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Abstract The paper provides a characterization of all efficient and strategy-proof vot-
ing mechanisms on a large class of preference domains, the class of all generalized
single-peaked domains. It is shown that a strategy-proof voting mechanism on such a
domain is efficient if and only if it satisfies a weak neutrality condition and is either
almost dictatorial, or defined on a median space of dimension less than or equal to two.
In more than two dimensions, weakly neutral voting mechanisms are still “locally” ef-
ficient.
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1 Introduction

A main conclusion from the literature on dominant strategy implementation is that
strategy-proofness and efficiency are compatible in a significant way only on very special
preference domains. For instance, in quasi-linear environments ex-post efficiency is, in
general, incompatible with strategy-proofness (Green and Laffont (1979)). In a voting
context, it has been shown that even on those domains that enable non-dictatorial and
strategy-proof social choice rules, often none of these guarantee efficiency. For instance,
Kim and Roush (1984) provide an impossibility result, later generalized by Peters, van
der Stel and Storcken (1992), for Euclidean preferences in at least three-dimensional
spaces. Similarly, Border and Jordan (1983) show that among all social choice functions
on the domain of “separable quadratic” preferences in a Euclidean space of more than
two dimensions only the dictatorial ones are strategy-proof and efficient.1 These and
other negative results in the literature seem to have led to the general view that there is
possibly only one “natural” preference domain on which there exists a significant range
of non-dictatorial social choice functions that are both strategy-proof and efficient: the
set of all single-peaked preferences on a line (Moulin (1980)), and more generally, the
set of of all single-peaked preferences on a tree (Demange (1982)).

The goal of this paper is to exactly determine the set of all strategy-proof and
efficient social choice functions on a large class of preference domains, the class of
all generalized single-peaked domains introduced in Nehring and Puppe (2002) and
further analyzed in Nehring and Puppe (2004), henceforth NP (2004). This class
includes the domain of all single-peaked preferences on a line, the domain of all sep-
arable preferences on the hypercube (Barberá, Sonnenschein and Zhou (1991)), the
domain of all “multi-dimensionally” single-peaked preferences on the Cartesian prod-
uct of lines (Barberá, Gul and Stacchetti (1993)), the unrestricted preference domain
of the Gibbard-Satterthwaite theorem, and many others. On generalized single-peaked
domains, strategy-proof social choice can be described in a unified manner as “voting
by issues.” We prove that, within this class of preference domains, strategy-proof so-
cial choice is efficient if and only if it satisfies a weak neutrality condition and is either
almost dictatorial, or defined on an at most two-dimensional median space.2

Our characterization is based on three insights in particular. First, efficiency re-
quires a “weak” neutrality condition on the structure of winning coalitions. In one-
dimensional spaces, this condition is vacuously satisfied; in multi-dimensional spaces
such as the product of lines, by contrast, weak neutrality requires that all issues are
decided using the same family of winning coalitions. Secondly, voting by issues can be
weakly neutral only if it is “almost-dictatorial,” or defined on a median space; examples
of median spaces are lines, trees, products of these, and appropriate subspaces of such
products. Finally, weakly neutral rules are indeed efficient if and only if the underlying
(median) space is at most two-dimensional. A key step in our characterization is the
definition of an appropriate notion of dimension which is based on taking trees rather
than lines to be the fundamental one-dimensional structure. We present a natural
location example of a median space that can be embedded in the Cartesian product
of two trees, but not of two lines. While efficiency is unattainable in more than two

1In fact, Border and Jordan (1983) claim this also for two dimensions in which case the statement
is, however, not correct; see Section 3 below for further discussion.

2A space is a median space if any triple of elements admits a fourth element (their “median”) that
is “between” any pair of the triple, see Section 2 below.
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dimensions, it is shown that weakly neutral rules still enjoy superior partial efficiency
properties.

Our main result has the corollary that there is one and only one anonymous and
efficient strategy-proof social choice rule on the Cartesian product of two lines, namely
to choose the coordinate-wise median of the voters’ peaks (“issue-by-issue majority
voting”). This generalizes corresponding results in Kim and Roush (1984) and Peters,
van der Stel and Storcken (1992) who consider the (much smaller) domain of preferences
that can be represented by the negative Euclidean distance to some ideal point. Peters,
van der Stel and Storcken (1993) generalize the analysis to non-Euclidean metrics, but
still retain the restrictive assumption that the relevant metric is common to all agents.
On the necessity side of our result, all previous contributions have assumed that the
underlying space is a product of lines. Besides the already mentioned ones, these
include Barberá, Sonnenschein and Zhou (1991) who assume the underlying space to
be a hypercube (product of two-element sets). Our analysis is far broader by considering
domains of preferences that are single-peaked with respect to very general betweenness
geometries and by deriving the necessity of a median space structure for efficiency in
the absence of almost-dictatorship.

The body of the paper is organized as follows. In the following Section 2, we
briefly state the basic definitions and results of NP (2004). In particular, we review the
characterization of strategy-proof social choice on generalized single-peaked domains
as voting by issues satisfying the Intersection Property. Section 3 contains our main
result, the characterization of all strategy-proof and efficient social choice rules on
these domains. To illustrate the scope of our analysis, we discuss examples dealing
with location problems, public goods and judgement aggregation, respectively. In
Section 4, we show that voting by issues always satisfies a weak efficiency condition
which admits a natural interpretation as renegotiation proofness. We also show that
on median spaces of any dimension, the crucial weak neutrality condition is equivalent
to an appropriate notion of “local” efficiency. Section 5 concludes, and all proofs are
collected in an appendix.

2 Background: Strategy-Proof Social Choice on
Generalized Single-Peaked Domains

In this section, we briefly summarize the basic concepts and results from Nehring and
Puppe (2002) and NP (2004) needed for the later analysis.

Property space A property space is a pair (X,H), where X is a finite universe of
social states or social alternatives, and H is a collection of subsets of X satisfying
H1 ∅ 6∈ H,
H2 H ∈ H ⇒ Hc ∈ H,
H3 for all x 6= y there exists H ∈ H such that x ∈ H and y 6∈ H,
where, for any S ⊆ X, Sc denotes the complement of S in X. The elements H ∈
H are referred to as the basic properties (with the understanding that a property is
extensionally identified with the subset of all social states possessing that property),
and a pair (H,Hc) is referred to as an issue.

Betweenness A property space (X,H) induces a ternary betweenness relation T ⊆ X3
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according to

(x, y, z) ∈ T :⇔ [ for all H ∈ H : {x, z} ⊆ H ⇒ y ∈ H] (1)

(see Nehring (1999)). If (x, y, z) ∈ T , we say that y is between x and z.

The following figure shows some basic examples of property spaces.
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1c: The 3-hypercube
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1d: The product of two lines

Figure 1: Examples of property spaces

In the case of a line, the basic properties are of the form “lying to the left (resp. to the
right)” of some given element (see Fig. 1a). More generally, in a tree any edge (v, w)
defines two basic properties of the form “lying in direction of v” (the set of all x for
which v lies on the shortest path from x to w) and “lying in direction of w” (all x for
which w lies on the shortest path from x to v), respectively (see Fig. 1b). An element
y is between x and z if it lies on the shortest path that connects x and z. Note that in
a tree a shortest path is uniquely determined.

The K-dimensional hypercube is the set {0, 1}K of all binary sequences of length
K. The basic properties are, for all k = 1, ...,K, the sets Hk

0 (resp. Hk
1 ) of all elements

that have a zero (resp. a one) in coordinate k; the 3-hypercube is depicted in Fig. 1c.
An element y is between x and z if it agrees with x and z in all coordinates in which
these two elements agree. In a product X =

∏
Xk, the basic properties are of the form

Hj×
∏

k 6=j Xk, where Hj is a basic property in coordinate j. Thus, e.g., in the product
of two lines the basic properties are of the form H1 ×X2 and X1 ×H2, respectively.
An element y is between x and z if it is contained in the rectangle spanned by x and
z, i.e. if it is coordinatewise between x and z (see Fig. 1d).

