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Abstract

Within the multi-attribute framework of Nehring and Puppe [Econometrica, 70 (2002) 1155],
hierarchies and lines represent the simplest and most fundamental models of diversity. In both
cases, the diversity of any set can be recursively determined from the pairwise dissimilarities
between its elements. The present paper characterizes the restrictions on the dissimilarity metric
entailed by the two models. In the hierarchical case, this generalizes a classical result on the
representation of ultrametric distance functions.

O 2003 Elsevier Science B.V. All rights reserved.

Keywords: Diversity; Dissimilarity; Conjugate Moebius inversion; Hierarchies; Ultrametric

JEL classification: C00; D0O; Q20

1. Introduction

In ‘A Theory of Diversity’ (Nehring and Puppe, 2002a, henceforth TD), we proposed
a multi-attribute approach according to which the diversity of a set of objects is
determined by the number and weight of the different features (‘attributes’) possessed by
them. In some cases, the diversity of a set can be computed recursively from the
pairwise dissimilarities between its elements (plus their value as singletons). Two basic
models for which this is possible are the hierarchical model studied by Weitzman (1992,
1998) in the context of biodiversity and the more general line model introduced in TD.
The line model assumes that objects can be linearly ordered in such a way that any
attribute possessed by two objects is also possessed by all intermediate objects. The
hierarchical model in addition requires the relevant attributes to be ‘nested’ in the sense

*Corresponding author. Tel+49-228-737-996; fax:+49-228-737-900.
E-mail address: clemens.puppe@wiwi.uni-bonn.q€. Puppe).

0165-4896/03/$ — see front mattef] 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0165-4896(03)00024-6


mailto:clemens.puppe@wiwi.uni-bonn.de

168 K. Nehring, C. Puppe / Mathematical Social Sciences 45 (2003) 167183

that, for any two attributes possessed by a given object, one is (unambiguously) more
specific than the other. As argued in Nehring and Puppe (1999b), lines and hierarchies
can serve as useful benchmark models not only in the context of biodiversity but also in
the analysis of the cost structure of multi-product firms that operate under economies of
scope; in this context, attributes correspond to shared inputs and costs reflect the
technological diversity of a range of produtts. The purpose of the present paper is to
characterize the restrictions on the induced dissimilarity metric imposed by the line and
hierarchy models. Specifically, we provide the necessary and sufficient conditions for a
given dissimilarity metric to be extendable to a diversity function that is compatible with
the line and with the hierarchy model, respectively. This is important for practical
purposes, since the entailed restrictions on the dissmilarity metric represent a primary
criterion for the applicability of a particular model.

As already observed by Weitzman (1992), the hierarchical model implies that the two
greatest dissimilarities between three points are always equal if singletons are equally
valued (‘ultrametricity’). We show that a generalization of this condition characterizes
the metric implications of the class of hierarchical models. While in some contexts
ultrametricity or appropriate weakenings of it may be plausible, distance functions that
arise in specific applications will only exceptionally exhibit the required property. For
instance, in a biological context, there is no reason why genetic distances between
species should satisfy ultrametricity. On the other hand, from the viewpoint of
phylogenetic (rather than genetic) diversity a closely related but weaker condition is still
applicable, as argued in Nehring and Puppe (2002b).

The main restriction entailed by the line model is a submodularity condition according
to which an increase in the gap between two elements results in a smaller increase in
dissimilarity the larger the gap already is. A particularly transparent special case is the
translation invariant case: A given dissimilarity metric is induced by a translation
invariant diversity function on a line if and only if dissimilarity is a concave transform
of Euclidean distance. In terms of the underlying preferences, this translates into a
‘preference for even spacing.’

The plan of the paper is as follows. Section 2 provides the necessary background from
TD and from ‘Diversity and the Geometry of Similarity’ (Nehring, 1999, henceforth
DGS). Sections 3 and 4 reconsider in more detail the hierarchy and line models,
respectively. Sections 5 and 6 are devoted to the ‘extension problem,’ i.e. the conditions
under which a given dissimilarity metric can be extended to a diversity function. In
Section 5, we derive the necessary and sufficient conditions @iwea hierarchy and a
given line model, respectively. Section 6 addresses the extension problem then in
generality. Specifically, we ask when a dissimilarity metric can be extended to a
diversity function that is compatible witbbome hierarchical model andome line model,
respectively. Generalizing a classical result on the representation of ultrametric distance
functions, we give a complete answer in the hierarchical case. In the context of a line,
we provide a characterization for the case of a ‘sufficiently rich’ family of relevant
attributes. All proofs are collected in Appendix A.

