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Abstract The paper proposes a model for measuring and valuing biodiversity based on
evolutionary information, called the phylogenetic tree model. While avoiding the strong
restrictions of Weitzman’s (1992) “cladistic” approach, the phylogenetic tree model re-
tains much of the mathematical simplicity of the cladistic model. In particular, in the
phylogenetic tree model the diversity of any set of species can be recursively determined
from the pairwise dissimilarities between them. The restrictions imposed by the phylo-
genetic tree model on the underlying dissimilarity metric are characterized and shown
to be weaker than those entailed by the cladistic model. An especially parsimonous
version of the phylogenetic tree model is obtained by invoking an appropriate notion of
translation invariance.



1 Introduction

This paper addresses the problem of the modelling of biodiversity. From an economic
perspective, the central task is to provide ways of constructing society’s preferences
over different conservation policies. From a biological perspective, the issue is to de-
velop applicable measures of biodiversity. In “A Theory of Diversity” (Nehring and
Puppe (2002), henceforth TD (2002)), we have developed a multi-attribute approach to
valuing and measuring diversity. Its basic idea is to think of the diversity of a set of
entities as derived from the number and weight of the different attributes possessed by
them. Measures of diversity that are based (explicitly or implicitly) on the general idea
of counting attributes (“features,” “characteristics”) have been proposed frequently in
the literature (see, among others, Vane-Wright, Humphries and Williams (1991), Faith
(1992), Weitzman (1992, 1998), Solow, Polasky and Broadus (1993), Faith and Walker
(1994), Williams and Humphries (1996), Tilman (1997), Weikard (2002), and the vol-
umes edited by Gaston (1996) and Polasky (2001)). One goal of TD (2002) is to
formalize this idea in a general and unified framework. The multi-attribute approach
allows for various different interpretations of the “entities” whose diversity is mea-
sured. These may be genes, individual organisms, species, or ecosystems. Depending
on the chosen level of description, the relevant attributes will be different. In the case
of species, examples of relevant attributes are “suckling their young,” “living for more
than 1000 years,” “feeding on molluscs,” or “descending from archeopteryx.” Examples
of attributes of ecosystems are “containing a particular species,” or “containing a par-
ticular set of complementary species” such as particular predator-prey relationships.
In this paper, we will be concerned with species diversity of a particular kind.

One needs to clearly distinguish the level of measurement from the level of conser-
vation action. As to the latter, there is a broad consensus that effective biodiversity
conservation policies need to be directed at reserve sites or even entire ecosystems;
frequently, it is impractical, or even outright infeasible, to target single species in iso-
lation. Nonetheless, it will often be the conservation of species (not reserve sites) that
one ultimately cares about. This two-pronged approach is taken, for instance, by Ando,
Camm, Polasky and Solow (1998) (see also Armsworth, Kendall and Davis (2002) for
an overview). Note that on this view, the ecological interrelations among species that
determine the outcomes of conservation policies are analytically separate from the as-
sessment of the resulting biodiversity. In the language of economics, the former are
part of the “technology” of biodiversity conservation, while the latter is a matter of
societal preferences (see Section 2.6 below for an elaboration).

In a biological context, one can distinguish three main types of species diversity:
genetic diversity, functional diversity, and phylogenetic diversity. Here, our focus is on
the latter. By phylogenetic diversity we mean the morphological diversity of species
based on their evolutionary descent. Our empirical starting point is thus the evolution-
ary tree describing the genealogy of species. The relevant attributes are “homologies,”
i.e. shared characteristics inherited from a common ancestor, in contrast to “homo-
plasies,” i.e. shared characteristics due to the adaptation to a common way of life. For
instance, the similarity between a birds’ wing and a human arm represents a homology
(the inherited but differently adapted reptilian forelimb), while the similarity between
the wing of a bird and the wing of a bat corresponds to a homoplasy.

One of the first workable models of diversity based on evolutionary information
was developed by Weitzman (1992). Effectively, his model assumes that all relevant



attributes correspond to the characteristics shared by all species in the same “clade,”
i.e. by all species that descend from a common ancestor. Thus, we will refer to Weitz-
man’s model as the cladistic model. The major restriction of this model derives from
the fact that all cladistic attributes “live forever:” once a species has founded a clade,
all descendants share its cladistic characteristics, by definition. This entails, for in-
stance, that later species are superior to earlier ones in an extreme form: a species has
no marginal diversity value as long as one of its successors survives. A related criticism
has been put forward by Faith (1994) who argued that, implicitly, the cladistic model
assumes a constant speed of evolution.

To overcome these criticisms, we propose here the “phylogenetic tree model” as a
natural generalization of Weitzman’s cladistic model, retaining much of its mathemat-
ical simplicity. The main new feature of the phylogenetic tree model is its ability to
account for non-cladistic attributes such as those derived from the “Linnean” taxon-
omy of species. Indeed, the present paper can be viewed as an argument in favor of
a neo-linnean broadening of taxonomy (for a plea for “Neolinnean Impressionism,” see
Tudge (2000)).

The paper is organized as follows. In the following Section 2, we briefly review the
basic concepts and tools of the multi-attribute approach introduced in TD (2002). In
particular, we define the notion of a diversity function as an appropriate aggregator
of attribute weights. A diversity function naturally induces pairwise dissimilarities be-
tween species. We also introduce the concept of “monotonicity in dissimilarity,” which
requires the diversity of an arbitrary set of species to be determined by the pairwise
dissimilarities between its elements in a monotone fashion. The section concludes with
a brief discussion on the economic interpretation of diversity theory.

In Section 3, we turn to evolutionary trees and discuss two polar ways of modelling
diversity based on evolutionary information. As a model of minimal specifity, we intro-
duce the “tree model” and show that it is too unstructured to serve as a useful model
of biodiversity. We then review Weitzman’s cladistic model which represents the other
extreme of maximal specifity. The cladistic model is charaterized by a simple condition
on the family of relevant attributes, the “Nesting Property,” which states that any two
attributes are either completely unrelated or one is more special than the other. As a
consequence of this property, diversity in the cladistic model can be determined using
a simple recursion formula. However, the cladistic model offers too little flexibility
since the Nesting Property imposes very strong restrictions on the family of admissible
attributes. We then discuss Faith’s (1992) frequently used model of phylogenetic di-
versity. While that model overcomes the weaknessnes of the cladistic model, it entails
other problematic restrictions, as shown in Subsection 3.4.

In Section 4, we present our proposal for modelling biodiversity, the phylogenetic
tree model which allows one to combine evolutionary with taxonomic similarity infor-
mation. As the main result, we characterize the phylogenetic tree model in terms of
a qualitative compatibility restriction on the family of relevant attributes, called the
“Weak Nesting Property.” It can be used as an empirical criterion to verify the applica-
bility of the model. A preliminary discussion suggests that the Weak Nesting Property
may stand up well empirically. We also show that phylogenetic tree models admit a
simple representation via an (ordinal) index of “remoteness from the origin.”

A corollary of the characterization in terms of the Weak Nesting Property is the
recursive character and monotonicity in dissimilarity of the phylogenetic tree model,
as shown in Section 5. The possibility of determining the diversity of an arbitrary



set of species from their pairwise dissimilarities has obvious advantages in practical
applications, since the number of pairwise dissimilarities grows quadratically with the
total number of species, while in the unconstrained multi-attribute framework the
number of potential attributes grows exponentially.

Given the property of monotonicity in dissimilarity, one would like to know which
dissimilarity metrics are consistent with a phylogenetic tree model. This question is
addressed in Section 6, where we characterize the restrictions that the phylogenetic tree
model imposes on the underlying dissimilarity metric. The key restriction is a condition
of “weak ultrametricity” which relaxes the well-known ultrametricity condition of the
cladistic model. Section 6 is mathematically more demanding than the rest of the
paper and may be skipped without loss of continuity.

The phylogenetic tree model allows one to incorporate information about differen-
tial speed of evolution. In the final Section 7, we offer an interpretation along these
lines under the name of “evolutionary clock model.” We also propose an especially par-
simonous version invoking a notion of translation invariance. Translation invariance
amounts to identical durability patterns of attributes through the entire evolutionary
tree. In particular, this allows one to reduce comparisons between species that are far
apart to “local” comparisons of neighboring species. All proofs of formal results are
collected in an appendix.

2 Background: The Multi-Attribute Model of
Diversity

This section briefly reviews the basic concepts and tools of the general multi-attribute
framework developed in TD (2002).