3



Convexity A subset A ⊆ X is convex in (X,H) if A = ∩HA for some family HA ⊆ H;
by convention, X is also convex. If A is convex, then [{x, z} ⊆ A and (x, y, z) ∈ T ] ⇒
y ∈ A. For any set S ⊆ X, let CoS denote the convex hull of S, i.e. the smallest convex
set containing S. For any pair x, z, the convex hull of {x, z} is denoted by [x, z] and
referred to as the segment between x and z.

In a line, the convex sets are precisely the intervals; more generally, a subset of a
tree is convex if and only if it contains with any two elements the entire shortest path
connecting them. In the hypercube, the non-empty convex sets are the subcubes of the
form

∏
k Ak, where ∅ 6= Ak ⊆ {0, 1} for all k. More generally, in a product space a set

is convex if and only if it is the product of convex sets.

Generalized Single-Peakedness A linear preference ordering � on X is called single-
peaked on (X,H) if there exists x∗ ∈ X (the “peak”) such that for all y 6= z,

(x∗, y, z) ∈ T ⇒ y � z.

Single-peaked preferences in this sense have been studied, among others, by Moulin
(1980) in the case of a line, by Demange (1982) in the case of trees, by Barberá, Sonnen-
schein and Zhou (1991) in the hypercube (under the name of “separable preferences”),
and by Barberá, Gul and Stacchetti (1993) in the product of lines (under the name of
“multidimensionally single-peaked preferences”).

It is important to realize that also the unrestricted preference domain is a single-
peaked domain. To see this, consider, for any x ∈ X, the complementary basic prop-
erties H = {x} (“being equal to x”) and Hc = X \ {x} (“being different from x”).
Evidently, the collection of all such properties defines a property space. The corre-
sponding betweenness relation according to (1) is vacuous in the sense that no element
x is between two other elements y and z (since y and z share the basic property “being
different from x,” a property not shared by x). By consequence, any linear preference
ordering is single-peaked with respect to this betweenness relation.

A large class of generalized single-peaked domains can be described in terms of
“graphic” betweenness relations, as follows (cf. NP (2004)).3 Given a graph, say that
y is between x and z if y lies on some shortest path that connects x and z. Often
this betweenness relation can be derived from an underlying property space via (1);
for instance, the betweenness relations corresponding to the examples in Fig. 1 above
are all graphic betweenness relations. As another example, consider the cycle in the
following figure.
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Figure 2: Betweenness and single-peakedness on a cycle
3For related domains of single-peaked preferences on graphs, see Schummer and Vohra (2002).
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If one takes the family of basic properties to consist of all sets of three consecutive
elements in the cycle (all “half-cycles”), the induced betweenness according to (1)
coincides with the graphic betweenness just described. For instance, xj is between
xj−1 and xj+1, and all elements are between opposite pairs, such as x1 and x4.

In the following, we denote by S(X,H) the set of all single-peaked preference orderings
on (X,H) and by S ⊆ S(X,H) any subset that is rich in the sense of the following two
conditions.
R1 For all x, y such that no other element is between x and y there exists a preference

ordering in S that has x as peak and y as the second best element.
R2 For all x, y, z such that y is not between x and z there exists a preference ordering

in S with peak x that ranks z above y.
Any set Sn such that S ⊆ S(X,H) satisfies R1 and R2 is referred to as a rich single-
peaked domain associated with (X,H). Evidently, the set of all single-peaked preference
orderings is rich in this sense.

Social Choice Function Let N = {1, ..., n} be a set of voters. A social choice
function on a rich single-peaked domain is a mapping F : Sn → X that assigns to each
preference profile (�1, ...,�n) ∈ Sn a unique social alternative F (�1, ...,�n) ∈ X. The
function F satisfies voter sovereignty if F is onto, i.e. if any x ∈ X is in the range of F .

The function F is called a voting scheme if there exists a function f : Xn → X such
that F (�1, ...,�n) = f(x∗1, ..., x

∗
n), where x∗i is voter i’s peak. In that case, we say that

f represents F , and we will also refer to the function f : Xn → X as a voting scheme.
A social choice function F is strategy-proof on S if for all i and �i,�′i∈ S,

F (�1, ...,�i, ...,�n) �i F (�1, ...,�′i, ...,�n).

Similarly, f : Xn → X is called strategy-proof if the voting scheme F that it represents
is strategy-proof.

Voting by Issues A family of winning coalitions is a non-empty family W of subsets
of N satisfying [W ∈ W and W ′ ⊇ W ] ⇒ W ′ ∈ W. A structure of winning coalitions
on (X,H) is a mapping W : H 7→ WH that assigns a family of winning coalitions to
each basic property H ∈ H satisfying the following condition,

W ∈ WH ⇔ W c 6∈ WHc . (2)

Voting by issues is the mapping fW : Xn → 2X defined as follows. For all ξ ∈ Xn,

x ∈ fW(ξ) :⇔ for all H ∈ H with x ∈ H : {i : ξi ∈ H} ∈ WH .

Thus, x is the outcome of voting by issues if and only if, for any property H possessed
by x, the coalition of those individuals whose peak have property H is winning for H.
The induced mapping FW(�1, ...,�n) := fW(x∗1, ..., x

∗
n), where x∗i is the peak of �i, is

also referred to as voting by issues. Condition CS1 implies that,

WH = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ WHc}. (3)

Consistency A structure of winning coalitions W is called consistent if fW(ξ) 6= ∅ for
all ξ ∈ Xn. If voting by issues is consistent, it is single-valued due to H3; if no confusion
can arise, we will therefore identify FW and fW with the corresponding functions from
Sn and Xn to X, respectively.

The following theorem extends an important earlier result by Barberá, Massò and
Neme (1997).
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Theorem A [NP (2004)] A social choice function F : Sn → X satisfies voter
sovereignty and is strategy-proof on a rich single-peaked domain if and only if it is
voting by issues with a consistent structure of winning coalitions.

Critical Family A critical family G ⊆ H is a minimal set of basic properties with
empty intersection, i.e. such that ∩G = ∅ and for all G ∈ G, ∩(G \ {G}) 6= ∅.

A critical family G = {G1, ..., Gl} thus describes the exclusion of the combination
of the corresponding basic properties in the sense that G1, ..., Gl cannot be jointly real-
ized. “Criticality” (i.e. minimality) means that this exclusion is not implied by a more
general exclusion, i.e. the properties in any proper subset of G are jointly realizable.

Intersection Property Voting by issues FW satisfies the Intersection Property if for
any critical family G = {G1, ..., Gl}, and any selection Wj ∈ WGj , ∩l

j=1Wj 6= ∅.
Theorem B [NP (2004)] A social choice function F : Sn → X satisfies voter
sovereignty and is strategy-proof on a rich single-peaked domain if and only if it is
voting by issues satisfying the Intersection Property.

Median Space A property space (X,H) is called a median space if, for all x, y, z ∈ X,
there exists a (unique) element m = m(x, y, z) ∈ X, called the median of x, y, z, such
that m is between any pair of {x, y, z}, i.e. such that {m} = [x, y] ∩ [x, z] ∩ [y, z].

A property space (X,H) is a median space if and only if every critical family contains
exactly two basic properties (NP (2004, Proposition 4.1)). All property spaces in Fig. 1
are median spaces. Further examples are products of median spaces and median stable
subsets of median spaces, i.e. subsets that are closed under taking medians, see Section
3 below for an example. By contrast, the property space underlying the 6-cycle in
Fig. 2 is not a median space. For instance, the elements x1, x3 and x5 do not possess a
median. Evidently, also the property space underlying the unrestricted domain is not
a median space; indeed, in that case no triple of distinct elements possesses a median.

3 Efficient Voting by Issues

In this section, we characterize the class of all efficient strategy-proof social choice
functions on generalized single-peaked domains. Subsection 3.1 contains the statement
of the main result. Subsection 3.2 provides examples, and Subsection 3.3 discusses the
literature.