'The line and hierarchy models are less natural in other applications of diversity theory such as, e.g., to the
measurement of opportunity, see Nehring and Puppe (2002c).
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2. Background

This section reviews the concepts and tools needed for our later analysis. First, we
summarize the basic features of the multi-attribute model developed in TD; we then
present the notion of qualitative (comparative) similarity introduced in DGS.

2.1. The multi-attribute model of diversity

Let X be a finite universe of objects. The basic idea behind the multi-attribute model
is to view the diversity of a se8 C X of objects as being determined by the number and
the value of the different features possessed by the obje&sTihroughout, we refer to
features in terms of theextension, i.e. we identify any feature with the subseC X of
those objects in the universe that possess the feature in question. For instance, the
feature ‘'mammal’ is identified with the set of all mammals in the universe. Extensionally
identified features are henceforth referred t@tisbutes. Note that, given a prespecified
universeX of objects,any conceivable feature corresponds to a particular suhsek;
conversely, any subsét C X defines a logically possible attribute (‘belonging A9).

The set of conceivable attributes is thus given by the power’set 2 . If the stilssgf
is interpreted as an attribute, the statemer& ‘A’ simply means ‘objeck possesses the
attribute A’ Similarly, a setSrealizes an attributeA if and only if SN A= §, i.e. if and
only if there exists some object i@ that possesses the attribute

For each attributeA, let A, =0 quantify the value of the realization & Upon
normalization,A, can thus be thought of as the relative importanceweght of the
attribute A. A functionv:2* . R is called adiversity function if there exists a function
A:2" & R with A, =0 for all A, such that for alSC X,

o(S)= 2 A (2.1)
ACX:ANS#Q
where, by conventiony(@) = A, = 0.

The cardinal scale inherent in our concept of diversity is essential; for a rigorous
decision-theoretic justification, see Section 2 of TD. An alternative, ordinal approach to
the measurement of diversity is provided in Bossert et al. (2001) (see also Pattanaik and
Xu, 2000).

According to (2.1), the diversity value of a set of objects is given by the total weight
of all attributes realized by the set. Note especially that each attribute occurs at most
once in the sum. In particular, each single object contributes to diversity the value of all
those features that are not possessed by any already existing species.

Technically, the functiom that assigns to each attribugeits weightA, is known as
the conjugate Moebius inverse; we will also refer to it as theattribute weighting
function. The attribute weighting function underlying a diversity functionurgquely
determined, as shown by the following result.

Fact 2.1. (Conjugate Moebius inversion) For any functior?* - R with v(@)) =0
there exists a unique function2® — R, the conjugate Moebius inverse, such thatr, =0
and, for allS
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v(S) = > Ape
A:ANS#)
Furthermore, the conjugate Moebius inveisis given by the following formula. For all
A#Q,

)\A _ 2 (_1)#(A\S)+1 . U(SC),

SCA

whereS® denotes the complement &in X.

For any set function:2* - R denote by
A:={Ar,#0}

the support of the corresponding conjugate Moebius inverse. i a diversity function,
the elements ofl are those attributes that have strictly positive weight; in this case, the
support is also referred to as the family rdevant attributes.

By Fact 2.1, the only restriction imposed on a diversity function is non-negativity of
the corresponding conjugate Moebius inverse. In terms of the functiitself non-
negativity of A corresponds to the following two properties. A functior?® - R is
monotone if W C Simpliesv(W) < v(S). Furthermoreyp is calledtotally submodular if,
for any collection{S},.,,

v( Q S) sngjg (—1)#”1-U< LJ a). (2.2)

Fact 2.2. The functionv:2* — R has a non-negative conjugate Moebius inverse if and
only if v is monotone and totally submodular.

The basic instance of total submodularity is given by the caselof 2 in which
(2.2) specializes to the following condition known submodularity. For all S, S,,

v(S NS)+uv(S,US) <u(S) +v(S).
or equivalently, for allS W and all x,
SCWO v(SU{X}) —v(S) = v(W U {x}) — v(W). (2.3)

i.e. the marginal value of additional objects decreases with the set of objects already
available. Submodularity captures the fundamental intuition that it becomes harder for an
object to add to the diversity of a set the larger that set already is.