2.1 An Introductory Example

As a simple example, consider a universe X consisting of three distinct species: whales
(wh), rhinoceroses (rh) and sharks (sh). Intuitively, judgements on the diversity of
different subsets of these species will be based on their possessing different features.
For instance, whales and rhinos possess the feature “being a mammal,” while sharks
possess the feature “being a fish.” Let F' be the totality of all features deemed rele-
vant in the specific context, and denote by R C X x F' the “incidence” relation that
describes the features possessed by each object, i.e. (z, f) € R whenever object z € X
possesses feature f € F. A sample of elements of R in our example is thus (wh, fmam),
(rh, fmam), and (sh, frisn), where fmam and fris, denote the features “being a mam-
mal” and “being a fish,” respectively. The basic idea behind the multi-attribute model
is to view the diversity of a set S of species as being determined by the number and
the value of the different features possessed by the species in S. Specifically, for each
relevant feature f € F', let Ay > 0 quantify the value of the realization of f. Upon nor-
malization, Ay can thus be thought of as the relative importance, or weight of feature
f. The diversity value of a set S of species is defined as

v(S) == Z Af. (2.1)

fEF:(z,f)ER for some z€S



Hence, the diversity value of a set of species is given by the total weight of all different
features possessed by some species in S. Note especially that each feature occurs at
most once in the sum. In particular, each single species contributes to diversity the
value of all those features that are not possessed by any already existing species.

The relevant features can be classified according to which sets of objects possess
them, as follows. First, there are all idiosyncratic features of the above species, the sets
of which we denote by Fyuy, Fimy and Fig,), respectively. Hence, Fy,y) is the set of all
features that are possessed exclusively by whales, and analogously for Fy,;y and Figy.
For instance, sharks being the only fish in this example, F{g4, contains the feature
“being a fish.” On the other hand, there will typically exist features jointly possessed
by several objects. For any subset A C X of species denote by Fs the set of features
that are possessed by ezactly the objects in A; thus, each feature in F4 is possessed by
all elements of A and not possessed by any element of X \ A. For instance, whales and
rhinos being the only mammals in the example, the feature “being a mammal” belongs
to the set Fiuy 4. With this notation, (2.1) can be rewritten as

u(S) = > D A (2.1')

ANS#D fEFA

Intuitively, any feature shared by several objects corresponds to a similarity between
these objects. For instance, the joint feature “mammal” renders whales and rhinos
similar with respect to their taxonomic classification. Suppose, for the moment, that
the feature of “being a mammal” is in fact the only non-idiosyncratic feature deemed
relevant in our example, and let A4, denote its weight. In this case, (2.1) or (2.1")
yield v({wh, sh}) = v({wh}) + v({sh}), i.e. the diversity value of whale and shark
species together equals the sum of the value of each species taken separately. On the
other hand, since v({wh,rh}) = v({wh})+v({rh})—Amaem, the diversity value of whale
and rhino species together is less than the sum of the corresponding individual values
by the weight of the common feature “mammal.” This captures the central intuition
that the diversity of a set is reduced by similarities between its elements.

As in TD (2002), we will suppress explicit reference to the underlying description F'
of relevant features by identifying features extensionally. Specifically, for each subset
A C X denote by Ay := ZfeFA Ay the total weight of all features with extension A,
with the convention that A4 = 0 whenever Fy = . With this notation, (2.1') can be

further rewritten as
v(S)= > A (2.1
ANSH#D

The totality of all features f € F4 will be identified with their extension A4, and we will
refer to the subset A as a particular attribute. Hence, a set A viewed as an attribute
corresponds to the family of all features possessed by exactly the elements of A. For
instance the attribute {wh} corresponds to the conjunction of all idiosyncratic features
of whales (“being a whale”), whereas the attribute {wh,rh} corresponds to “being a
mammal.”! The function \ that assigns to each attribute A its weight A4, i.e. the
total weight of all features with extension A, is referred to as the attribute weighting

ISubsets of X thus take on a double role as sets to be evaluated in terms of diversity on the one
hand, and as weighted attributes on the other. In order to notationally distinguish these roles we will
always denote generic subsets by the symbol “A” whenever they are viewed as attributes, and by the
symbol “S” otherwise.



function. The set of relevant attributes is given by the set
A:={A: 4 #0}.

An element © € X possesses the attribute A if x € A, i.e. if & possesses one, and
therefore all, features in F4. Furthermore, say that an attribute A is realized by the
set S if it is possessed by at least one element of S, i.e. if AN S # (. According to
(2.1"), the diversity value v(S) is thus the total weight of all attributes realized by S.

2.2 Diversity Functions

A function v of the form (2.1"”) with A4 > 0 for all A is called a diversity function,
and we will always assume the normalization v(f)) = 0. Clearly, any given attribute
weighting function A > 0 determines a particular diversity function via formula (2.1").
Conversely, any given diversity function v uniquely determines the corresponding col-
lection A4 of attribute weights (see TD (2002, Fact 2.1)). In particular, any given
diversity function v unambiguously determines the corresponding family A of relevant
attributes. This basic fact allows one to describe properties of a diversity function in
terms of corresponding properties of the associated attribute weighting function.

An essential property of a diversity function is that the marginal value of a species
x decreases in the size of existing species; formally, for all S,T and z

SCT=vSuU{z}) —v(S) >v(TU{z}) —v(T). (2.2)
Indeed, using (2.1"), one easily verifies that
v(SU{z}) —v(S)= > A4
A3z, ANS=0

which is decreasing in S due to the non-negativity of A\. Property (2.2), known as sub-
modularity, is a very natural property of diversity; indeed, it captures the fundamental
intuition that it becomes the harder for an object to add to the diversity of a set the
larger that set already is.?

2.3 Dissimilarity

Any diversity function v naturally induces a notion of pairwise dissimilarity between
species. Specifically, define the dissimilarity from = to y by

d(z,y) == v({z,y}) —v({y}). (2.3)

The dissimilarity d(z,y) from x to y is thus simply the marginal diversity of z in a
situation in which y is the only other existing species. Using (2.1") one easily verifies

that
d(l‘, y) = Z )‘A ’
Adz,AFy

that is, d(z,y) equals the weight of all attributes possessed by x but not by y. Note
that, in general, d need not be symmetric, and thus fails to be a proper metric; it

2 A somewhat stronger property, called total submodularity, in fact characterizes diversity functions,
see TD (2002, Fact 2.2).



does, however, always satisfy the triangle inequality. The function d is symmetric if
and only if v({z}) = v({y}) for all z,y € X, i.e. if and only if single species have
identical diversity value. We will refer to a diversity function that gives equal value to
all singletons as a uniform diversity function.

2.4 Models of Diversity

A non-empty family of attributes A C 2%\ {0} is referred to as a model (of diversity). A
diversity function v is compatible with the model A if the corresponding set A of relevant
attributes is contained in A, i.e. if A C A. A model thus represents a qualitative a priori
restriction, namely that no attributes outside A can have strictly positive weight. For
instance, in a biodiversity context, an example of such an a priori restriction would
be the requirement that all relevant attributes are biological taxa, such as “being a
vertebrate,” “being a mammal,” etc. This requirement leads to an especially simple
functional form of any compatible diversity function, as we shall see below.

2.5 Diversity as Aggregate Dissimilarity

In practical applications, one will have to construct the diversity function from primitive
data. One possibility is, of course, to first determine appropriate attribute weights and
to compute the diversity function according to (2.1"). Determining attribute weights is
a complex task, however, since there are as many potential attributes as there are non-
empty subsets of species, i.e. 2" — 1 when there are n species. An appealing alternative
is to try to derive the diversity of a set from the pairwise dissimilarities between its
elements. This is a much simpler task since, with n species, there are at most n-(n—1)
non-zero dissimilarities. Specifically, say that a model A is monotone in dissimilarity
if, for any compatible diversity function v and any S, the diversity v(S) is uniquely
determined by the value of all single species in S and the pairwise dissimilarities within
S, and if, moreover, the diversity v(S) is a monotone function of these dissimilarities.

The problem of determining the conditions under which a model is monotone in
dissimilarity is one the main tasks of TD (2002). Say that a model A is acyclic if for
no m > 3 there exist species x1, ..., T, and attributes Ay, ..., A, € A such that, for all
i=1,...m—1A,N{z1,....¢m} ={zi, zit1}, and A, N {z1, ...,z } = {Tm,z1}. Thus,
for instance in the case m = 3, acyclicity requires that there be no triple of species
such that each pair of them possesses an attribute that is not possessed by the third
species. A main result of TD (2002) establishes that a model of diversity is monotone
in dissimilarity if and only if it is acyclic.?