3.1 Main Result

The following definition is fundamental.

Definition (Efficiency) A social choice function F : Sn → X is called efficient if,
for no preference profile (�1, ...,�n) ∈ Sn, there exists y ∈ X such that for all i ∈ N ,
y �i F (�1, ...,�n) with strict preference for at least one i ∈ N .

It is well-known that voting by issues is not efficient in general (cf. Barberá, Sonnen-
schein and Zhou (1991)). As a simple example, consider three voters in the three-
dimensional hypercube, and assume that each issue is decided by majority (“issue-by-
issue majority voting”), i.e. WH = {W ⊆ N : #W > n/2} for all H and n = 3. If the
peaks are distributed as shown in Figure 3 below, the chosen state is their median m.
However, it is entirely possible that the voters unanimously prefer the “antimedian” m̂
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to the median m since single-peakedness of a preference ordering imposes no restriction
on the ranking between m and m̂ when the peak is either x∗1, x∗2 or x∗3 as in Fig. 3.
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Figure 3: Issue-by-issue majority voting in the three-dimensional hypercube

The possible inefficiency in the three-dimensional hypercube contrasts with the fact
that voting by issues is efficient under single-peakedness on a line. Indeed, since the
coalition of all voters is winning, voting by issues always selects an element between
the left-most and the right-most peak, from which the efficiency is immediate. The
argument easily generalizes to the case of all single-peaked preferences on a tree. This
suggests that in the analysis of efficiency a crucial role is played by the “dimensional-
ity” of the underlying property space, as follows.

Definition (Independent Properties, Dimension) Say that H, H̃ ∈ H are inde-
pendent, denoted by H ⊥ H̃, if the four sets H∩H̃, H∩H̃c, Hc∩H̃ and Hc∩H̃c are all
non-empty. A set F ⊆ H is called independent if any pair H, H̃ ∈ F with H 6∈ {H̃, H̃c}
is independent. The dimension dim(X,H) of a property space (X,H) is the maximal
cardinality of an independent subset F ⊆ H.

Observe that if H and H̃ are not independent and H̃ 6∈ {H,Hc}, then exactly one of
the four sets H ∩ H̃, H ∩ H̃c, Hc ∩ H̃ and Hc ∩ H̃c is empty.

It is easily verified that, among all median spaces, trees are characterized by the
property that no two basic properties are independent; in other words: trees are pre-
cisely the one-dimensional median spaces. Furthermore, the above notion corresponds
exactly to the standard notion of dimension in case of the hypercube. More gener-
ally, the following observation shows that, for median spaces, the proposed notion of
dimension indeed reflects our intuitive understanding of that concept.4

Fact 1 For a median space, dim(X,H) ≤ k if and only if (X,H) is embeddable in the
product of k trees.5

As we shall see, on spaces of dimension ≥ 3 no strategy-proof and non-dictatorial
social choice function can be efficient. The case of dim(X,H) ≤ 2 is more complex; the
key to the analysis is the following weak neutrality condition.

Definition (Weak Neutrality) Say that voting by issues is weakly neutral if WH =
WH̃ whenever H ⊥ H̃.

Note that weak neutrality is vacuously satisfied on all one-dimensional spaces. In the
hypercube, and more generally in any product of lines, weak neutrality is easily seen

4The terminology may be less appropriate for non-median spaces; van de Vel (1993) uses the term
“directional degree” for an analogous concept that coincides in the case of median spaces.

5An embedding is a betweenness preserving injection.
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to be equivalent to full neutrality in the sense that WH = WH̃ for all H, H̃ ∈ H.

Definition (Dictators and Almost Dictators) A social choice function F : Sn → X
is called dictatorial if there exists i ∈ N such that F (�1, ...,�n) = x∗i whenever x∗i is
the peak of �i. Furthermore, F is called locally dictatorial if it is dictatorial on some
subdomain Dn, where D ⊆ S contains at least two preferences with different peaks.
Finally, F is called almost dictatorial if there exists a local dictator i such that, for
any pair x, y ∈ X with x 6= y, voter i can veto x or y if all voters have their peaks in
the set {x, y}, i.e. voter i can ensure that F (�1, ...,�n) 6= x or voter i can ensure that
F (�1, ...,�n) 6= y for all preference profiles such that all peaks are in {x, y}.6

Fact 2 Denote by FW : Sn → X voting by issues with the structure W of winning
coalitions.
a) FW is dictatorial if and only if, for some i, {i} ∈ WH for all H ∈ H.
b) FW is locally dictatorial if and only if, for some i, {i} ∈ WH ∩WHc for some H.
c) FW is almost dictatorial if and only if, for some i, {i} ∈ WH ∪WHc for all H, and

{i} ∈ WH ∩WHc for some H.

Observe that, while there can be multiple local dictators, there can be at most one
almost-dictator.

The following is our main result.

Theorem Let F : Sn → X be a strategy-proof social choice function on a rich single-
peaked domain associated with (X,H).

a) Let F be efficient. Then, F is weakly neutral voting by issues; moreover, F is almost
dictatorial or (X,H) is a median space with dim(X,H) ≤ 2.

b) Let F be weakly neutral voting by issues. If F is almost dictatorial, or if (X,H) is
a median space with dim(X,H) ≤ 2, then F is efficient.

The intuition behind the result is as follows. By strategy-proofness, the social
choice function F only depends on the voters’ peaks (see NP (2004, Prop. 3.3)). By
consequence, the social choice must guarantee efficiency simultaneously for all profiles
of single-peaked preferences with the same profile of peaks. In the hypercube, this
is possible only when the social choice in fact coincides with one of the peaks, i.e. if
F (�1, ...,�n) = x∗i for some i. But in three or more dimensions, this is inconsistent
with the voting by issues structure and non-dictatorship, as exemplified by Fig. 3 above.
On the other hand, in the 2-hypercube the social choice always coincides with a voter’s
peak under neutrality. For general median spaces, weak neutrality ensures that the
social choice is always contained in the smallest median stable subset that contains all
voters’ peaks (their so-called “median stabilization,” see van de Vel (1993, p.139)). If
dim(X,H) ≤ 2, this is sufficient for efficiency. Concretely, consider the product of two
lines. In this case, weak neutrality is equivalent to WH = W∗ for all H ∈ H, where W∗

is a fixed family W∗ of winning coalitions satisfying W ∩W ′ 6= ∅ for all W,W ′ ∈ W∗

(by condition (3) above). Let x be the outcome under voting by issues. Neutrality
guarantees that any “orthant” H ∩H ′ containing x must also contain the peak of some
voter.7 In the product of two lines, this implies at once the efficiency of x for any

6Note that such a voter i may still not be a dictator over the pair {x, y} in this situation, since the
outcome could lie between x and y.

7Indeed, W := {j : x∗
j ∈ H} ∈ W∗ since x ∈ H, and W ′ := {j : x∗

j ∈ H′} ∈ W∗ since x ∈ H′. By

condition (3), there exists a voter i with x∗
i ∈ H ∩H′ (see Figure 4).
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profile of single-peaked preferences with the given peaks. For instance, in Fig. 4, voter
j prefers x to any outcome in the south of x, voter k prefers x to outcomes in the east
of x, whereas any voter i with peak in H ∩H ′ prefers x to outcomes in the northwest
of x.

-

6

r
x∗

k

rx

r x∗
j

r x∗
i

H ∩H ′

Figure 4: Neutrality implies efficiency in the product of two lines

The following result is immediate from our main theorem and NP (2004, Th. 4).

Corollary 1 In a product of two trees, there is one and only one anonymous and
efficient strategy-proof social choice rule on Sn, namely issue-by-issue majority voting
with an odd number n of voters.