That any diversity function satisfies (2.3) follows from noting that

oSUN —vS) = 2 A, (2.4)
ASX,ANS=0
which is decreasing i due to the non-negativity of. By (2.4), the marginal diversity
of an objectx at a setS is given by the total weight of all attributes possessed liyt
by no element ofS Accordingly, we will refer to the marginal diversity also as the
distinctiveness of x from S, which we denote by
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d(x, S)=v(SU{x}) — v(S).

A diversity function naturally induces a notion of pairwiskssimilarity between
objects as follows. For ak, v,

dix, y): = dx, {y}) = v({x, y}) —v({y}). (2.5)

The dissimilarityd(x, y) from x to y is thus simply the marginal diversity of in a
situation in whichy is the only other existing object. Equivalently, by (2.4, y) is the
weight of all attributes possessed kyut not byy. Note that, in generall need not be
symmetric, and thus fails to be a proper metric; it does, however, always satisfy the
triangle inequality. To verify this, we have to show thifk, 2) <d(x, y) + d(y, 2), or
equivalently by (2.5) and (2.4),

DI V= YR D SR W

AXEAzEA AXEAYEA AlyEAZEA

Consider anyA, that occurs as a summand on the left hand side, i.e. supposeahat
andzZ A. If y& A, A, occurs as a summand in the first sum on the right hand side; and
if ye A, A, occurs as a summand in the second sum on the right hand side, the desired
inequality thus follows from the non-negativity af The functiond is symmetric if and
only if v({x}) =v({y}) for all x, y € X, i.e. if and only if all single objects have identical
diversity value. A diversity function that gives equal value to all singletons is referred to
as auniform diversity function.

Often it will be useful to consider the following derived notion of quantitative
similarity (in contrast to the qualitative ternary similarity relation introduced below). For
all x, y let

ax Y) =v(p3d) + v({y}) —v({x, y}) = {Z}AA (2.6)
AD{x,y
denote the quantitative) similarity betweenx and y. Note that in contrast to the
dissimilarity functiond the similarity functiono is always symmetric. Also observe that

o(x y) = v({x}) — d(x, y) = v({y}) - d(y, x).

By Facts 2.1 and 2.2, any diversity function uniquely ‘reveals’ the underlying
collection of attributes and their weights. In particular, any diversity function uniquely
determines the corresponding famillyof relevant attributes. The major theme of TD is
to exploit this basic fact in order to characterize qualitative properties of diversity
functions in terms of corresponding properties of the associated family of relevant
attributes. Central to this is the following notion. A non-empty family of attributes
o C2°\{p} is referred to as anodel of diversity. A diversity functiorv is compatible
with the models if the corresponding set of relevant attributes is contained i, i.e.
if AC . A model thus represents gualitative a priori restriction, namely that no
attributes outsidesf can have strictly positive weight. Accordingly, a model can be
interpreted as a family gfotentially relevant attributes, in contrast to the possibly larger
set 2 of all conceivable attributes and the possibly smallerisaftall actually relevant
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attributes. The two most basic examples of models, hierarchies and lines, are studied in
detail below; further examples are discussed and analyzed in TD and DGS.

In practical applications, one will have to construct the diversity function from
primitive data. One possibility is, of course, to first determine appropriate attribute
weights and to compute the diversity function according to (2.1). Determining attribute
weights is a complex task, however, since there are as many potential attributes as there
are non-empty subsets of objects. An appealing alternative is to try to derive the
diversity of a set from the pairwise dissimilarities between its elements, as suggested by
Weitzman (1992). Say that a mode¥ is monotone in dissimilarity if, for any
compatible diversity functiom and anyS, the diversityv(S) is uniquely determined by
the value of all single species i8 and the pairwise dissimilarities withi§, and if,
moreover, the diversity(S) is a monotone function of these dissimilarities.