2.6 On the Economic Interpretation of Diversity Theory

From an economic perspective, the problem posed by biodiversity consists in the choice
of an appropriate conservation policy, such as investment in conservation sites, restric-
tions of land development, anti-poaching measures, or the reduction of carbondioxid
emission. This can be modelled along the following lines. A policy determines at each
point of time a probability distribution over sets of existing species and consumption.
Formally, a policy p can be thought of a sequence p = (p);>o, where each pt is a
probability distribution on 2% x RY with p!(S?,ct) as the probability that at time ¢

3The necessity of acyclicity hinges on a weak regularity requirement, see TD (2002, Section 6).



the set St is the set of existing species and ¢! is the consumption vector. Denoting by
P the set of feasible policies, society’s problem can thus be written as

oo
max/ et Eu(Sh) +u(c)dt, (2.4)
peP [,

where § denotes the discount rate and E, the expectation with respect to p. The
objective function in (2.4) is composed of utility from aggregate consumption u(ct)
and the existence value services v(S?) from the set S? of surviving species.

Diversity theory tries to help us determine the intrinsic value we put on the survival
of different species which is represented by the function v. The probabilities p! reflect
societies expectations about the consequences of its actions; these, in turn, reflect our
knowledge of economic and ecological processes. For instance, the role of keystone
species that are crucial for the survival of an entire ecosystem will be captured in the
relevant probability distribution. Thus, the value derived from the presence of such
species qua keystone species enters as an indirect rather than instrinsic utility.*

As a simple example, consider two species y and z each of which can be saved
forever (at the same cost); moreover, suppose that it is not possible to save both of
them. Which one should society choose to save? Assuming constant consumption
ceteris paribus, the utility gain at ¢ from saving species z, given that otherwise the set
St of species survives, is

v(S'Uf{z}) —v(SH = Y a4

A>z,ANSt=0

Denote by Q(x) := Y 45, Aa - prob(A N S" = () the expected marginal value at ¢
of saving z, which is given by the sum of the weights of all attributes possessed by
z multiplied by the probability that z is the unique species possessing them. The
expected present value of the utility gain from saving x is given by

/00 e 0. QU (x)dt.
0

For concreteness, let y be one of the few species of rhinoceroses, and z a unique endemic
species which currently has a sizeable number of fairly distant relatives. In view of
the fact that all rhino species are currently endangered, this leads to the following
trade-off between maximizing diversity in the short-run and in the long-run. Saving
the endemic species z yields a significant short-run benefit, while the expected benefit
from safeguarding the last rhino species would be very high. This suggests the following
qualitative behavior of the streams of intertemporal benefits accruing from the two
policies:

4 Alternatively, the multi-attribute framework can also be interpreted in terms of option value, as
explained in TD (2002, p.1168). As a result, measures of biodiversity based on that notion, such as
the one proposed in Polasky, Solow and Broadus (1993), also fit into our framework.



undiscounted
marginal benefit at ¢

Figure 1: Streams of expected marginal benefits

The strong increase in the expected marginal value of saving y stems from the fact that,
due to the limited current number of rhinos, the extinction probability of their unique
attributes becomes high as t grows. Clearly, the rhino species y should be saved if the
discount rate is low enough; otherwise, z should be saved. The decision thus depends
on three factors: the discount rate, the value of the relevant attributes at stake, and
the probability of the survival of close relatives over time.

3 Diversity Based on Evolutionary Information

We now turn to our main issue, the modelling of diversity based evolutionary informa-
tion. Let X be the set of all species that ever existed, and suppose that the genealogy
of species is described by a partial order >., on X, with the interpretation that y >., x
if x is an ancestor of y. The partial order >, is assumed to be a tree order, i.e. X has
a minimal element (the root, denoted by z¢) and, for all y € X, the set {z : y >¢y z}
of all ancestors of y is totally ordered by >.,. In this case, >., gives rise to a graphic
tree 7.y, in which each species is connected by edges to its immediate ancestor and to
all of its immediate descendants (see Figure 2, in which z <., y).

To

order of 2
descent

Figure 2: An evolutionary tree

3.1 The General Tree Model

A natural minimal requirement on a model of diversity based on evolutionary informa-
tion is that all relevant attributes be connected in the evolutionary tree. An attribute



A is Tey-connected whenever A contains with any two species the entire shortest path
in 7., connecting them. Denote by 7¢, the family of all 7,,-connected subsets of X; by
convention, let § € 7.,. We will refer to 7., as the tree model associated with >.,. As
is easily verified, the requirement A C 7, amounts to the following two conditions in
terms of the order >.,. For all A € A,

TR1 (Common Ancestor) z,y € A implies w <¢,  and w <., y for some w € A.
TR2 (Unbroken Lineage) z,y € A and z <., z <., y implies z € A.

Condition TR1 says that any two species sharing an attribute must descend from a
common ancestor with the same attribute. Condition TR2 says that an attribute once
left behind by an evolutionary lineage is never recovered. Both seem to be natural
requirements under a genealogical interpretation of attributes.

While plausible as a minimal requirement, the assumption of 7.,-connectedness is
arguably not enough. Indeed, the general tree model T, is insufficiently restrictive as a
model of diversity based on evolutionary information. The reason is that the tree model
Tew yields no similarity restrictions on the set E(X) C X of extant species. Without loss
of generality, we identify the set of currently existing species with the terminal nodes
of the evolutionary tree, i.e. * € E(X) if and only if x has no successor.> The key
observation is the fact that any subset B C E(X) of terminal nodes can be obtained as
the intersection of some attribute A € T, with B. In other words, for any subset B of
currently existing species there is a potential attribute that is possessed by all species
in B but by no other currently existing species.®

3.2 The Cladistic Model

As we have just argued, the general tree model 7T, yields no restrictions on the similar-
ity relations between extant species. Since one would expect such similarity relations to
hold, one has to find more specific restrictions on the family of admissible attributes re-
flecting these similarities. The proposal made in Weitzman (1992, 1998) can be viewed
as an example of this strategy. Given the evolutionary tree 7.,, Weitzman selects the
family of all “clades” as the family of admissible attributes. Specifically, he proposes
the model H,, := {C, : x € X}, where C,, := {y : y >., x} is the clade founded by
species z, i.e. the set of all species that descend from z. In the following, we refer to
Hey as the cladistic model. Clearly, any clade is 7e,-connected, hence H¢, C Tep. In-
deed, the cladistic model is characterized by condition TR1 together with the following
strengthening of condition TR2. For all A,

TR2* z € A and y >, = implies y € A.
Moreover, the cladistic model H,, satisfies the following property. For all A € H,,,
NP (Nesting Property) ANB #( =[AC B or BC Al

Thus, in the cladistic model any two attributes are either disjoint or one is contained in
(“more specialized than”) the other. Following TD (2002), we refer to attribute families
satisfying this property as hierarchical models. Diversity in a hierarchical model admits

50f course, there are already extinct species which also had no descendants. For our purposes such
species are irrelevant and we neglect them here for simplicity.

SFor verification, consider for any given subset B of terminal nodes the set A of all ancestors of
the species in B. Clearly, AN E(X) = B and A is Tey-connected, hence A represents an admissible
attribute A € T, that is possessed exactly by the set B of currently existing species.



the following simple recursion formula, originally proposed by Weitzman (1992). For
all S and all v compatible with some hierarchical model,

v(SU{z}) —v(S) = IyIlelgl d(z,y). (3.1)

Thus, the marginal diversity of a species z given the set S of already existing species is
simply the minimal dissimilarity of z from any member of S. It is immediate from (3.1)
that the cladistic model H,,, and more generally any hierarchical model, is monotone in
dissimilarity. Indeed, (3.1) allows one to recursively determine the diversity of any set
of species from their value as singletons and their pairwise dissimilarities; moreover, the
diversity is monotonically increasing in the dissimilarities. In TD (2002), we show that
the recursion formula (3.1) in fact characterizes the class of all hierarchical models. As
a result, the recursion cannot hold for general dissimilarity metrics. The dissimilarity
metrics that are consistent with a hierarchical model are the so-called “ultrametrics.”
In the uniform case (equal valuation of singletons), ultrametricity is the requirement
that the two greatest pairwise dissimilarities between three elements must be equal.

3.3 Critique of the Cladistic Model

We now want to argue that the cladistic model is too restrictive to appropriately reflect
basic features of phylogenetic diversity. As a starting point, consider the following
evolutionary tree.

Figure 3: A restriction of the cladistic model

In the situation depicted in Figure 3, the cladistic model entails that

d(y, ) > d(y, z), (3.2)

no matter how far z has evolved from 3, its common ancestor with . To verify this,
observe that d(y,z) = Ay} + Ac,, , i.e. the dissimilarity of y from z equals the weight
of y’s idiosyncratic characteristics plus the weight of Cy, the only proper clade of y
that it does not share with z. On the other hand, d(y, z) = A,y since z belongs to any
(proper) clade to which y belongs.