Issue-by-issue majority voting (i.e. choosing the coordinate-wise median of the voters’
peaks) with an odd number of voters is strategy-proof also on the domains of separable
Euclidean preferences on Rm considered in Border and Jordan (1983); moreover, for
m = 2 it is efficient by the same arguments as given here for the larger domain of
generalized single-peaked preferences. Thus, Border and Jordan’s Corollary 4 (the
inconsistency of strategy-proofness, efficiency, and non-dictatorship) is valid only in
three or more dimensions, but not in two, contrary to what is claimed there.8

3.2 Examples

The product of two lines is an important and natural example of a space that enables
strategy-proof and efficient social choice via neutral voting by issues. We now discuss
three further classes of domains that arise naturally in economic applications. The first
two give rise to possibility results, the third to an impossibility result.

3.2.1 A Location Example

The following class of domains is associated with spaces that are two-dimensional in the
sense of being embeddable in the product of two trees, but which cannot be embedded
in the product of two lines. Concretely, consider the graph in Figure 5a below endowed
with the graphic betweenness according to which an alternative y is between x and z if
y is on a shortest path connecting x and z. One may think of the edges as the streets
of a city with obstructed links (the obstacle that hinders the direct connection of x and

8The published version contains a correct proof for the case of two voters; the proof does not
generalize, however, to more than two voters. This is due to the fact that neutral voting by issues is
necessarily dictatorial with only two voters, while it is easily non-dictatorial when there are more than
two voters.
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z in Fig. 5a may be a lake, for instance). The depicted graph is a median space since
it embeds as a median stable subset in the product of a tree and a line (see Fig. 5b).
Observe that the same graph does not embed in the product of two lines; for instance,
the element y is not between x and z if one views the graph in Fig. 5a as a subset
of the product of two lines with the induced betweenness.9 By our above results, the
only anonymous and efficient strategy-proof social choice rule on the associated single-
peaked domain is issue-by-issue majority voting, which amounts to choosing the unique
“local” Condorcet winner, i.e. the location that wins in pairwise comparison against
each of its neighbours. Equivalently, the location chosen under issue-by-issue majority
voting minimizes the sum of distances to the voters’ peaks, where the distance between
two points is given by the minimal number of edges needed to connect them.

r r r r r r rr r r r r r rr r r r rr r r r r
x

y

z

5a: A city with obstructed links ...
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5b: ... and its embedding

Figure 5: A two-dimensional median space

The example can be naturally generalized as indicated by the following sketch. Take
any rectangular grid (product of two lines) and remove a subset of points together with
all edges joining them, so that the remaining graph (“induced subgraph”) is connected.
There are two possible cases. If the induced subgraph has “no holes,” then one can
show that the associated graphic betweenness gives rise to a median space of dimension
≤ 2. By Fact 1, the space is embeddable in the product of two trees, and by the main
theorem, any associated rich single-peaked domain admits efficient strategy-proof social
choice functions that are not almost dictatorial (in fact even anonymous ones). On the
other hand, if the induced subgraph has “holes,” the resulting space is not a median
space (and indeed need not even be a property space), hence all efficient strategy-proof
social choice functions are almost dictatorial.

3.2.2 Additive Preferences over Public Goods

Suppose that there are K + 1 public goods, which can be supplied in non-negative
discrete quantities. Denote by xk ∈ N0 the quantity of good k = 0, 1, ...,K, and
suppose that feasibility requires

∑
k xk ≤ M for some fixed amount M . Furthermore,

suppose that preferences can be represented by additive utility functions of the form∑
k uk(xk), where each uk is increasing and concave. By the resulting monotonicity of

preferences, the choice will always lie on the budget line
∑

k xk = M . We can therefore

9In accordance with an interpretation of the blank area as a lake, the underlying metric may thus
be referred to as the “Chicago”- rather than “Manhattan”-metric.
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eliminate the coordinate corresponding to good 0, and consider the set X = {x ∈ NK
0 :∑K

k=1 xk ≤ M} as the universe of alternatives. The utility functions on X can be
written as follows,

u(x1, ..., xK) =
K∑

k=1

uk(xk) + u0(M −
K∑

k=1

xk).

Suppose that preferences are quasi-linear with good 0 as the numeraire so that u0(x0) =
x0. Then, preferences can be represented by utility functions of the form ũ(x) =∑

k(uk(xk)−xk). Since each summand uk(xk)−xk is concave, any such utility function
represents a single-peaked preference with respect to the standard betweenness on X
induced by the product of K lines. For K = 2 the resulting property space (X,H)
is a median space, but not for K ≥ 3 (see Fig. 6b in which the triple x, z, w has no
median).

r - x1

6

x2

rr
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rr
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6a: Median space for K = 2

r - x1

6

x2

��������1 x3r
r
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6b: Non-median space for K = 3

Figure 6: Additive preferences over public goods

It is easily verified that, for any K, the set of all utility functions of the form ũ gives
rise to a rich single-peaked domain. Since for K = 2 the associated space is a two-
dimensional median space it admits non-degenerate efficient and strategy-proof social
choice functions (cf. Corollary 2 below). On the other hand, for K > 2 no such social
choice functions exist.

3.2.3 Judgement Aggregation

Consider a situation in which a group of individuals has to reach a collective decision
on a set of propositions each of which can be affirmed or rejected. Specifically, suppose
that there is a set of logically independent “premises” a1, ..., am and a “conclusion” p
that depends on them, say p is the logical conjunction of the aj , i.e. p = a1 ∧ ... ∧ am.
A concrete example is the so-called “doctrinal paradox” in which a jury in a court
has to decide on the liability of a defendant (see Kornhauser and Sager (1986)). It is
commonly agreed that the defendant is to be held liable (p) if and only if he broke a
contract (a1) and the contract was legally valid (a2). Each jury member has an opinion
on the premises, i.e. either affirms or rejects each of a1 and a2, and a resulting opinion
on the conclusion, i.e. affirms p if and only if he/she affirms both a1 and a2. A logically
consistent opinion on all propositions is called a judgement and can be viewed as an
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element of a property space (X,H), as follows. Each proposition corresponds to an
issue with Haj

(resp. Hp) denoting the set of all judgements that entail the affirmation
aj (resp. p). The logical dependence of the conclusion p on the premises aj is captured
by criticality of the families {H1, ...,Hm,Hc

p} (“the affirmation of all premises implies
the affirmation of the conclusion”) and {Hc

j ,Hp} for all j (“the rejection of any premise
implies the rejection of the conclusion”).

The problem of aggregating profiles of individual judgements into a collective judge-
ment has received some attention recently (see, e.g., List and Pettit (2002) for a first
formal statement). In order to discuss the strategy-proofness of aggregation rules, fol-
lowing Dietrich and List (2005), it is natural to assume that each individual has a
single-peaked preference on the space (X,H) of (logically consistent) judgements with
the peak representing the individual’s “true” judgement; single-peakedness means that
individuals prefer judgements with fewer deviations from their true judgement. By
Theorem A above, any strategy-proof judgement aggregation rule on a rich domain of
such preferences takes the form of voting by issues, i.e. of propositionwise aggregation.10

It is easily shown that the property space (X,H) corresponding to m ≥ 2 logically
independent premises aj and the conclusion p = a1 ∧ ... ∧ am has dimension m and is
never a median space. Thus, by our main result above no strategy-proof judgement
aggregation rule can be efficient (unless it is almost dictorial). In fact, in Nehring
and Puppe (2005b) we show that, by the Intersection Property, all strategy-proof
aggregation rules are oligarchic in this case. For example, in the anonymous case any
such rule takes the form of a unanimity rule according to which each premise aj and
the conclusion p are collectively affirmed if and only if all individuals affirm it. Even
in the two-dimensional case, this rule is inefficient. Suppose, for example, that some
voters affirm a1 but not a2, while all other voters affirm a2 but not a1 (thus all voters
reject p = a1∧a2 by logical consistency). In this case, the unanimity rule prescribes the
rejection of all propositions a1, a2 and p. However, it is clearly compatible with single-
peakedness that all voters prefer the acceptance of all propositions to their rejection.
We conclude in noting that the impossibility of non-degenerate strategy-proof and
efficient aggregation generalizes to any other logical form of the conclusion p vis-á-vis
its premises; this follows from the analysis in Nehring and Puppe (2005b).