The characterization of the class of models that are monotone in dissimilarity is one of
the main results of TD. Say that a mod#l| is acyclic if for no m= 3 there exist objects
Xy ... X, @and attributesA,, ..., A, € & such that, for alli=1,...,m—1 A N
Xys oo X =%, %4, and A N Xy, L. X=X, X, ) Thus, for instance in the case
m = 3, acyclicity requires that there be no triple of objects such that each pair of them
possesses an attribute that is not possessed by the third object. Theorem 6.2 in TD shows
that a model of diversity is monotone in dissimilarity if and only if it is acy€lic. The two
classes of models studied here, hierarchies and lines, are both acyclic, hence monotone
in dissimilarity.

2.2. Qualitative similarity

As noted in DGS, any familys/ C2° of potentially relevant attributes naturally
induces acomparative similarity relationT_, C X*® as follows. For allx, y, z, let

X v, €ET, =[forall A€ o:{x, 2zt CAO yEA]. (2.7)

In this definition, the statementx|(y, 2) € T, is interpreted asy is more similar tharz
to x,” which expresses an understanding of similarity as commonality of attributes: For
to be more similar tham to X, y must possess every attribute sharekltandz Observe
that judgments on qualitative similarity will typically change with the inclusion of
further attributes. In particular, the larger the set of relevant attributes, the smaller the
qualitative similarity relation, since each attribute can be viewed as a ‘test’ that has to be
passed by any triple iff,.

For any family </, the ternary relatiorT , satisfies the following three properties:

T1 (Reflexivity) ye{x, 220 (x, ¥, 2 €T,

T2 (Symmetry) (X, v, 2 €T,=Z vy, ) ET,,

T3 (Transitivity) [(x, x’, 2 €T, and

x z,72eT,and &', y, Z)ET, JO0KX v, )ET,,.

*The necessity of acyclicity hinges on a weak regularity requirement.
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For any ternary relatiom C X?, and anyx € X, denote byT* the following binary
relation. For ally, z,

YT’z (X Yy, 2 ET. (2.8)

In view of (2.7), the binary relatio”, describes commonality of attributegith x;
specifically,yT*,z means thay shares (weakly) more attributes witthanz. Note that
by T1-T3, the binary relatio*, is a preorder (i.e. reflexive and transitive).

A key insight of DGS is the observation that the comparative similarity relalipn
associated with the support of a particular diversity function has an ‘observational
equivalent’ in terms of the diversity function itself. Specifically, given any diversity
functionv say thatx is independent from z conditional on (the inclusion of ) y, denoted
by x, y, 2 €T,, if the distinctiveness ok from any setS that includesy does not
change with the addition af to S Formally,

X y,2€E€T,:= forall SDvy,d(x, S) = d(x, SU {z}).

A central result in DGS establishes that for any set functipii, = T, that is:y is
more similar tharz to x if and only if x is independent fronz conditional ofy.

Intuitively, the relationT, (=T,) induced by a diversity function can be viewed as
the ‘qualitative core’ of the corresponding quantitative dissimilarity metrimdeed, by
submodularity, the dissimilarity metrid associated witly is monotone with respect to
T, in the sense that

X y,2€T,0 dXx y)<dX, 2).

Hence, greater qualitative dissimilarity implies greater quantitative dissimilarity (but, of
course, not necessarily vice versa). In general, saydtigimonotone with respect to T if

Xy, 2€TOdX Yy <dX 2.

Moreover, say thatl is adapted to a model.«/ if d is monotone with respect td,,.

3. Hierarchies
A model ¢ C 2% is called at@xonomic) hierarchy if the elements of¥ are nested in
the sense that, for al\, B € #,
ANB#00O [ACBorBCA].

Accordingly, we will refer to a diversity function, as well as to the associated attribute
weighting functionA, as hierarchical if the supportA of relevant attributes forms a
hierarchy. Theorem 3.1 in TD shows that a diversity function is hierarchical if and only
if, for all x and S

v(SU{x}) —v(S) =min [v(ix y}) —v({yD] (3.1)

or, equivalently,
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d(x, S) =min d(x, y).
YES

By (3.1), the entire diversity function can be recursively determined from its values on
the set%: = {S:#S< 2} of all binary sets of X containing at most two elements. Note
that the restriction ofv to % contains the same information as the associated
dissimilarity metric plus the value of singletons.