Empirically, (3.2) is a problematic and undesirable restriction. To see this, consider
the following concrete example.

10



order of
descent

shark  salmon porcupine

Figure J: A segment of the evolutionary tree

In Figure 4, w denotes a common ancestor of salmon and porcupine that is not an
ancestor of shark. In analogy to the above restriction (3.2), the cladistic model forces
d(salmon, porcupine) < d(salmon, shark). In particular, for any uniform diversity func-
tion with A C H,, the set {salmon, porcupine} is (weakly) less diverse than the set
{salmon, shark}, which seems counterintuitive. The reason is that the cladistic model
neglects the important commonality of salmon and shark that derives from their be-
longing to the same (non-cladistic) taxon “fish” (corresponding to the dotted attribute
in Figure 4).

As another example illustrating the problematic character of (3.2), consider the
following remarkably frequent pattern of speciation, the “caterpillar tree” (for the many
examples of this pattern, see Tudge (2000)).

(l

Yk

Ym

Figure 5: A caterpillar tree

In the situation depicted in Figure 5 a model should not put a priori restrictions on
the relative magnitude of the dissimilarity d(yg,y:) of the middle species y from y;
as compared to the dissimilarity d(yg, ym) of yx t0 yn,. Intuitively, these dissimilarities
should only depend on the relative “degree of evolvedness” of y;. For instance, if yj,
has branched off close to y;, while y,, is much more evolved, one would expect that
d(yx,y1) < d(yk,ym). However, by (3.2), one again obtains an unambiguous answer by
the cladistic model: d(yg,y1) > d(yk,Ym)-
As a final example, consider a simple lineage of descent, as shown in Figure 6.

11
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Figure 6: A lineage of descent

Along a lineage of descent, the cladistic model implies that d(zy,z;) = 0 whenever
k < l. Indeed, the descendant x; belongs to any clade to which its ancestor xj belongs.
Since the cladistic model rules out that ancestors have any attributes not shared with
all their descendants, it forces one to treat later species as superior to earlier ones
in an extreme form: an earlier species has no marginal diversity value as long as one
successor survives. This, indeed, seems to be the fundamental drawback of the cladistic
model: all attributes (i.e. clades) are immortal. A related criticism against Weitzman’s
cladistic model has been put forward by Faith (1994), who argued that it implicitly
assumes a constant speed of evolution. For instance, on this account the evolutionary
clock has run faster on the branch from w to salmon in Figure 4 above than on the
branch from w to porcupine, making salmon closer than porcupine to shark.”

Faith (1992) has proposed a measure which overcomes these difficulties and which
has been widely used in practice. We will discuss the corresponding model in the
following subsection and argue that it has difficulties of its own. Later, in Section 4,
we will show that one can accommodate all of these critiques while maintaining the
desirable property of monotonicity in dissimilarity.

3.4 The “Quasi-Cladistic” Model

Faith (1992) has proposed the following measure of biodiversity based on evolutionary
information. For any set of species S, denote by Sp(S) the set of all species that are
on some shortest 7.,-path between two species in S (i.e. the species on the subtree
spanned by S). Furthermore, for any y # o, denote by y~ the immediate predecessor
of y. The measure v; is defined as follows. For all S,

vs(S)=c+ Y. sy ., (3.3)
y:{y,y~ YCSp(S)

where ¢ > 0 is a constant, and d6(-,-) > 0 is an exogeneously given symmetric distance
function that is additive in the sense that

§(z,2) = 6(z,y) + 0(y, 2),

whenever y is on the path between z and z. Note that the summation in (3.3) is taken
over all distances such that both y and y~ are in Sp(S); in particular, vs({z}) = ¢ for
all single species x. For any two species z and z, let (y1,¥s,...,y) with y3 = z and

7A formal representation of the notion of a constant or variable “speed of evolution” is given in
Section 7 below.
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y; = z be a path connecting z with z in 7,. Note that this implies either y;11 = y; ,
or y; = y;,,- By (3.3) and symmetry of § one obtains,

!
vs({z,2}) = c+ Z 6(Yi-1,9i),

i=2

and hence, ds(z,2) = vs({z,2}) —vs({2}) = >, 0(¥i—1,¥i). By additivity of 4, this
implies

ds(z,2) = 0(x, 2),

i.e. the dissimilarity metric associated with vs is simply the given distance function 4.

We will now show that the functional form (3.3) corresponds to a specific structure
of the underlying attributes. Specifically, each relevant attribute A is either a clade
(A = C, for some z), or an “anti-clade,” i.e. the complement of a clade (A = X \ C,
for some z). Formally, let

TO:=Ho, U{X \ A: A€ Heb,
which we refer to as the “quasi-cladistic” model.

Proposition 3.1 A function vs of the form (3.3) has a unique representation in terms
of an attribute weighting function X\, given by

0 if AgTO

0z ,z) if A=Cy andzx # 20

0z ,z) if A=X\Cpandzx#xz9 ’
c—A if A=X

g = (3.4)

where A := Zwéxo 0(y~,y). Conversely, for any attribute weighting function satisfying
(8.4) the corresponding function vs defined by vs(S) = EA:AﬁSﬂ) Aa is of the form
(8.3). In particular, vs is a diversity function if and only if ¢ > A.

While the quasi-cladistic model overcomes the criticisms of the cladistic model put
forward in the previous subsection, it has problems of its own. These problems appear
in their starkest form in a lineage of descent as in Figure 6 above. While now an ancestor
has positive marginal diversity value, intermediate species do not. Concretely, one has
vs({x1, T2, ..., m}) = vs({1, Ty }) Whenever za, ..., £y 1 are intermediate between x;
and z,,. More generally, the quasi-cladistic model implies that, for all S,

v(8) = v(Sp(S5))- (3.5)

In fact, among all uniform diversity functions compatible with the tree 7,, property
(3.5) characterizes the quasi-cladistic ones.® Thus, the entire additional content of the
quasi-cladistic model stems from the problematic restriction (3.5).

In defense of the quasi-cladistic model, one could argue that (3.5) entails no direct
restriction on the diversity of extant species E(X) (terminal nodes), since Sp(S) can
differ from S only in non-extant species. Consider, however, again the “caterpillar”
pattern.

8Indeed, if v(S) # v(Sp(S)), then there must exist an attribute A ¢ 70 with strictly positive
weight.
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Figure 7: The caterpillar again

Assume that 6(z;,y;) = 6 for all i = 1,...,m, and that §(x,,_1,%,,) > 0. In that case,
the quasi-cladistic model implies that

Us({y1, Ym—1,Yx}) < vs({Y1, Ym—1,Ym}),

no matter how large §(y1,yx) and 6(yk,ym) are, and no matter how small é(ym—1, Ym)
is. In other words, given the survival of species y; and y,,—1, the marginal diversity
of y, is always greater than that of any species yr € {y2,...,¥m—2}, which seems
implausible.

The diagnosis of the restrictiveness of the quasi-cladistic model is that it rules out
combinations of attributes. For instance, in Figure 7 all potentially relevant attributes
of the form C,,N(X\C,;) fori < j (“descending from x; but not from z;”) are excluded.
But the distinctiveness of y; from y; and y,, is naturally described precisely by such
attributes. In general, it seems that combinations of relevant attributes (formally: their
intersections) are often relevant themselves, a point that has frequently been observed
in the literature (see, e.g., Williams and Humphries (1996)). Note, however, that if one
was to include all intersections of clades and anticlades, one would be thrown back to
the general tree model 7¢,. In the next section, we will make a proposal that ensures
that combinations of relevant attributes are relevant as well. More specifically, we are
looking for a model A with H., C A C T, that is stable under taking intersections
(combinations) of attributes. By the preceding argument, we are forced to exclude
some anticlades. Arguably, while some anticlades certainly correspond to relevant
attributes, not all do. For instance, the anticlade corresponding to the first reptile
(i.e. the attribute “pre-reptile”) is probably relevant.® By contrast, the anticlade “pre-
porcupine” seems to be biologically hardly significant.

The so-called “p-median model” proposed by Faith and Walker (1994) is also closed
under intersections and does, therefore, not suffer from the just stated weakness of the
quasi-cladistic model. In contrast to the phylogenetic tree model developed below,
however, it typically excludes some clades as relevant attributes; moreover, it fixes
attribute weights in a specific way.