3.3 Comparison to the Literature

On both the necessity and the sufficiency side, our results go significantly beyond
what is known in the literature. On the sufficiency side, Kim and Roush (1984) and
Peters, van der Stel and Storcken (1992) have shown the efficiency of the coordinatewise
median in two dimensions under the assumption that voters’ preferences are given by
the negative Euclidean distance from their ideal point. Under this assumption, any
point in the convex hull of voters’ ideal points guarantees efficiency. This is no longer
true if voters’ use different metrics or have more general single-peaked preferences; in
such cases, our more general argument based on the median-stabilization of the set of
ideal points is needed. Moreover, while these two references assume anonymity, our
analysis shows that weak neutrality alone suffices to ensure efficiency in median spaces
of dimension less than three.

10In contrast to Dietrich and List (2005), we thus need not assume that the aggregation rule only
depends on the preference peaks, but derive this property from the condition of strategy-proofness.
Also, Dietrich and List (2005) do not study the issue of efficiency in this context.
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On the necessity side, the literature has so far considered domains associated with
the product of lines. It is, however, straightforward that the impossibility of achieving
efficiency in the three-dimensional hypercube illustrated in Fig. 3 generalizes to at least
three-dimensional median spaces, since any such space contains a 3-hypercube. Here,
our contribution is the necessity of the median space structure of the domain itself, as
highlighted by the following result.

Corollary 2 A domain Sn admits a not-almost dictatorial and weakly neutral strategy-
proof social choice function if and only if the underlying space is a median space.
Moreover, Sn admits a not-almost dictatorial and efficient strategy-proof social choice
function if and only if the underlying space is a median space of dimension ≤ 2.

Corollary 2 follows at once from the proof of our main theorem in the appendix together
with the observation that issue-by-issue majority voting is (weakly) neutral and well-
defined on any median space, by NP (2004, Th. 4).

The two novel insights are thus the necessity of weak neutrality for efficient strategy-
proof social choice on any single-peaked domain, and the realization that not-almost
dictatorial and weakly neutral strategy-proof social choice functions exist only on me-
dian spaces.11

To illustrate, consider the following graph with the associated graphic betweenness.
The underlying basic properties are given by the three four-cycles and their comple-
ments. Concretely, suppose that there are three candidates who can be hired by some
company or not. The four-cycle through x represents the states in which the first
candidate is hired; similarly, the four-cycle through w (resp. z) represents the states
in which the second (resp. third) candidate is hired. The point x represents the state
in which all but the first candidate are rejected, and similarly for w and z. Observe
that since there is no state in which all candidates are rejected, the triple x, z, w does
not admit a median. Nevertheless, the associated single-peaked domain admits well-
behaved strategy-proof social choice rules. For instance, the rule according to which
the social choice belongs to any of the four-cycles if and only if at least one third of the
voters’ peaks are in that four-cycle can be shown to be consistent and strategy-proof;
clearly, it is anonymous, hence in particular not-almost dictatorial. However, efficiency
cannot be achieved since no well-behaved social choice function can be weakly neutral,
by Corollary 2.
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Figure 7: Impossibility of efficiency outside median spaces

11Note that the unrestricted domain is associated with a property space of dimension 1 as defined
here. By definition, any strategy-proof social choice function on such a property space is weakly
neutral. Corollary 2 thus implies that any strategy-proof social choice function on the unrestricted
domain must be almost dictatorial – that is, it “almost” implies the Gibbard-Satterthwaite theorem.
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The example readily generalizes to the case of K candidates of which at least k have
to be hired and at most k′ can be hired (in Fig. 7, we thus have k = 1 and k′ = K =
3). Except for trivial cases, none of these spaces admits non-dictatorial, efficient and
strategy-proof social choice functions, since none is a median space. Nevertheless, some
of these spaces enables non-degenerate strategy-proof social choice rules, as shown in
Nehring and Puppe (2005a).

4 Partial Efficiency

Our main result shows that, under strategy-proofness, full efficiency is attainable only
in at most two-dimensional spaces. In this section, we want to determine to what
extent strategy-proofness is compatible with weaker notions of efficiency in more than
two dimensions.12

4.1 Restricted Information Efficiency

For any voter i and any peak x∗i define a partial order ≥i by

x ≥i y :⇔ x ∈ [x∗i , y],

i.e. x ≥i y if and only if x is “closer” than y to the peak x∗i . The partial order ≥i

reflects the information about i’s preference that an outside observer can infer from
knowledge of i’s peak and the fact that i’s preference is single-peaked. Note that, for
instance, the voters’ preference between m and m̂ in Fig. 3 above cannot be determined
from ≥i for i = 1, 2, 3.

Definition (Weak Efficiency) Say that a voting scheme f : Xn → X is weakly ef-
ficient whenever for no ξ ∈ Xn there exists y ∈ X such that for all i ∈ N , y ≥i f(ξ)
with strict inequality for at least one i ∈ N .

Weak efficiency has a natural interpretation as renegotiation-proofness. Specifically,
suppose that after the voting mechanism has been applied, each voter gets the right
to enforce the outcome. Weak efficiency then guarantees that the group of all vot-
ers cannot jointly improve upon the outcome given the information revealed by the
mechanism, namely the voters’ peaks.

The following result shows that weak efficiency is closely related to the requirement
that the social choice be in the convex hull of the voters’ peaks; indeed, on median
spaces, these two conditions are equivalent.

Proposition 1 A voting scheme f : Xn → X is weakly efficient whenever f(ξ) ∈
Co{ξ1, ..., ξn} for all ξ ∈ Xn. Conversely, if (X,H) is a median space and f is weakly
efficient, then f(ξ) ∈ Co{ξ1, ..., ξn} for all ξ ∈ Xn.

Since the coalition of all individuals is winning for any basic property, voting by issues
is clearly onto, i.e. it satisfies voter sovereignty. The weak efficiency of voting by issues
is thus an immediate consequence of Proposition 1 together with the following result.

Proposition 2 A strategy-proof social choice function F : Sn → X satisfies voter
sovereignty if and only if, for all preference profiles, F (�1, ...,�n) ∈ Co{x∗1, ..., x∗n}
where x∗i denotes the peak of �i.

12For a different approach to partial efficiency properties in the context of voting by issues (“voting
by committees”), see Shimomura (1996).
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4.2 Local Efficiency

Even when voting by issues yields an inefficient outcome, finding the Pareto-impro-
vement may be difficult. For instance, under issue-by-issue majority voting in the
3-hypercube with the peaks as in Fig. 3 above, the only alternative that is possibly
Pareto superior to the outcome m is the opposite point m̂, and thus quite far away from
m. It thus seems natural to ask whether strategy-proofness is compatible with weaker
“local” efficiency criteria requiring that there should not exist Pareto improvements
“close” to the actual outcome. For simplicity, we restrict ourselves to median spaces
in the remainder of this section.

The following notion of distance between two alternatives intuitively describes the
number of dimensions in which they differ. Formally, for any two states x and y,
denote by Hx¬y := {H ∈ H : x ∈ H, y 6∈ H} the basic properties possessed by x but
not by y. Define the distance d(x, y) between x and y as the maximal cardinality of an
independent subset F ⊆ Hx¬y.

Definition (k-efficiency) Say that a social choice function F is k-efficient if for no
x = F (�1, ...,�n) there exists y ∈ X with d(x, y) ≤ k such that y �i x for all i with
at least one strict preference.

Clearly, full efficiency corresponds to k-efficiency for all k ≤ dim(X,H). In general,
k-efficiency describes “local” optimality in the following sense: if x is the outcome
of a k-efficient social choice function, no alternative that differs from x in k or less
dimensions can be unanimously preferred to x. In a product of lines, an outcome x is
thus k-efficient if it is not Pareto dominated by any alternative that differs from x in no
more than k coordinates. Note that in Fig. 3, all alternatives except m̂ are 2-efficient
at any profile compatible with the given peaks; by contrast, the anti-median m̂ need
not be 2-efficient since possibly all voters prefer x∗3 to m̂.

