiased districting without geographical constraints can be deter-
mined in polynomial time, and more specifically, even in linear time.

Proof. Fill bdnA

n c districts with voters of party A, bdnB

n c districts with voters of party
B and the remaining district (whenever dnA

n is not an integer) with the remaining

3This is without much loss of generality, since otherwise we can introduce dummy voters in pro-
portion of the supporters of each party to overcome indivisibilities.
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2k + 1 voters.

The simple algorithm given in the proof of Proposition 1 in particular shows that
without geographical constraints an unbiased districting is always feasible. However,
this is not always the case in the presence of geographical constraints. We verify
this based on the “rectangular country” shown in Figure 1. Party A’s supporters are
indicated by empty circles and party B’s supporters are indicated by solid circles; it
can be verified that nA = nB = 200. We assume that k = 2, i.e. district size is 5, and
that therefore d = 80 districts have to be formed. Two voters are considered adjacent if
they have a common boundary (edge), and a district is connected if two voters living in
the same district are “reachable” through a sequence of adjacent voters. We impose the
simple restriction on the districting that only connected districts can be formed, which
defines a geography S for the rectangular country. Under the distribution of voters’
preferences shown in Figure 1 and under the given geographical constraint, party B
loses the election (since it cannot win more than 39 = d/2 − 1 districts) although it
has exactly the same number of supporters as party A. To verify this, observe that if
a district contains one voter from the left hand side (first ten columns) of the country,
then it cannot be won by Party B. Therefore, winning districts for party B must
consist only of voters from the right hand side (last ten columns) of the country. Since,
for instance, the voter in the top row and 11th column (a party A voter) can only be
put in a winning district for party A, it is impossible to create 40 winning districts for
party B.

v f f f v f f f v f f f f v v v v v v vf v f f f v f f f v f f f v v v v v v vf f v f f f v f f f f f v v v v v v v vf f f v f f f v f f f f v v v v v v v vv f f f v f f f v f f f v v v v v v v vf v f f f v f f f v f f f v v v v v v vf f v f f f v f f f f f v v v v v v v vf f f v f f f v f f f f v v v v v v v vv f f f v f f f v f f f v v v v v v v vf v f f f v f f f v f f f v v v v v v vf f v f f f v f f f f f v v v v v v v vf f f v f f f v f f f f v v v v v v v vv f f f v f f f v f f f v v v v v v v vf v f f f v f f f v f f f v v v v v v vf f v f f f v f f f f f v v v v v v v vf f f v f f f v f f f f v v v v v v v vv f f f v f f f v f f f v v v v v v v vf v f f f v f f f v f f f v v v v v v vf f v f f f v f f f f f f v v v v v v vf f f v f f f v f f f f f v v v v v v v

Figure 1: Rectangular country
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3 Districting is NP-complete

Our main concern is whether an impartial arbiter or judge can determine an unbi-
ased districting for a given geography S on N from a computational perspective. We
establish that even the associated decision problem, i.e. deciding the existence of an
unbiased districting, is a computationally intractable NP-complete problem. We call
this problem UNBIASED DISTRICTING.

To prove the NP-completeness of UNBIASED DISTRICTING, we shall reduce EXACT
COVER BY m-SETS (m ≥ 3), a well-known NP-complete problem,4 to UNBIASED
DISTRICTING. EXACT COVER BY m-SETS asks if a given set X with cardinality
mq possesses an exact cover from a given set system C of m-element subsets (henceforth
m-sets) of X (i.e. C1, . . . , Cq ∈ C and ∪q

i=1Ci = X), where we can assume that #C ≥ q.

Theorem UNBIASED DISTRICTING is NP-complete.

Proof. First, we verify that the unbiasedness of a districting f can be checked in
polynomial time, and therefore UNBIASED DISTRICTING ∈ NP. Assume that the
set of party A voters is represented by {1, 2, . . . , nA} and the set of party B voters
by {nA + 1, . . . , n}. A district of size 2k + 1 is encoded by a sequence of distinct
positive integers not greater than n, a districting f by a sequence of d districts, and a
geography by 2k +1, nA, nB , s = #S and the sequence S1, . . . , Ss of possible districts.
The unbiasedness of a given districting f can be checked by counting the number of
winning districts for party A while reading the encoding of f .