9Indeed, the attribute “fish” critical to our argument surrounding Figure 4 above can be construed
as the intersection of the clade “vertebrates” and the anticlade “pre-reptile.”
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4 The Phylogenetic Tree Model

4.1 Definition

The basic idea of the phylogenetic model to be described in this section is to enrich
the family of cladistic attributes in a controlled way. This is done in two steps: First,
an appropriate set of further attributes H C 7., with a hierarchical structure is added.
In a second step, all intersections of the attributes in H., and H, respectively, are
included.

Definition A model PH is called a phylogenetic tree model if there exists a hierarchical
family H C 7., such that

PHC(HUHew) = {ANB:AcHand B € Hep}.10

To motivate this definition, consider again the segment of the evolutionary tree
depicted in Figure 4. We have argued, that one problem with the cladistic model is its
neglect of the non-cladistic taxon “fish” (dotted in Figure 4) as a potential attribute.
One would thus want to combine the underlying evolutionary tree with the similarity
information in the taxonomic classification of species. A prime candidate for the family
H in the above definition is thus a non-cladistic “Linnean” taxonomic hierachy H;q, of
species. Including intersections of cladistic and taxonomic attributes is natural since
intersections correspond to conjunctions of the attribute-defining features.

As a second example, consider again the caterpillar tree in Figure 5. Here, the
inappropriate restrictions on dissimilarities entailed by the cladistic model are natu-
rally overcome by including the following selection of anticlades as further relevant
attributes: Ay = {y1,...,yr} U {x : & <¢ yr} (see Figure 8). Note that, in contrast
to the quasi-cladistic model, not all anticlades are included. In particular, the family
H = {Aj : k=1,...,m} has a hierarchical structure, as required in the above definition.

Ym

Figure 8: Augmenting the cladistic model in the caterpillar

Note that if one relativizes the corresponding phylogenetic tree model to the set of
extant species Y = {y1, ..., ym }, the resulting model PH q¢|y consists of all sets of the
form B = {y;,.... Yk, ..,y } with j < k < 1. This model on Y is characterized by the

10For a model A, we denote by .A* the “intersection-closure,” i.e. the family of all intersections of
the elements of A.
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property that whenever B contains two species, then it also contains all species that
are intermediate in terms of their “degree of evolvedness.” Observe that, in contrast
to the general tree model, PH .|y does impose the plausible restrictions of the form
d(yr,y;) < d(yi,y;) whenever j <k <1,

4.2 The Structure of Phylogenetic Tree Models

What restrictions are entailed by assuming that a model can be described as a phylo-
genetic tree model, for some appropriate family H? This question is answered by the
characterization of the entire class of phylogenetic tree models in terms of the following
consistency property on the family of relevant attributes.

WNP (Weak Nesting Property) For all attributes A, B, and all z,y, z with z <., =
and z <.y y,if z€ ANB and z € A\ B, then not y € B\ A.

Note that if one were to drop the requirement in WNP that z be a common ances-
tor of z and y, one would obtain the Nesting Property. The Weak Nesting Property
may be interpreted as a requirement of consistent ordering of attributes in terms of
“entrenchment,” as illustrated by the following figure. In the r.h.s. of Figure 9, the
attribute A is “more entrenched” than B in the sense that in the evolution of species
the attribute A cannot be lost without also loosing B, while the converse does not hold
(see, e.g. species z). In the Lh.s. of Figure 9, when WNP is violated, no such relation
between A and B exists.

WNP violated WNP satisfied

Figure 9: The Weak Nesting Property

Theorem 1 A model is a phylogenetic tree model if and only if it is contained in T,
and satisfies the Weak Nesting Property.

By Theorem 1, WNP exhaustively describes the qualitative structure of phylogenetic
tree models, and thus provides a simple empirical test of the applicability of that model.
Are there empirical counterexamples to the Weak Nesting Property? The closest we
could get to such an example is as follows.!! Let z denote the “Ur-reptile” and consider
the clade C, founded by z, containing e.g. all birds and all mammals. Let = denote
some bird, and y some mammal. Furthermore, denote by A the set of all species in C,

HThat we could not come up with a more compelling example may be due to our limited knowledge
of biology; we hope that some biologists will find it worthwhile to examine the empirical validity or at
least plausibility of the WNP in greater detail.
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that are not mammals, and by B the set of all spieces in C, that are not birds. If one
deems both attributes A (“non-mammal”) and B (“non-bird”) as relevant, one obtains
a violation of WNP as shown in the following figure.

Figure 10: Reptiles, birds and mammals

A couple of remarks are in order. Note first that, in order to obtain a violation of
WNP that can be motivated in terms of terminal nodes of the tree, it is necessary that
the attributes A and B include species “on the other side” of z, indicated here by w
for A and ¢ for B. As a matter of empirical fact, according to Tudge (2000, Table
17), all extant non-mammalian members of the reptile clade are in the position of g,
none in that of w. As a result, for the purpose of describing (dis)similarities among
extant species, the attribute A is equivalent to the cladistic attribute C./; replacing
A by C. evidently removes the violation of WNP. In any case, it seems plausible
that the relatively few extinct reptile species in the position of w can be viewed as
“pre-mammals” in which case the biological appeal of A as an attribute would seem
weak.

On the other hand, the example clearly illustrates that there is nothing in the no-
tion of phylogenetic diversity per se which would preclude violations of the WNP due
to the existence of relevant attributes of the form C. \ Cy, and C;\ C;,, where C,, and
C., are disjoint subclades of C, (here the clades of mammals and birds, respectively).
It simply appears to be a (rather remarkable) empirical fact that such non-nested pairs
of attributes occur only exceptionally as “natural kinds,” if at all. If one accepts the
“empirical validity” of the WNP, one can read Theorem 1 as explaining mathemati-
cally why it is possible to arrive at a satisfactory model of phylogenetic diversity by
augmenting the family of cladistic attributes by a family of supplementary attributes
that is organized hierarchically in the manner of Linnean taxa. In confirmation, it is
interesting to note that Tudge’s (2000) more than 20 non-cladistic attributes recorded
in his global evolutionary tree satisfy the Nesting Property.

4.3 Remoteness-Representation of Phylogenetic Tree Models

Phylogenetic tree models admit a simple representation in terms of an index of “re-
moteness” from the root, as follows. For any set S of species, denote by lcaS the latest
common ancestor of the species in S. Given a model A C 7,,, define a binary relation
on X as follows. For all z,y,

y >4 ¢ < | there exists A € A with lca{z,y} € A,z € A and y ¢ A] (4.1)

Intuitively, y >4 = means that species y is more remote from the root than species x
since y has lost some attribute that x still shares with their latest common ancestor.
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Note that WNP is equivalent to the asymmetry of > 4. Under WNP, the interpre-
tation of > 4 as describing “remoteness from the root” is confirmed by the following
observation.

Fact 4.1 If A C Ty satisfies WNP, then the relation = 4 defined in (4.1) is irreflezive,
asymmetric and transitive.

From Fact 4.1 it follows that we can choose an index p : X — R such that

y =4z = ply) > p(z). (4.2)

Suppose an index p has been derived via (4.1) and (4.2) for a model A C Te, satisfying
WNP. Any attribute A € A can be described as follows: If A originates from z, then
A consists exactly of all successors of x that are not more remote from the root than
some given value r > p(z). Formally, for any z € X and any r > p(x), denote

Apr={y:y >  and p(y) <7}

Fact 4.2 Let A C T,y satisfy WNP and fix p according to (4.2). Then, any attribute
A € A is of the form A= A, , for some x and some v > p(z).

Now suppose that with the tree 7., on X there is independently given an index
p: X — R satisfying
Y 2ev x = ply) > p(a), (4.3)

and consider the family
PH,:={Azr:z € X,r > p(z)}.

Theorem 2 A model is a phylogenetic tree model if and only if it is contained in PH,
for some index p satisfying (4.3).

By this result, we can assume without loss of generality that a generic phylogenetic
tree model takes the form PH,. This simplifies the following analysis considerably, as
suggested by the following simple graphic representation of PH,. The crucial feature
in Figure 11 is that each attribute ends on any branch at the same p-level.

p (“remoteness”)

Figure 11: Graphic Representation of PH,
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5 Diversity in Phylogenetic Tree Models

In this section, we generalize the recursion formula characterizing the cladistic model.
Consider any diversity function v with A C PH, and an arbitrary set S = {1, ..., z1}
of species. Without loss of generality, assume that the species x; are enumerated such
that p(z1) < p(z2) < ... < p(zx). Denote by & any species in {z1, ..., £x_1} that has
the most recent common ancestor with xy. Formally, Zj is defined by

lea{Zy, 1} >ep lea{x;, z1} for all i < k. (5.1)

Note that #j is not uniquely determined by (5.1). Figure 12 illustrates the choice of
Zy; in the depicted situation one has &y = z; (although p(z;) < p(xk-1)).

leca{zp_1,21}

leca{zj,zr}

Tr—1

Figure 12: Determining Ty,
Fact 5.1 If 2y satisfies (5.1),
v({z1, ..,z }) = v({T1, oy Tpo1 }) + d(Tp, 1)

Applying the same argument to the set {z1,...,z;_1}, one obtains for some appropri-
ately chosen species &x_1 € {21, ..., ZTx—2},

v({xl, ...,a:k}) = v({a:l, ...,il,'kfz}) + d(xk,l,i'kfl) + d(l‘k,:f?k).