Part a) of the following result shows that voting by issues always satisfies 1-efficiency.
Part b) shows that weak neutrality is necessary and sufficient for “local” efficiency in
the sense of 2-efficiency. On the other hand, 3-efficiency is just as demanding as full
efficiency, by part c).

Proposition 3 Let (X,H) be a median space, and let F : Sn → X be strategy-proof.
Then,
a) F is 1-efficient if and only if it satisfies voter sovereignty.
b) F is 2-efficient if and only if it is weakly neutral voting by issues.
c) F is 3-efficient if and only if it is fully efficient.

5 Conclusion

We have characterized strategy-proof and efficient social choice on the class of all
generalized single-peaked domains. Our analysis has revealed that efficiency obtains
under more general circumstances than suggested by the literature. (Weak) neutrality
of voting rules has proved to be the key to full efficiency in two dimensions and to
superior local efficiency in more than two dimensions. The following table summarizes
some noteworthy implications of our main result; all entries pertain to strategy-proof
social choice rules.
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Median Spaces Non-Median Spaces

dim (X,H) = 1
all rules are

efficient
all rules are

almost dictatorial

dim (X,H) = 2
efficiency ⇔

weak neutrality
all rules entail

veto power

dim (X,H) > 2
all rules are
inefficient

non-degenerate rules may
exist but all are inefficient

Table 1: Summary of the main implications

The entries in the left column are straightforward from our main theorem above. As
to the right column, since on one-dimensional spaces weak neutrality is trivially satis-
fied by any choice rule, it follows that if these are not median spaces (i.e. trees) any
choice function must be almost dictatorial. According to the second entry in the right
column, whenever a space admits choice functions without veto power, it must be a
median space, and thus admits efficient choice functions as well. This follows from the
characterization of the class of all property spaces that admit no veto rules obtained
in Nehring (2004). Finally, on non-median spaces with more than two dimensions non-
degenerate strategy-proof social choice rules (e.g. anonymous rules without veto power)
may or may not exist (see Nehring and Puppe (2005a)), but clearly all such rules must
be inefficient.

An interesting topic for future research is to further explore the full extent to which
strategy-proofness allows for “approximate” efficiency. One natural way to make the
question precise is in terms of the probability of efficiency. For example, in the case
of three voters in the 3-hypercube, if all profiles of single-peaked linear orderings are
equally likely, the probability of obtaining an ex-post inefficient outcome under issue-
by-issue majority voting is only 1/18432; this happens because the example of Fig. 3
is, up to isomorphism, the only way in which an ex-post inefficient outcome may be
selected.

Moreover, the probability of inefficiency will decrease with the number of voters.
One might even conjecture that the theoretical possibility of inefficiency is practically
irrelevant based on the following heuristic argument. In real world elections, there are
typically many heterogeneous voters, hence almost any alternative will be the peak of
some voter. Therefore, with high probability the outcome will be the top choice of some
voter, hence efficient. However, the argument is flawed since due to the possible high-
dimensionality of the underlying space, there may in fact be vastly more alternatives
than voters. A well-known case occured in 1990 in Los Angeles county, California,
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where no single voter (among approximately 1.8 million individuals) voted for the
winning yes-no-combination on the 28 propositions of the election ballot, a phenomenon
known in the literature as the “paradox of multiple elections” (see Brams, Kilgour and
Zwicker (1998)).

Appendix: Proofs

We first consider the main result, and then turn to the remaining proofs.

Proof of the Main Theorem

The proof of the main result is provided is several steps. First observe that any efficient
social choice function F : Sn → X must be onto. By Theorem A above, we can thus
restrict our analysis to voting by issues in all what follows.

Step 1: Efficiency requires weak neutrality
By contradiction, suppose that H ⊥ H̃ but WH 6= WH̃ . We will show that the

corresponding voting by issues is not efficient. Without loss of generality, assume that
W ∈ WH but W 6∈ WH̃ for some coalition W ⊆ N . Note that by (2), this implies
W c 6∈ WHc and W c ∈ WH̃c .

Choose x ∈ H∩H̃, y ∈ Hc∩H̃c and w ∈ Hc∩H̃, and consider any two single-peaked
preference orderings �′ with peak x and �′′ with peak y. Now assign to all voters in W
the preference ordering �′ and to all voters in W c the preference ordering �′′. Denote
by (�′;W,�′′;W c) the resulting preference profile, and let z := F (�′;W,�′′;W c) be
the chosen outcome. Since W is winning for H, we have z ∈ H. Since W c ∈ WH̃c ,
we have z ∈ H̃c, i.e. z ∈ H ∩ H̃c. By construction, z is neither between x and w,
nor between y and w. Hence, by the richness condition R2, �′ and �′′ can be chosen
such that w �′ z and w �′′ z, i.e. such that all voters strictly prefer w to the chosen
outcome. Thus, F is not efficient.

Step 2: The structure of weakly neutral voting by issues
Suppose that dim(X,H) ≥ 2, i.e. suppose that the set

H0 := {H ∈ H : there exists H ′ such that H ⊥ H ′}
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is non-empty. Furthermore, define

H∗ := {H ∈ H : there exists H1,H2 ∈ H0 such that H1 ⊆ H ⊆ H2},
G+ := {G ∈ H \ H∗ : G ⊆ H for some H ∈ H∗}, and
G− := {G ∈ H \ H∗ : Gc ∈ G+}.

Note that H0 and H∗ are both closed under taking complements. The following result
will be useful. For graphic illustration, see Figure 8 below in which H0 = H∗ =
{H1,H

c
1 ,H2,H

c
2} and G+ = {G1, ..., G5}.

Claim a) G ∈ G+ if and only if, for all H ∈ H∗, H ∩Gc 6= ∅.
b) {H∗,G+,G−} is a partition of H.
c) For all G, G̃ ∈ G+ with G ∩ G̃ 6= ∅, G ⊆ G̃ or G̃ ⊆ G.

For verification, let G ∈ G+, i.e. G ⊆ H for some H ∈ H∗, and consider any H ′ ∈ H∗.
If H ′ ∩Gc = ∅, one would obtain H ′ ⊆ G ⊆ H, and hence G ∈ H∗. Since by definition
G+ ∩H∗ = ∅, we must therefore have H ∩Gc 6= ∅ for all H ∈ H∗. Conversely, suppose
that H ∩Gc 6= ∅ for all H ∈ H∗. Then, G 6∈ H∗; in particular, for any H ∈ H∗, G 6⊥ H
which implies either H ∩G = ∅, or Hc∩G = ∅ (note that Hc∩Gc 6= ∅ since Hc ∈ H∗).
In the first case, G ⊆ Hc ∈ H∗, and in the second case G ⊆ H ∈ H∗; hence, G ∈ G+

in either case. This shows part a) of the assertion. From this, part b) is immediate
since, if H ∩ Gc = ∅ for some H ∈ H∗, either H = G or Gc ∈ G+. Finally, to verify
c), consider G, G̃ ∈ G+ with G ∩ G̃ 6= ∅. One must have Gc ∩ G̃c 6= ∅, since otherwise
Gc ⊆ G̃ and therefore Gc ∈ G+, i.e. G ∈ G−. Thus, since G 6⊥ G̃, either G∩ G̃c = ∅, or
Gc ∩ G̃ = ∅. In the first case, G ⊆ G̃ and in the second case, G̃ ⊆ G.

s s s s
s s s

s
s

s

�
G1

�
G2

�
G3

�
H1

?H2

?G5

?G4

Figure 8: Decomposition into independent and dependent basic properties

Let FW be voting by issues satisfying weak neutrality. We show that WH = W∗

for all H ∈ H∗ and some W∗, i.e. all families of winning coalitions corresponding to
the basic properties in H∗ are identical. The following straightforward implication of
the Intersection Property will be useful. For all H,H ′,