Second, we reduce EXACT COVER BY 2k + 1-SETS to UNBIASED DISTRICT-
ING. We start with the motivating example shown in Figure 2 to illustrate our con-
struction of a districting problem associated with a given instance of EXACT COVER
BY 2k + 1-SETS. The empty circles stand for the elements to be covered by disjoint
5-sets (k = 2), which we regard as the party A voters in the districting problem. The
given instance of EXACT COVER BY 5-SETS, i.e. the set system C of 5-sets of party
A supporters, specifies possible districts that are not shown in Figure 2 since we allow
for arbitrary systems of such sets. The solid circles indicate the voters of party B. We
obtain the desired geography S (on the set of all voters) by adding the sets Y1, . . . , Y8

and Z1, . . . , Z5 to C as shown in Figure 2. In the figure, we also see that nA = 15 and
nB = 25, thus an unbiased districting requires exactly 3 winning districts for party
A. The crucial observation is that an unbiased districting cannot contain any of the
districts Y1, . . . , Y8. Indeed, among all admissible districts (i.e. those in S) only the
districts in C are winning districts for party A. Moreover, C contains at most 3 mu-
tually disjoint districts. Therefore, a districting containing a set Yi cannot contain at
the same time 3 districts from C. This shows that an unbiased districting exists if and
only if the given instance of EXACT COVER BY 5-SETS has a solution.

Now let us turn to the general case and take an instance C on X of EXACT COVER
BY 2k +1-SETS, where #X = (2k +1)c for some integer c. The elements of X will be
the voters of party A, and thus nA = #X. Let a = b (2k+1)c

k c and r = (2k + 1)c mod k
(the remainder of the division of (2k + 1)c by k). Party B will (by construction) have
either y = a(k + 1) + 2k + 1− r voters if r > 0 or y = a(k + 1) voters if r = 0, and we
shall denote the associated set of voters by Y .

4See Garey and Johnson (1979) for EXACT COVER BY 3-SETS and EXACT COVER BY 4-
SETS. The NP-completeness of the EXACT COVER BY m-SETS for m ≥ 5 can be shown in an
analogous way.
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Figure 2: k = 2, d = 8 and n = 40

We claim that y is divisible by 2k + 1. First, we consider the case of r > 0. Since
(2k + 1)c = ak + r,

y = a(k + 1) + 2k + 1− r

= a(k + 1) + 2k + 1− ((2k + 1)c− ak)
= (2k + 1)(a + 1− c),

which proves our claim for r > 0. Second, assume that r = 0. Since then (2k+1)c = ak,
we have

y = a(k + 1)
= (2k + 1)c + a

= (2k + 1)c +
c

k
(2k + 1).

Now y is divisible by 2k + 1 because gcd(2k + 1, k) = gcd(k, 1) = 1 by the Euclidean
algorithm and therefore c is divisible by k, since all the terms are integers, and hence
y is clearly divisible by 2k + 1.5

Next we construct a geography S on N = X ∪Y . First, pick a partition Z1, . . . , Zu

of Y into 2k + 1-sets. Second, we partition X into k-sets X1, . . . , Xa and in addition
into an r-set Xa+1 if r > 0. Third, we partition Y into k + 1-sets Y ′

1 , . . . , Y ′
a and in

addition into a 2k + 1 − r-set Y ′
a+1 if r > 0. Fourth, match sets X1, . . . , Xa with sets

Y ′
1 , . . . , Y ′

a, respectively, to obtain 2k + 1-sets Y1, . . . , Ya consisting of k voters of party
A and k + 1 voters of party B. Moreover, match set Xa+1 with set Y ′

a+1 if r > 0, to
obtain 2k + 1-set Ya+1 with more voters of party B than party A. Let t = a if r = 0
and t = a + 1 if r > 0. Finally, let S = C

⋃
{Y1, . . . , Yt, Z1, . . . , Zu} completing the

construction of geography S.
Since sets Y1, . . . , Yt determine a districting with district size 2k + 1 on N , we have

associated an instance of UNBIASED DISTRICTING with an arbitrary instance of
EXACT COVER BY 2k + 1-SETS.

Because nB = y = c′(2k + 1) for some positive integer c′, party A receives exactly
dnA

n = c winning districts by an unbiased districting. Remember that the set of winning
districts for party A equals C and one can select at most c disjoint districts from C.

5gcd stands for the greatest common divisor.
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Hence, a districting for geography S is unbiased if and only if it does not contain a
set from Y1, . . . , Yt, since otherwise party A wins fewer than c districts. Therefore, the
necessary and sufficient condition for the existence of an unbiased districting is the
existence of an exact cover of X by 2k + 1-sets from the given set system C. Thus, we
have reduced EXACT COVER BY 2k + 1-SETS to UNBIASED DISTRICTING.

Finally, we show that our reduction can be done in polyonomial time. Assume
that the given instance of EXACT COVER BY 2k + 1-SETS is given by a sequence
C1, . . . , Cv ⊆ X of 2k + 1-sets, where the elements of X are encoded by integers
{1, 2, . . . , nA} and v ≥ c. Clearly, the input length in integers equals v(2k + 1). Since
the reduction produces t + u new 2k + 1-sets, 2c ≤ t ≤ 3c and u ≤ t ≤ 3c, the required
number of computations is linear in c and at most linear in the size of input, which
completes the proof.