By induction, we thus have the following result which implies that any phylogenetic
tree model is monotone in dissimilarity.

Proposition 5.1 Let v be compatible with some phylogenetic tree model PH,, and let
S ={xz1,...,x} be any set of species such that p(z1) < ... < p(zg). Then,

k

o({er, i) = o(far}) + 3 d(as, &), (5.2)

=2

6 Metric Restrictions of Phylogenetic Tree Models

As we have just seen, a generalized version of the recursion formula (3.1) remains
valid for the phylogenetic tree model. In particular, the underlying dissimilarity metric
(together with the value of singletons) uniquely determines the diversity of any set of
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species. In order to further simplify the model it may seem natural to assume that
dissimilarity is additive along lines of descent, i.e. that

d(z,2) = d(z,y) + d(y, 2)

whenever z descends from y, and y from z.'2 This, however, turns out to be remarkably
restrictive. In the general tree model, it forces all relevant attributes to be clades
or anticlades, i.e. it reduces the general tree model to the quasi-cladistic one. By
consequence, a phylogenetic tree that admits a non-degenerate additive dissimilarity
metric must take the form of a single line of descent. Formally, one has the following
results.

Proposition 6.1 A 1.,-compatible diversity function v induces a dissimilarity metric
d that is additive along lines of descent if and only if A C T°.

Corollary 6.1 Let v be compatible with a phylogenetic tree model PH,. If the associ-
ated dissimilarity metric is additive along lines of descent and strictly positive, then Te,
must be a line. Conversely, if Tey is a line, diversity functions with the stated properties
ezist.

The latter result implies that in a proper phylogenetic tree, dissimilarity must be
subadditive. What other properties do dissimilarity metrics associated with phyloge-
netic tree models possess? In the following, we want to determine them by answering
the following question. Consider any phylogenetic tree model PH, on the evolutionary
tree T.,; furthermore, suppose we are given a particular valuation v°(x) of all single
species, and, for any pair of species x,y, the dissimilarity d(z,y) > 0. Under what
conditions on these data does there exist a diversity function v that is compatible with
the given model PH, and that induces precisely the given valuation of singletons and
the given pairwise dissimilarities? It turns out that the metric restrictions can be clas-
sified into those along lines of descent and those across lines of descent. We consider
the former first.

Say that a given dissimilarity metric is bounded if, for all z,y, d(z,y) < v°(z).
Next, consider four species z’,z,y and g’ such that 2’ <., z, z <., y, £ <. 3" and

p(y) < p(y') (see Figure 13).

!

Y

Figure 13: Monotonicity and Submodularity of d
Say that d is monotone if in this situation (i) d(y,z') > d(y,z), and (ii) d(z,y') >
d(x,y). Furthermore, say that d is submodular if
d(mla y) - d(.’E, y) Z d(mla yl) - d(.’E, y/)

12Note that this is weaker than the additivity condition considered in Section 3.4 above, since
additivity is required here to hold only along lines of descent.
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Intuitively, submodularity says that the increase in dissimilarity from a species y when
replacing = by some of its ancestors is the smaller the more remote y is. Observe that
submodularity implies subadditivity along lines of descent by taking z = y. As shown
by Theorem 3 below, the conditions of boundedness, monotonicity and submodularity
exhaustively describe the metric restrictions along lines of descent.

We now turn to the restrictions across lines of descent. Consider three species z, y1
and y2, where p(z) > max{p(y1), p(y2)} and lca{z,y1} = leca{z,y2} (see Figure 14).
In this case, compatibility with a phylogenetic tree model implies

d(z,y1) = d(z,y2). (6.1)

To see this, simply observe that any attribute A possessed by = contains y; if and only
if it contains y,. Indeed, if A € PH, contains 2 and one element of {yi1,y-}, it must
contain lca{z,y1} = leca{z, y2}; but then A D {y1,y2} since p(x) > max{p(y1), p(y2)}-

p

Y1
Y2

Figure 14: A situation in which necessarily d(z,y1) = d(x, y2)

Theorem 3 Let PH, be a phylogenetic tree model, and consider a given valuation
v 1 X — Ry of all single species and a dissimilarity metric d : X x X — R.. There
exists a diversity function v with A C PH, such that v({z}) = v°(z) and v induces the
giwen dissimilarities if and only if d is bounded, monotone, submodular and satisfies
(6.1). Moreover, v is uniquely determined by v° and d.

The significance of Theorem 3 is that it exhaustively describes the restrictions imposed
on the dissimilarities by the phylogenetic tree model. It thus provides a simple empirical
test whether a given dissimilarity metric is consistent with a phylogenetic tree model.

Of the necessary properties of the dissimilarity metric underlying a phylogenetic
tree model, the restriction (6.1) is arguably the most problematic. Note that (6.1)
describes the restriction entailed by a particular phylogenetic tree model (i.e. for a
given index p). More generally, consider three species z,y, z such that z = lca{z,y} as
in the following figure.

Figure 15: z = lca{z,y}
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By (6.1), compatibility of the dissimilarity metric with some phylogenetic tree model
requires in this situation,

d(z,y) = d(z,z) or d(y,z) = d(y, z). (6.2)

In the uniform case of constant valuation of single species, (6.2) is equivalent to requir-
ing equality of the two greatest dissimilarities among any two species of the triple. This
is the well-known ultrametricity condition of the cladistic model, but now restricted to
the special constellation where one of the three species is the latest common ancestor
of the two others. This reflects the relaxation of the Nesting Property to the Weak
Nesting Property.

The “weak ultrametricity” condition (6.2) may appear counterintuitive. For in-
stance, the very picture of the tree in Figure 15 might suggest that z is strictly between
x and y, hence that d(z, z) < d(z,y) and d(y, z) < d(y,x). This is certainly true from
a genetic point of view, but not necessarily from our present phylogenetic perspective.
Indeed, rejecting the restriction (6.2) simply amounts to rejecting the Weak Nesting
Property. To see more concretely what is involved, consider the following figure.

porcupine
Figure 16: Miscellaneous Fish and Porcupines

The presence of the dotted attribute “fish” in Figure 16 entails that porcupine is more
remote from the origin than all fish. Hence, by (6.1) or (6.2), d(porcupine, salmon) =
d(porcupine, trout). This does not seem implausible. If, however, one insists on, say
d(porcupine, salmon) > d(porcupine, trout), one is committed to introducing an at-
tribute common to porcupine and trout but not to salmon, thereby violating WNP.
Note also that the restriction (6.2) does not apply to the triple porcupine, salmon,
shark. Indeed, since lca{porcupine, shark} <., lca{porcupine, salmon}, one would ex-
pect d(porcupine, shark) > d(porcupine, salmon).'3

7 Exploiting Information on the Speed of Evolution

7.1 The Evolutionary Clock Model

The representation in terms of the remoteness-index p suggests yet another interpre-
tation of the phylogenetic tree model when there is external information on the speed
of evolution. The intuition is as follows. The dissimilarity of a species z from its

13The intuitive appeal of the latter inequality is confirmed by the fact that mammals and salmons
share an important phylogenetic feature, cartilaginous bones, which sharks do not have.
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immediate ancestor can be viewed as determined by the “number of steps” taken by
evolution to proceed to z from its immediate ancestor. One may also interpret this
number as the “speed of evolution.” The determination of this number of steps, or of
the speed of evolution, is of course an empirical matter, and we will be silent on the
issue of how to obtain this information. What is important for our purposes is that the
above intuition relies upon the notion of a “step of evolution,” and thus yields useful
additional structure that one can exploit.

To make this formally precise, consider the tree 7., augmented by a set of “virtual
species,” each of which representing one step of evolution (see Figure 17 with z,y, z as
actual species).

Y virtual species

e

z

Figure 17: Actual and virtual species

For any z,y with x <., y denote by d(z,y) the number of steps needed to go from
x to y along the augmented tree. We will refer to §(z,y) as the distance between z
and y. For instance, in Figure 17, §(z,y) = 4 and d(y, 2) = 3. For simplicity, we will
henceforth not distinguish between virtual and actual species and simply consider the
augmented tree defined on the union of both. Thus, d(z,y) coincides with the graph-
distance on the augmented tree. The distance metric § naturally induces the following
index § : X - R,

0(x) := 0(xg, ).