For a hierarchical family, the associated binary relatidf, according to (2.7) and
(2.8) is complete (hence, a weak order) for xat= X. This follows at once from the
observation that the family?, :={A€ 7:A> x} of all attributes in5¢ that containx is
totally ordered by set-inclusion, i.e. a chain. Completeness dfalin fact characterizes
the hierarchical model, as shown in DGS.

In a hierarchy, attribute weights are determined by the dissimilarity metric in a simple
way, as shown by the following result.

Proposition 3.1. (Conjugate Moebius inverse on a hierarctygt v be a diversity
function with attribute weighting function A. If v is hierarchical, then for all A€ A and
al xe A,

A, =min d(X, 2 —maxd(x, 2). (3.2)
zeA® ZEA

Conversely, suppose that for all A€ A and all xe A, A, =d(X, A") —max,., d(x, 2).
Then A is hierarchical.

Observe that positivity of the term (3.2) says that arng an attributeA is less similar
to any element outsidA than to any element iA. In the hierarchical case, attributes are
thus ‘similarity clusters’ of objects.

Despite its specific structure, the hierarchical model is quite flexible, as illustrated by
the following two degenerate cases: the class of all additive diversity functions of the
form v(S) = 2, .5 v({X}), and the class of all functions of the fom(S) = max s v({x}).

As is easily verified, the first class of ‘additive counting’ is characterized by the property
that all relevant attributes are singletons, ieC {{x}:x € X}; the second class, in which
only the object richest in attributes counts, is characterized by attributes being totally
ordered, i.e. by the property that forms a chain.

4. Lines

As another simple and fundamental model of diversity, we consider the ‘line model’
introduced in TD. Assume that the univerXeis ordered by some given linear (i.e.
complete, transitive and antisymmetric) orderirsg. For instance, objects may be
ordered according to size, mass, age, etc. For ange X with x<2z denote by
[%, Z]: ={y:x<y=2Z} theinterval spanned by and z; furthermore, denote by? the
family of all intervals with respect to the ordering . We refer to# as theline model
associated with=. A diversity functionv is line compatible if A C £. Note that any
hierarchical diversity function is line compatible, since to any hierarchical attribute
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family one can associate a (non-unique) linear ordering such that all attributes are
intervals. Line compatibility is more general in that it allows attributes to (non-trivially)
overlap.

The induced qualitative similarity relation according to (2.7) is the canonical
betweenness relation on a line. Indeed, fonall, z,

X Y.2ET,=[x<yszorzsy=<yx],

i.e.y is more similar tharz to x if and only if y is betweenx and z
By Theorem 3.2 in TD, diversity in a line model is characterized by the following
simple formula, referred to as the ‘line equation.” A diversity functiofrs compatible

with a line model if and only if, for ally, <y, < - - - <y,
0¥ V) = oY1) + 22 AV i) (4.1)

By the line Eq. (4.1), a diversity function on a line is again determined by its values on
the family % of all binary sets.

As in the hierarchical case, one obtains a simple formula for the conjugate Moebius
inverse on a line. For notational convenience, we henceforth ideMify() with the set
{1, ...,n} of natural numbers endowed with the standard ordering, where#X.

Proposition 4.1. (Conjugate Moebius inverse on a lifedt v:2* — R be a set function
with conjugate Moebius inverse A. If AC %, then for all x, ze X with 1<x=<z<n,

Mg =02+ 1,x}) —v({z x}) —[v({z+ 1,x - 1}) —v({z x — 1}) ]. (4.2)

Furthermore, for 1<z<nand 1<x<n,

Mg =v({z+1, 1) —v({z 1}) —[v({z+1}) —v({Z)],
Apery = 0(X) —v({n, x}) —[v({x — 1}) —v({n,x = 1} ],
A =v({1}) —v({n, 1) + v({n}).

5. The extension problem for a given model

As observed above, hierarchical and line compatible diversity functions are de-
termined by their values on the famil of all binary sets with at most two elements,
or, equivalently, by their values on singletons together with the induced dissimilarity
metricd. A natural question is: What restrictions do the hierarchical model and the line
model impose on the induced dissimilarity metric, respectively? In the present section,
we will study these restrictions for given hierarchy and ajiven line model. Formally,
we will study the conditions under which a functiar’:% — R is the restriction of
some diversity functiomw with A C # for some given hierarchy¥, respectivelyd C £
for some given line mode¥. In Section 6 below, the corresponding results will be used
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to achieve a more ambitious goal, namely to characterize compatibility of a dissimilarity
metric with some line structure andsome hierarchy, respectively.