The theorem says that at the current state of computer science (i.e. unless P =
NP) we cannot give an efficient (polynomial time) algorithm to determine whether a
given geography allows an unbiased districting. This also implies the nonexistence of
an efficient algorithm for determining an unbiased districting if it exists. Thus, for a
given district size an increase in the number of districts increases the required number
of computation steps radically (again assuming P 6= NP). Clearly, one can easily come
up with exponential time procedures; however, these can work well only for “small”
problems.

The theorem does, of course, not exclude the existence of a polynomial time algo-
rithm for a set of reasonably restricted geographies. A natural step would be to consider
geographies satisfying a kind of planarity condition. This issue could be addressed in
future research, however, we conjecture that considering only “planar geographies” will
not turn UNBIASED DISTRICTING into a polynomial time problem.

Since an unbiased districting can thus not be determined in polynomial time, we
may ask whether an approximation version of our problem, i.e. determining the least-
biased districting, could be approximated in polynomial time. Though this is an im-
portant question and should be investigated in future research, we focus here on the
pure decision problem. Indeed, even as the pure decision problem, UNBIASED DIS-
TRICTING seems to be of particular importance, especially in the case of two almost
equally strong parties in which even a small bias of one seat induced by a particular
districting can decide the outcome of the election. We conjecture that, based on a
recent inapproximability result by Hazan, Safra and Schwartz (2006) for the so-called
m-set packing problem, least-biased districting cannot be approximated in polynomial
time with a factor of Ω

(
m

log m

)
unless P=NP.

4 A districting game

Our theorem suggests that an unbiased districting cannot be easily worked out by an
independent jury unless the population is very small. An alternative way to prevent
partisan gerrymandering is to consider appropriate institutions according to which the
parties can determine the redistricting themselves.

Maybe the simplest institution serving this purpose is an alternating-move game
in which the parties determine districts sequentially. In the case of geographical con-
straints, one has to make sure that, at any stage, the party at move is only allowed to
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select from those set of possible districts that do not prevent the continuation of the
game.

Assume without loss of generality that nA ≤ nB and, for simplicity, that party B
is the first mover. Thus, first party B selects a district, then party A selects a district,
then party B again selects a district, and so on.

Proposition 2 In the absence of geographical constraints, the subgame perfect Nash
equilibrium of the above specified game determines an unbiased districting.

Proof. We start by considering the first m = bdnA

n c moves of both parties, for which
we claim that both parties can ensure winning at least m districts already in this part
of the game.

First, the second mover (party A) can ensure m winning districts by copying party
B’s strategy in the following sense: If party B selected at its ith move a district D2i−1

consisting of mA voters of party A and mB voters of party B, then party A can always
construct in its ith move a district D2i consisting of mB supporters of party A and mA

supporters of party B.6

Second, the first mover (party B) can also ensure m winning districts in a similar
way. At its first move party B creates a winning district by a margin of one voter and
waits for party A’s first move. Now party B can copy party A’s move in the following
sense: If party A selected at its ith move a district D2i consisting of mA voters of party
A and mB voters of party B, then party B can always construct at its i + 1th move a
district D2i+1 consisting of mB supporters of party A and mA supporters of party B,
which proves our claim.

Finally, if party A could still form a winning district, party B continues in its
m + 1th move by creating a winning district by a margin of one voter as in its first
move, and thereafter there are too few supporters of party A left to form a winning
district for party A, which completes the proof.

Let us remark that taking party A as a first mover of the alternating-move game
would also result in an unbiased districting; however, in this case party A might even
achieve ddnA

n e winning districts if the fractional part of dnA

n is large enough. Hence,
this game can have a first mover advantage.

The above game cannot deliver an efficient solution for the general case of unbiased
districting with geographical constraints due to our above theorem. However, imple-
menting a districting through the simple alternating-move game can nevertheless be
regarded as a (more or less) satisfactory “solution” to the districting problem since it
effectively limits the possibilities of manipulating the outcome through strategic ger-
rymandering for each party.

5 Conclusion

In this paper, we have studied the problem of determining an unbiased (“fair”) re-
districting plan. We have shown, by example, that even under simple geographical
constraints such as connectedness of each district, an unbiased districting may not ex-
ist. As our main result, we proved that determining whether a given geography admits

6Observe that this can be done since i ≤ m.
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an unbiased districting is an NP-complete problem. Applied to congressional elections
in the US, one may therefore expect that in states with a large population (and thus
also a large number of districts), the problem of finding a fair solution to the districting
problem becomes very difficult and computationally intractable. While the problem is
completely absent in the states of Alaska, Delaware, Montana, North Dakota, South
Dakota, Vermont and Wyoming because each of them has just one representative, it
can become extremely complex in states such as Texas with its 32 representatives, or
even California with 53 representatives.

As a possible solution to the problem of avoiding partisan gerrymandering more
generally, we have considered a simple alternating-move game in which parties sequen-
tially choose districts. In the absence of geographical constraints, this game indeed
delivers an unbiased districting as the equilibrium outcome. A study of the equilibria
in the general case is left to future research.
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