Thus §(z) is simply the distance of x from the root z¢, which we will refer to as the
evolvedness of species x.

Given this additional information, it seems natural to consider the phylogenetic
tree model PHs, i.e. to take the evolvedness ¢ as the remoteness-index. We will refer
to PH;s as the evolutionary clock model. Observe that, in contrast to the derived index
p which serves pure representation purposes, the index § is now a primitive datum.

As is easily verified, the model PH, is characterized by the following set of condi-
tions. For all A € PH;s, A satisfies TR1 (Common Ancestor), TR2 (Unbroken Lineage)
as before, and

TR3If §(x) = 6(y), 2 <ev T, 2 <ep y and z € A, then (z € A & y € A).

Note that if one drops the clause §(z) = d(y) in TR3, the condition says that any dis-
tinctions between z and y must be on cladistic grounds. Condition TR3 requires this
only for equally evolved species. This qualified application of the cladistic intuition is
compatible with the critiques of the (unqualified) cladistic model given above. Indeed,
once the evolutionary speed is taken into account, the given examples loose their force
as counterexamples.

An interpretation of ¢ as speed of evolution requires a calibration of a step of evo-
lution in terms of dissimilarity: Taking one step entails the same dissimilarity between

23



neighboring species (actual or virtual) anywhere in the tree. Formally, this amounts
to the following requirement. For all z,y,

dlz~,z) =d(y~,y) and d(z,z~) = d(y,y~), (7.1)

where 2~ (resp. y~) denotes the immediate ancestor of z (resp. y), as before. The
requirement (7.1) should be viewed as a convention about what an evolutionary step
is.

The evolutionary clock model shows that the cladistic view can be applied to equally
evolved species. If one were to apply the cladistic view to all species existing at any
point of time, one would implicitly identify evolvedness with time elapsed. But in view
of (7.1) this would mean that the speed of evolution is constant across the tree: the
dissimilarity of a given species at t from the same species at ¢t — k is the same as that of
another species at ¢ from its ancestor at ¢ — k. But this contradicts a fundamental fact
about evolutionary history, namely that almost all evolutionary change occurs through
speciation, but only very little within species.'* For a critique of the cladistic model
along the same lines, see Faith (1994).

7.2 Translation Invariance

In Section 5 above, we have shown that the diversity of any set of species in a phylo-
genetic tree model is determined by their pairwise dissimilarities. We have also argued
that this greatly reduces the information needed to determine the diversity of arbi-
trary sets, since with n species there are at most n - (n — 1) non-zero dissimilarities.
However, the task of determining all dissimilarities between species still involves the
comparison of species that are far apart, a comparison which may be difficult to per-
form in practice. Can one reduce this task to “local” comparisons, say comparisons
that only involve a species and its immediate ancestor? Using the evolutionary clock
model, we now offer a proposal to this effect that is applicable in the uniform case,
i.e. when v({z}) = v({y}) for all z,y. Without loss of generality, we assume the nor-
malization v({z}) = 1 in all what follows. Note that uniformity implies symmetry of
the dissimilarity metric, i.e. d(z,y) = d(y,x). Recall that d(z,y) quantifies the total
weight of all attributes possessed by x but not by y. In particular, if z <, y, the dis-
similarity d(z,y) measures the weight of all “old” attributes that have been lost in the
evolutionary transition from z to y, whereas d(y, ) measures the weight of all “new”
attributes that have been gained. The assumption of uniformity is that these measures
are in perfect balance. One may thus refer to the uniform case as “evolution without
progress.” Clearly, this is restrictive; on the other hand, the equivalent assumption of
equal valuation of all single species does not seem implausible as a benchmark.

In the uniform case, there are at most n - (n —1)/2 different non-zero dissimilarities,
and hence an equal number of degrees of freedom. The following proposal further
reduces this number to n, the total number of species. Its basic idea is to derive
the entire dissimilarity metric from the dissimilarity between neighbors in the tree
augmented by virtual species. It is important to realize that although (7.1) fixes the
dissimilarity entailed by one step of evolution, it does not determine the dissimilarity
resulting from a sequence of k steps. Consider, for instance, the species z1, ..., z,, along

M A striking example is the famous coelacanth which has probably existed in almost unchanged form
for more than 100 million years.
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one line of descent as in Figure 6 above. While d(xg41,xy) is constant by (7.1), one
has in general d(z3, 1) # d(x4,22). The following assumption rules this out.

Translation Invariance There exists a transformation f such that for all =,y with
x SGU y7
d(z,y) = f(6(x,y))-

The content of translation invariance is thus that the dissimilarity between two species
along a line of descent only depends on their distance, i.e. the number of steps needed
by evolution to proceed from one to the other. Note that in the translation invariant
case, the transformation f determines via condition (6.1) the entire dissimilarity metric
(also for species not on the same lineage of descent).

Say that the function f is concave if, for all k, k',

1<k<E = f(K) - f(F =1) < f(k) — f(k = 1).

Theorem 4 Let d be a translation invariant dissimilarity metric satisfying (6.1) with
an increasing transformation function f such that f(0) = 0 and f(k) < 1 for all
k. There exists a uniform diversity function v with A C PHgs that induces the given
dissimilarity metric if and only if f is concave. Moreover, v is uniquely determined by

f.

Translation invariance of d implies translation invariance of the attribute weights
in the interior of the tree, as follows. Denote by A, ; the attribute starting at = and
lasting for k steps. The attribute weighting function A is called translation invariant if
A4, . only depends on k for all attributes A, ; with = # x¢ and k strictly smaller then
the minimal number of steps from z to any terminal node.

Fact 7.1 If d is translation invariant, then X\ is translation invariant.

The interrelation between the tranformation function f and the attribute weighting
function A which represents the “durability pattern” of attributes is as follows. The
more concave f, the more concentrated is A on attributes A, ; with small &, i.e. on
short-lived attributes. Conversely, less concave f means that longer-lived attributes
get a larger weight. The following two are the extreme cases. If f(0) =0 and f(k) =1
for all positive k, then ) is concentrated on all singleton attributes; in that case, v
is simply the counting measure, according to which the diversity of a set of species is
given by their number. On the other hand, if f is linear, the dissimilarity metric d
coincides with the distance metric d; in particular, for linear f the dissimilarity metric
is additive. This implies, by Corollary 6.1, that the underlying tree 7., must be a line
and that intermediate species have no marginal value.

As a final application, consider once again the “caterpillar” pattern as in Figure 18
below. If §(y;) > 6(y;) whenever z; >., x;, then the evolutionary clock model PH,
relativized to Y = {y1, ..., ym } yields the “line model” on Y. That is, for any attribute
A € PH; the intersection ANY is an interval in the natural ordering y; < y2 < ... < Y.
This implies that the diversity v(Y) is given by

m

oY) = v({y1}) + Y d(yi, yi-1)

=2
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(cf. TD (2002, Section 3)). If, in addition, d(z;,y;) = 0(z;,y;) and 6(z;, xi41) =
0(zj,2;41) for all 4, j, then translation invariance on the tree entails translation invari-
ance of the induced line model on Y (however, in general not with the same transfor-
mation function f).

T
T2
U1
Y2

Tm

Ym

Figure 18: The caterpillar for the last time

Appendix: Proofs

Proof of Proposition 3.1 The uniqueness of the attribute weighting function A is
well-known in the literature (cf. TD (2002, Fact 2.1)). Thus, it suffices to show that
vs has the form (3.3) if A satisfies (3.4) and if v; is defined from A via (2.1"). To verify
this, observe that, for any S and all z, SN C, # 0 or SN (X \ Cy) # 0. Moreover, if
T # g, one has (SNC, # 0 and SN (X \ C;) # 0) if and only if {z~,z} C Sp(S).
This implies (3.3) by the given weight for Ax. The last statement in Proposition 3.1 is
immediate from (3.4) and the definition of diversity functions as those functions with
A>0.

Proof of Theorem 1 (Necessity of WNP) We first prove the necessity of WNP.
The proof of the sufficiency part relies on the construction of the remoteness-index
provided by Facts 4.1 and 4.2, and is given after these results have been proved.

Hence, assume that PH C (HUHe,)* for some hierarchical H. Consider A, B € PH
and x,y, z with z <., 2, 2 <. y, 2 € ANDB, and z € A\ B. We show that y ¢ B\ A by
a contradiction argument. Thus, assume y € B\ A. Let A= AN A, and B = BN B,y
where Ay, B; € H and Ay, By € H,,. Since A is not a clade, we have {z,z} C A; and
y & A;. Similarly, since B is not a clade, {y,z} C By and = ¢ By. But this contradicts
the fact that 7 is hierarchical.