H ⊆ H ′ ⇒WH ⊆ WH′ . (4)

First observe that, by weak neutrality, WH = WHc for all H ∈ H0. Indeed, H ⊥ H ′

implies Hc ⊥ H ′, hence WH = WH′ = WHc . Next, consider H1,H2 ∈ H0. If H1 ⊥ H2,

18



weak neutrality immediately implies WH1 = WH2 . Otherwise, one has H1 6⊥ H2 along
with H1 ⊥ H ′

1 and H2 ⊥ H ′
2 for some H ′

1,H
′
2. One thus obtains WH1 = WHc

1
,

WH2 = WHc
2

and exactly one of the following four cases: [H1 ⊆ Hc
2 and H2 ⊆ Hc

1 ],
[H1 ⊆ H2 and Hc

2 ⊆ Hc
1 ], [Hc

1 ⊆ Hc
2 and H2 ⊆ H1], or [Hc

1 ⊆ H2 and Hc
2 ⊆ Hc

1 ]. In
each case, WH1 = WH2 by twofold application of (4). Thus, WH = W∗ for some W∗

and all H ∈ H0. But by (4) again, one clearly has WH = W∗ even for all H ∈ H∗.
Finally, by (4) and the definition of G+, one obtains for all H ∈ H∗ and all G ∈ G+,

WG ⊆ WH = W∗ ⊆ WGc . (5)

Step 3: Under weak neutrality a local dictator is an almost dictator
Denote by Ĥ := {H ∈ H : {i} ∈ WH ∩WHc for some i}. If F is locally dictatorial,

Ĥ 6= ∅; in that case, it is immediate from (5) that {i} ∈ WH ∪ WHc for all H ∈ H,
i.e. that voter i is an almost-dictator. Note in particular that Ĥ ⊇ H∗.
Step 4: Weak neutrality and no local dictatorship requires a median space

By contradiction, suppose that (X,H) is not a median space. By NP (2004, Propo-
sition 4.1), there exists a critical family {H1, ...,Hl} with l ≥ 3. If Hc

j ∩ Hc
k = ∅, for

all j, k ∈ {1, ..., l} with j 6= k, then there exists a local dictator by Nehring and Puppe
(2002, Proposition 5.2). Hence, Hc

j ∩Hc
k 6= ∅ for some j, k, say Hc

1 ∩Hc
2 6= ∅. Together

with the criticality of {H1, ...,Hl} this implies H1 ⊥ H2, hence by weak neutrality,
WH1 = WHc

1
= WH2 = WHc

2
= W∗. Next, consider H3. If H3 ∈ H∗, then WH3 = W∗;

if not, we must have Hc
2 ∩ Hc

3 = ∅, i.e. Hc
3 ⊆ H2, and hence H3 ∈ G− as in Step 2.

Thus, W∗ ⊆ WH3 in any case.
By criticality of {H1, ...,Hl}, one can choose xj ∈ Hc

j ∩
⋂

k 6=j Hk for j = 1, 2, 3.
Furthermore let W ∈ W∗ be a minimal winning coalition with i ∈ W . Consider a
preference profile (�1, ...,�n) where all voters in W \ {i} have peak x1, all voters
in W c have peak x2, and voter i has the peak x3. Since W \ {i} 6∈ W∗, one has
(W \ {i})c = W c ∪ {i} ∈ W∗ by (2). But all voters in W c ∪ {i} have their peak in H1,
hence F (�1, ...,�n) ∈ H1. Since W ∈ W∗ and all voters in W have their peak in H2,
one also has F (�1, ...,�n) ∈ H2. Since F is not locally dictatorial, {i} 6∈ W∗, hence
N \ {i} ∈ W∗, by (2), and therefore N \ {i} ∈ WH3 by the above observation. This
implies F (�1, ...,�n) ∈ H3. Since F (�1, ...,�n) ∈ Hj for all j ∈ {4, ..., l}, we thus
obtain F (�1, ...,�n) ∈

⋂l
j=1 Hj , contradicting the criticality of {H1, ...,Hl}.

Step 5: Impossibility in spaces of dimension three or higher
Let F be efficient and not locally dictatorial on (X,H); we show that dim(X,H) ≤

2 by contraposition. Thus, assume that H1,H2,H3 are pairwise independent. By
Step 4, (X,H) is a median space, thus all critical families have two elements. As is
easily verified this implies G1 ∩ G2 ∩ G3 6= ∅ whenever Gj ∈ {Hj ,H

c
j } for j = 1, 2, 3.

Consider any three single-peaked preferences �1, �2 and �3 such that �1 has peak
x ∈ Hc

1 ∩H2 ∩H3, �2 has peak y ∈ H1 ∩Hc
2 ∩H3 and �3 has peak z ∈ H1 ∩H2 ∩Hc

3 .
Also, choose an element w ∈ Hc

1 ∩Hc
2 ∩Hc

3 . By weak neutrality, WHj
= WHc

j
= W∗.

Let W be minimal in W∗, and let i ∈ W . Consider a preference profile where all voters
in W \{i} have preference �1, all voters in W c have preference �2, and i has preference
�3. Since F is not locally dictatorial, the outcome v under F lies in H1∩H2∩H3 as in
Step 4 above. By construction, v is not between any of the peaks x, y, z and w. By the
richness condition R2, the preferences can be chosen such that w �j v for j = 1, 2, 3,
hence F is not efficient.
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Combining Steps 1 to 5, we have thus far proved part a) of our main theorem,
i.e. the necessary conditions for efficiency. We now turn to part b), i.e. the sufficient
conditions.

Step 6: Almost dictatorship and weak neutrality implies efficiency
Let F be weakly neutral voting by issues with almost-dictator i. Partition H into

Ĥ := {H ∈ H : {i} ∈ WH ∩WHc},
Ĝ+ := {G ∈ H : {i} 6∈ WG}, and
Ĝ− := {G ∈ H : Gc ∈ Ĝ+}.

Observe that, since i is an almost-dictator, {i} ∈ WG for all G ∈ Ĝ−. For a given
preference profile (�1, ...,�n), let x = F (�1, ...,�n) and denote by x∗i the peak of �i.
Clearly, x is efficient if x = x∗i . Thus, assume that x 6= x∗i . Suppose that G ∈ H
separates x∗i and x such that x∗i ∈ G and x ∈ Gc. Then, {i} 6∈ WG, hence G ∈ Ĝ+.
Now consider any other separating G̃ such that x∗i ∈ G̃ and x ∈ G̃c. Clearly, one
has G̃ ∈ Ĝ+; moreover, Gc ∩ G̃c 6= ∅, since otherwise Gc ⊆ G̃ and hence, using (4),
{i} ∈ WGc ⊆ WG̃. By weak neutrality, we must have either Gc∩ G̃ = ∅, or G∩ G̃c = ∅;
indeed, otherwise G ⊥ G̃, which would imply WG = WGc as in Step 2. Therefore, one
has either G ⊆ G̃ or G̃ ⊆ G. The family {G1, ..., Gk} of all separating basic properties
with x∗i ∈ Gj and x ∈ Gc

j can thus be ordered such that G1 ⊆ G2 ⊆ ... ⊆ Gk.
We will now show that no y 6= x can be unanimously preferred to x. First, suppose

y ∈ Gc
k; then, y ∈ Gc

j for all j ∈ {1, ..., k}, hence x ∈ [x∗i , y], i.e. x is between i’s peak
and y. By single-peakedness, x �i y.

Next suppose y ∈ Gk. Since x = F (�1, ...,�n) ∈ Gc
k, there must exist some voter

h with peak x∗h in Gc
k. We claim that x ∈ [x∗h, y], and therefore by single-peakedness,

x �h y. Suppose, by way of contradiction, x 6∈ [x∗h, y]. Then, there exists H ∈ H such
that {x∗h, y} ⊆ H and x ∈ Hc. We have x∗h ∈ Gc

k ∩H, x ∈ Gc
k ∩Hc and y ∈ Gk ∩H.