We start with the line model, and then derive the result in the hierarchical case as a
corollary. As before, leK ={1, ... ,n} and let.# be the line model corresponding to the
standard ordering ofl, ..., n}. Using (4.1), it is easily verified thaany function
v”:% - R can be uniquely extended to a set functio2* - R with AC % It thus
remains to find the conditions under which the extensias a diversity function. Since
diversity functions are characterized by non-negativity of the corresponding conjugate
Moebius inverse, these conditions follow at once from Proposition 4.1. To make these
intuitively more transparent, we reformulate them in terms of dissimilarity.

Let v”:% -~ R be a function on the family of all binary sets with associated
dissimilarity metricd. Say thatd is bounded if, for all x, v,

dx, y) < v”({x}).

Furthermore, say that is submodular with respect to T if the following condition holds.
For all x;, X,, X5 X, such thatX;, x;, x) €T whenever ki <j <l =<4,

d(X,, X;) — d(X5, X;) <d(X, X,) —d(X 5 X ).

Finally, say thatd is line-submodular if it is submodular with respect td@.. Line-
submodularity says that increasing a gap between two elements results in a smaller
increase in dissimilarity the larger the gap already is. Observe that line-submodularity
entails the triangle inequality by taking, = X,.

Theorem 1. (Line extension theoremny v”:% — R can be uniquely extended to a
set function v:2* — R with A C %, The extension v is a diversity function if and only if
the dissimilarity metric d associated with v” is bounded, and monotone and submodular
with respect to T,,.

Theorem 1 follows as an immediate corollary of Proposition 4.1 above. Indeed,
rewriting (4.2) in terms of dissimilarity one obtains, foIx<z<n,

Ay =A@+ 1,%) —d(z, X) —[d@z+ 1,x — 1) — d(z, x — 1)].

Non-negativity ofA at interior intervals thus follows from line-submodularity. Similarly,
for z<nand 1<x, one has\; , =d(1,z+1)—d(1, 2, A, =d(n, Xx—1)—d(n, X),
and A, ,; = v({1}) —d(1, n). Hence, non-negativity at all other intervals follows from
monotonicity with respect t@, and boundedness, respectively.

By Theorem 1, the metric implications of the line model are somewhat stronger than
the minimal ‘canonical’ implications given by adaptedness (i.e. monotonicity with
respect toT ) and the triangle inequality. To further illustrate the crucial condition of
line-submodularity, consider the benchmark case in which the diversity of a set only
depends on its internal shape and not on its location within the line. Specifically, say that
a diversity function on a line igrandation invariant if, for all SC X and all integerg,

v(S) = v(S+1),
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wheneverS+t: ={x+t:xeSC X={1,...,n}. As is easily verifiedp is translation
invariant if and only if the associated dissimilarity mettids translation invariant in the
sense thatd(x, 20 only depends on the Euclidean distanze-x|. In this case,
line-submodularity is equivalent toconcavity of d, i.e. to the condition that, for alt, z
with z=x, the differenced(x, z+ 1) — d(x, 2) is decreasing irz. The following result is
thus an immediate corollary of Theorem 1.

Corollary 5.1. A function v”:% — R can be extended to a translation invariant
diversity function v:2° 5 R with AC Z if and only if d is trandation invariant,
bounded, monotone with respect to T, and concave.

Concavity of the dissimilarity metric implies the following ordinal ‘preference for
even spacing.’ For alk, y,, Y,, z with x<y, <z andS;: ={X, y,, z}, S,=={X, ¥, Z},

v(S)=v(S,) =y, is closer thary, to the midpointf — x)/2, (5.2)

wherev(S,) and v(S,) are defined fromd via the line Eq. (4.1). FoX =N, one can
show that, conversely, condition (5.1) implies concavitydofcf. Nehring and Puppe,
1999a, Section 4.5).

In hierarchies line-submodularity is automatically satisfied. By consequence, the
metric implications of the hierarchical model are canonical, as shown by the following
result.

Theorem 2. (Hierarchy extension theoremlet 7 be a hierarchy. A function
v”:% - R can be uniquely extended to a diversity function v:2* — R with AC U
{X} if and only if the associated dissimilarity metric d is bounded and adapted to .