Proof of Fact 4.1 Irreflexivity of > 4 is immediate. Asymmetry of > 4 is a straight-
forward consequence of WNP. It remains to show that > 4 is transitive. Hence, suppose
that z >4 y and y >4 z; we have to show that z =4 z. Denote by wy := lca{z,y}
and wy := lea{y,z}. By assumption, there exists A; € A such that 4y O {w;,z}
and y & A, and Ay € A such that A> D {wq,y} and z € Ay. Let vy := lecaA; and
v := lcaAs. Since both v; and vy are ancestors of i, we have vy >, V2 Or Vg >y V1.

26



Case 1: vy >¢y Vs

Since A, contains the successor y of vy, and since y ¢ A;, we must have Ay DO A
by WNP. Since A, thus contains both w; and wsy it also contains lca{z,z} by the
Tev-connectedness. Hence, we have Ay D {lca{z,z},2} and z ¢ A,. By definition, this
implies z >4 x.

Case 2: vy >4y V1

If Ay contains z, which is a successor of vy, one must have 4; O As by WNP. But this
contradicts the fact that y ¢ A;. Hence, z € A;. Since A, contains lea{y, z}, also A,
contains lca{y, z}; moreover, A; contains lca{z,y} as well as z by assumption. Hence,
A; must also contain lca{z, z} which yields z > 4 z.

Proof of Fact 4.2 Take any A € A. By 7.,-connectedness of A, z := lcaA € A; let
r = max{p(y) : y € A}, and let § € A be such that p(g) = r. Consider any successor
z of  with p(z) < r. Since both z and § are successors of x, one has lca{z,7} € A
by Tey-connectedness of A. But then z € A, since otherwise (4.1) would imply z =4 ¢
and hence p(z) > r by (4.2).

Proof of Theorem 1 (Sufficiency of WNP) Let A C T, satisfy WNP. By Fact
4.2, there exists p such that any A € A is of the form A = A, ,. But this means that
A C (H, U Hey)* with Hy, := {{z : p(z) < r} : r € R} which is hierarchical. By
definition, A is a phylogenetic tree model.

Proof of Theorem 2 As in the proof of Theorem 1, one has PH, = (H, UH.,)* with
the hierarchical family H, := {{z : p(z) < r} : r € R}. Hence PH, is a phylogenetic
tree model.

Conversely, let PH be a phylogenetic tree model. Define p via (4.1) and (4.2) and
observe that y >., x implies (not  >=py y). Therefore, p can be chosen such that it
satisfies (4.3) in addition. By Fact 4.2, PH C PH,.

Proof of Fact 5.1 To verify the stated formula, we have to show that any attribute
A € PH, that distinguishes z;, from 2}, in the sense that z; € A and 5, ¢ A also distin-
guishes zj from the entire set {z1, ..., zx—1}, i.e. AN{z1,...,zx—1} = 0. Equivalently, we
must show that any attribute that z; shares with some species in {z1,...,z_1} is also
possessed by 2 € {z1,...,25_1}. Thus, assume that A, , O {x,z;} for some i < k.
This implies that z <., lca{z;, x }, hence by the choice of #, also x <.y lca{Zy,xy}.
In particular, Z is a successor of z. Moreover, since x; € A ., we have r > p(xy),
and hence r > p(&). Together, these observations imply that & € A, ,, and hence
the stated formula.

Proof of Proposition 5.1 Formula (5.2) follows by induction from Fact 5.1 as shown
in the main text.

Proof of Proposition 6.1 By definition, the dissimilarity metric d is additive along
lines of descent if for all z,y, z with z <., y <¢y 2,

PV P VI WP VE S PV (A1)
A:{z,z}NA#D A:{y,z}NAZD A:yeA A{z,y}NA#Q

It is easily verified that, for any A € 7°, A4 occurs as a summand on the left-hand
side of (A.1) if and only if it also occurs on the right-hand side (possibly twice with a
positive sign and once with a negative sign). This shows that A C 7° implies additivity
of d along lines of descent.

27



Conversely, suppose that A ; > 0 for some AT Choosey e Aand z € E(X) \A
such that z >., y. Such species y and z exist since A is not a clade; also note that
the root zo is not in A since A is not an anticlade. Now observe that with z = zo,
A; does not occur on the left-hand side of (A.1) but twice with a positive sign and
once with a negative sign on the right-hand side. By the triangle inquality, this implies
d(zg,z) < d(zo,y) + d(y, z), hence d is not additive.

Proof of Corollary 6.1 By Proposition 6.1, additivity along lines of descent implies
that all relevant attributes are either clades or anticlades; by strict positivity of the
dissimilarity metric, all anticlades must receive strictly positive weight. By compatibil-
ity with a phylogenetic tree model, the family of all anticlades must form a hierarchy.
Indeed, no anticlade can be obtained as the intersection of clades with other anticlades.
But the hierarchical structure of all anticlades forces 7., to be a line. Indeed, suppose
by way of contradiction that 7., is not a line; then, there exist three species x1,z2,y
such that xy; >, y and z2 >, y but neither z; >., x5, nor x5 >., x;. In this case
the anticlades X \ Cp, and X \ C,, are not nested, hence the family of all anticlades
cannot form a hierarchy.

For the proof of Theorem 3, we need some additional notation and a lemma. First,
observe that any A € PH, can be written in the form

A=[z,y] :={2:2 > o and p(2) < p(y)}.

for some y >., ®. Indeed, [z,y] = Ay, with r = p(y). For each x # z(, denote
by x#~ its immediate ancestor. Furthermore, for any x denote by Y,;"** the set of all
maximally remote successors of z, i.e. the set of all y >, x such that for no z >, =z,
p(z) > p(y). Finally, for any pair z,y with y >., z and y ¢ Y,"**, denote by y* any
successor of z that is more remote from the root than y and minimal among all these,
i.e.
y* € argmin{p(2) : z >, x and p(z) > p(y)}.

Lemma A.1 Letv: 2% — R a set function with v(0) = 0, and let X : 2% — R be the
unique function with A\g = 0 such that, for all S, v(S) = EA:AﬁSﬂ) Aa.t? Suppose that
A C PH, for some phylogenetic tree model. Then, for all x # zo and all y ¢ Y, ***
with Y Zev z,

Ny = [d(z,y) = d(z,y)] = [d@",y") — d(z,y")]. (A.2)
Furthermore, for any y ¢ Y77,
Azo,y] = d(wo,y™) — d(z0,y),
and for any © # xo and any y* € Y%,
Nage1 = d(y™,27) — d(y*, ),
and for any y* € Y114,

Azo.y*] = v({To}) — d(w0,y").

15For an arbitrary set function v, the function )\ is called the conjugate Moebius inverse, see TD
(2002).
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Proof of Lemma A.1 We prove (A.2); the other three formulas follow along the same
lines. Thus, take any x # ¢ and any successor y ¢ Y,***; one has

d(maer) - d(ilf,y) = Z )‘[z,y}' (As)
2<ev
Similarly,
d($_7y+) - d(w_ay) = Z )‘[Z,y]' (A4)
z2<ev®

Substracting (A.4) from (A.3) one obtains formula (A.2).

Proof of Theorem 3 Necessity of boundedness, monotonicity, submodularity and
condition (6.1) for the existence of an extension is easily verified. The sufficiency part
is verified as follows. Any given v° and d satisfying (6.1) can be uniquely extended to a
set function v : 2% — R with A C PH, via the recursion formula (5.2). Observe that v
is well-defined by (6.1) since that condition ensures that d(zy,2y) = d(zy, 21) for any
T, i satisfying (5.1). By Lemma A.1, submodularity of d guarantees non-negativity
of A at all interior attributes. Similarly, by the other three formulas given in Lemma
A.1, monotonicity and boundedness guarantee non-negativity at all other attributes.
Hence, v is a diversity function.

Proof of Theorem 4 The result is a simple corollary of Theorem 3. Indeed, it is
easily verified that in the translation invariant case, submodularity of d is equivalent
to concavity of f. Similarly, d is monotone if and only if f is increasing, and in view
of the normalization v({z}) = 1, boundedness of d corresponds to f(k) < 1, for all k.

Proof of Fact 7.1 Consider an interior attribute [z,y] with d(z,y) = k. If d is
translation invariant one has by (A.2), Az ) = [f(k+1) = f(k)] = [f(k+2) - f(k+1)],
hence A, , only depends on k.
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