Since Gk ∈ Ĝ+, Gk 6⊥ H by weak neutrality, hence Gk ∩ Hc = ∅, i.e. Gk ⊆ H. But
then x∗i ∈ H and x ∈ Hc which implies H = Gk by definition of Gk. This contradicts
the fact that x∗h ∈ Gc

k ∩H.

Step 7: Weak neutrality implies efficiency in two-dimensional spaces
Let x = F (�1, ...,�n), and consider any y 6= x. We will show that y cannot be

unanimously preferred to x. Denote by Hx¬y = {H ∈ H : x ∈ H, y 6∈ H}. We
consider two cases. First, suppose that for all G, G̃ ∈ Hx¬y, G 6⊥ G̃. This implies
G ⊆ G̃, or G̃ ⊆ G, hence the family Hx¬y = {G1, ..., Gk} can be ordered such that
G1 ⊆ G2 ⊆ ... ⊆ Gk. Since x ∈ G1, there must be at least one voter i with peak x∗i in
G1. By construction, x ∈ [x∗i , y], hence by single-peakedness, x �i y.

Thus, suppose now that there exist G, H ∈ Hx¬y such that G ⊥ H. Since
dim(X,H) ≤ 2, one has G̃ 6⊥ G or G̃ 6⊥ H for any G̃ ∈ H. In particular, for any
G̃ ∈ Hx¬y, either [G̃ ⊆ G or G ⊆ G̃] or [G̃ ⊆ H or H ⊆ G̃]. Thus, Hx¬y can be par-
titioned into H1

x¬y = {G1, ..., Gk} and H2
x¬y = {H1, ...,Hl} such that G ∈ H1

x¬y,
H ∈ H2

x¬y, G1 ⊆ G2 ⊆ ... ⊆ Gk, and H1 ⊆ H2 ⊆ ... ⊆ Hl. Since x ∈ G1,
W := {i : x∗i ∈ G1} ∈ WG1 . Moreover, since G1 ⊆ G and G ∈ H∗, W ∈ W∗ by
weak neutrality using (5). Similarly, W ′ := {i : x∗i ∈ H1} ∈ WH1 ⊆ W∗. By (3),
W ∩ W ′ 6= ∅, i.e. there exists x∗i ∈ G1 ∩ H1. By construction, x ∈ [x∗i , y], hence by
single-peakedness, x �i y.
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Remaining Proofs

Proof of Fact 1 The result follows from van de Vel (1993, Theorem II.4.16 and Exer-
cise II.4.30.5), in view of the fact that in median spaces the set of all halfspaces is the
unique subbase of halfspaces.

Proof of Fact 2 Evidently, a voter i can enforce the outcome x in the sense that
F (�1, ...,�n) = x whenever x∗i = x if and only if {i} ∈ WH for all H ∈ H with H 3 x.
This implies part a) since a dictator can enforce any outcome.

To verify part b), suppose that i is a local dictator over the subdomain D such that x
and y are two distinct possible peaks of the preferences in D. Then, {i} ∈ WH ∩WHc

for any H that separates x and y. Conversely, suppose that {i} ∈ WH ∩ WHc for
some H; choose x ∈ H and y ∈ Hc such that the segment [x, y] is inclusion minimal.
Using the transitivity of the betweenness relation (cf. NP (2004)), minimality implies
[x, y] = {x, y}. Consider a profile (�1, ...,�n) of single-peaked preferences such that
i has peak at x and all other voters have their peak at y. Since i is winning for H,
one has F (�1, ...,�n) ∈ H; moreover, F (�1, ...,�n) ∈ [x, y] by Proposition 2, hence
in fact F (�1, ...,�n) = x by the choice of x and y. Analogously, if i has peak at y
and all others at x, one can conclude F (�1, ...,�n) = y. Thus, i is a dictator on an
appropriate subdomain of preferences with peaks at x or at y.

Finally, consider part c). Given H ∈ H, choose x ∈ H and y ∈ Hc such that the
segment [x, y] is inclusion minimal. As above, this implies [x, y] = {x, y}. Without loss
of generality suppose that i can veto y when all peaks are in {x, y}. If all voters but i
have their peak at y but at the same time F (�1, ...,�n) 6= y, we must have that i has
peak at x, and thus F (�1, ...,�n) = x by Proposition 2. This implies {i} ∈ WH . To
show the converse implication, consider any pair x 6= y, and choose H such that x ∈ H
and y ∈ Hc. Obviously, if {i} ∈ WH then voter i can veto y, and if {i} ∈ WHc then
voter i can veto x.

Proof of Proposition 1 Suppose that f(ξ) ∈ Co{ξ1, ..., ξn}. Consider, for each i, the
segment [ξi, f(ξ)]. It suffices to show that ∩n

i=1[ξi, f(ξ)] = {f(ξ)}; from this, the weak
efficiency is immediate. Suppose, by way of contradiction that each segment [ξi, f(ξ)]
contains an element x 6= f(ξ). Choose a basic property H ∈ H such that f(ξ) ∈ H and
x ∈ Hc. Since Hc is convex, it is not possible that {ξ1, ..., ξn} ⊆ Hc (otherwise, the
convex hull of {ξ1, ..., ξn} would be contained in Hc). Hence, there exists j such that
ξj ∈ H. Since H is convex, [ξj , f(ξ)] ⊆ H, hence x 6∈ [ξj , f(ξ)].

Conversely, let (X,H) be a median space. By Nehring and Puppe (2002, Proposition
4.1), there exist a unique “projection” of f(ξ) on the convex hull of the voters’ peaks,
i.e. an element y ∈ Co{ξ1, ..., ξn} such that y ∈ [ξi, f(ξ)] for all i. Obviously, if y 6= f(ξ),
f is not weakly efficient.

Proof of Proposition 2 It is clear that F is onto if the social choice is always contained
in the convex hull of the voters’ peaks. Conversely, suppose that F is strategy-proof
and onto. By Theorem A, F is voting by issues. Since the set of all voters is always
winning, one has F (�1, ...,�n) ∈ H for all H ⊇ {x∗1, ..., x∗n}; by definition, this means
that F (�1, ...,�n) ∈ Co{x∗1, ..., x∗n}.
Proof of Proposition 3 a) Clearly, 1-efficiency implies voter sovereignty. Conversely,
if F is onto it is voting by issues by Theorem A. Let x = F (�1, ...,�n), and consider
any y 6= x. If d(x, y) = 1, the family Hx¬y is ordered by set inclusion; let G ∈ Hx¬y be
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inclusion minimal. Since x ∈ G, there exists a voter i with x∗i ∈ G. By construction,
x ∈ [x∗i , y], thus by single-peakedness x �i y, and therefore F is 1-efficient.
b) The proof of necessity of weak neutrality parallels Step 1 in the proof of the main
theorem. In addition, one needs to verify that, given the basic properties H and H̃
as in Step 1, one can choose the elements x ∈ H ∩ H̃, y ∈ Hc ∩ H̃c and w ∈ Hc ∩ H̃
such that d(w, z) = 2, where z = F (�′;W,�′′;W c) as in Step 1 above. This follows
from the fact that any median space is a graphic space with an underlying graph that
is bipartite (cf. van de Vel (1993)). The proof of sufficiency is the same as in Step 7 in
the main theorem.
c) Let F be 3-efficient. By parts a) and b), F is weakly neutral voting by issues. If F
is locally dictatorial, it is in fact almost dictatorial by Step 3 of the proof of the main
theorem, hence efficient by Step 6 of that proof. Thus, suppose that F is not locally
dictatorial. Then one must have dim(X,H) ≤ 2, in which case 3-efficiency trivially
coincides with efficiency. Indeed, assume by way of contradiction, that dim(X,H) ≥ 3.
By van de Vel (1993, Theorem II.4.19, p.235), (X,H) contains a graphic 3-hypercube.
In this hypercube, a counterexample to the 3-efficiency can be constructed using the
arguments of Step 5 in the proof of the main theorem.
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