The proof of Theorem 2 in Appendix A is based on the fact that adaptedness to a
hierarchy implies line-submodularity with respect to any ordering such that all elements
of the hierarchy are intervals. Theorem 2 thus also follows as a corollary from the above
line extension theorem.

6. The general extension problem

In the previous section, we have characterized the restrictions on a dissimilarity metric
for it to be consistent with given line model associated with a particular linear ordering
of the object space. A more fundamental question addresses the restrictions of the line
model as such: Under what conditions on a dissimilarity metris theresome linear
ordering = of the object space such that is the dissimilarity associated with a
diversity functionv that is compatible with the betweenness induced=b® This is a
non-trivial problem, and we provide an answer for the two polar and most interesting
cases of hierarchies and ‘exact’ lines, i.e. the case in which T,, for an appropriate
line model %.

Letv”:% - R be given, and denote ly the corresponding dissimilarity metric. The
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x w

Fig. 1. The 2-hypercube.

following metric betweenness relation introduced in DGS will play a crucial role in the
present analysis. For aX, vy, z,

X ¥, 2 ET4 = [d(x y) < d(X, 2) andd(z, y) < d(z, X)]. (6.1)

Furthermore, say that a ternary relatidnis line-asymmetric if, for all x, y, z, w such
thaty Z{x, zz w} and & vy, 2 €T,

W,y,2ET=(XYWEZT.

Theorem 3. A function v”:% - R can be uniquely extended to a diversity function v
on 2% such that T, = T,, for ¥ associated with some linear order = on X if and only if
T, is line-asymmetric, and d is bounded and submodular with respect to T,.

The condition that drives the result is line-asymmetry. Line-asymmetry as a condition
onT, is already quite restrictive. For instance, it is neither satisfied in hierarchies nor in
multi-dimensional models. Typical examples are the following two graphs. Fig. 1 depicts
the graph corresponding to the 2-dimensional hypercube model (see Section 3 of TD),
while Fig. 2 depicts the ‘3-star’ tree (see TD, Section 5).

In both cases, a natural specification/bleads to the following qualitative similarity
relation: &, y, 2 €T, if and only if y lies on a shortest path that connextandz. Thus,
in Fig. 1 one hasx vy, 2 € T,, but neither\, y, 2 €T, nor , y, w) € T, in violation
of line-asymmetry.

In Fig. 2, one has agairx,(y, 2 € T,; now the violation of line-asymmetry occurs
since (v, y,2€T, aswellasX, y,wWeT,.

Line-asymmetry is even more powerful when applied to the less regylatonsider,
for instance, the cas&X={x, y, z w} with A=2"\{p}. As is easily verified, the
corresponding betweenneBgis ‘vacuous’ in the sense that no other element is between
two given elements. By consequendg, vacuously satisfies line-asymmetry. On the
other hand, giving each attribute i unity weight, say, results in a diversity function
such that the induced, violates line-asymmetry.

T w

Fig. 2. The 3-star tree.
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In order to prove Theorem 3 one wishes to make use of the line extension theorem for
a given line structure. To make use of this result one needs to find conditions on a
ternary relation that are necessary and sufficient for its being the betweenness of a linear
ordering. These can be found in the literature. Specifically, by Fishburn (1985), Theorem
6, a betweenness relatidnis a line-betweennes3 & T, for some line) if and only
if T is symmetric (in the sense of T2 above), line-asymmetric, taipble-connected in
the sense that, for aX, y, z, at least one of the three triples §, 2), (y, z, X), (z X, y) is
an element ofT. An additional contribution of Theorem 3 consists in obtaining
triple-connectedness from the definition ©f. The insight of the result is thus the
appropriateness of, as the ‘right’ notion of betweenness derived frohin the context
of the line structure.

For the class of all hierarchical models, we have the following result.

Theorem 4. Let v”:%8 ~ R be given with associated dissimilarity metric d and
quantitative similarity o. The following statements are equivalent.

(i) v” can be uniquely extended to a hierarchical diversity function on 2*.
(ii) d is non-negative, bounded and, for all x, T} is complete.
(iii) o is non-negative, bounded (i.e. o(x, y)<v”({x})) and, for all x, vy, z

mid{o(x, y), a(y, 2), o(X, 2} = min{a(X, y), a(y, 2, o(X, 2)}. (6.2)

Theorem 4 generalizes a classical result (Johnson, 1967; Benzecri et al., 1973) on the
representation of ultrametric distance functions by not assuming symmetdy Af
symmetric distance functiod is calledultrametric if, for all x, y, z

mid{d(x, y), d(y. 2), d(x, 2} = max{d(x, y), d(y, 2), d(x, 2}, (6.3)

i.e. if the two greatest distances between any three points are equal. In the symmetric
case, one has({x}) =v({y}) for all x, y, hence (6.2) and (6.3) are equivalent.
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Appendix A. Proofs

Proof of Proposition 3.1. Suppose thatl is a hierarchy. Lexe A€ A, and define
z*:=arg max_, d(x, z). SinceA, ={B & A:xxE B} is a chain, one haBC A=7* ZB
for all B € A,, where ‘C’ denotes theproper subsethood relation. Hence, using (3.1),
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min d(x, 2) —maxd(x, 2)
zZEAC zZEA

=v({x} U A°) — v(A") — d(x, )

= A{B:xeBCA}) — A({B:xeB,z* £B})
=M+ A({B:xEBCA}) — A({B:xEB, z* £B})
= A

Conversely, suppose thdtis not a hierarchy, i.e. suppose there edsC € A such that
ANC, AC, andC\A are all non-empty. Lek € AN C. Without loss of generality we
may assume thah is a minimal element ofl satisfyingx € A and A\C # §, i.e. for no
proper subsef’ of A, x€ A’ € A and A'\C # (). Let y € A\C. By construction one has
{BeA:xeB,BC A} C{B & A:xE B, yZ B} sinceC belongs to the latter but not to the
former set. Since by assumptiong >0, this impliesA({B:x€ B C A}) — A({B:xE B,

y & B}) <0. Therefore,

d(x, A°) — max d(x, 2)
=v({x} U A°) — v(A") _TEE}\Xd(X’ 2

<v({x} U A°) — v(A°) — d(x, Y)
=A{B:xeBCA}) - A({B:xEB, y&B})
=M+ A({B:xEBCA}) — A({B:xEB, yZB})
<A,

Proof of Proposition 4.1. Let v be compatible with the line model. We prove the
formula for the case £ x<z<n. The other cases follow along the same lines. Since
AC Y,

v({z+ 1,x}) —v({z, x})

=AM{Az+1€A z€A) - A{Aze A ACI[X 7], X& A}), (A1)

and

v({z+1,x—1) —v({z x—1})

=AM{Az+1€A z€ A) — A{Aze A ACIX Z]}). (A-2)

Subtracting (A.2) from (A.1) one obtains (4.2).

Proof of Theorem 1. Sufficiency of the stated conditions has already been established in
the main text. The proof of necessity is straightforward.

Proof of Theorem 2. Necessity of the stated conditions is straightforward. In order to
prove their sufficiency, we want to make use of Theorem 1. %ebe a linear ordering
of X such that all elements of the hierarch¥ are intervals with respect te=. First,
note that since all elements 6t are intervals, adaptedness 46 in particular implies
adaptedness to the lin,(=).

Next, we show that adaptedness o also implies line-submodularity. To do so, it
will be convenient to reformulate both conditions in terms of the similarity function
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associated to ”. Recall thato(x, y) = v ”({x}) — d(x, y), and observe that, in contrast to
d, o is always a symmetric function. As is easily verified, line-submodularity is
equivalent to

(X4 X1) T 0(X5, X)) = (X, X)) + 0(X 53X ),

wheneverx, <x, <Xx,;<X, Letd be adapted td¥. In terms of similarity, this is easily
seen to be equivalent to

* Y¥,2€ET, 0 ok 2 <minfa(x, y), oy, 2)}.

Considerx; <x,<Xx;=<X, Suppose first thatx¢, x, x,)ET,; by adaptedness, this
implies o(X,, X,) < o(X,, X,). Since K, X, X 9 € Ty, one also has(x;, X;) < o(X3, X,),
again by adaptedness. Together, this implies line-submodularity. If, on the other hand,
(X, X4 X,)&T,, one must havex(, x, X)) ET, since # is a hierarchy. By
adaptedness, this implies(x;, X;)=<o(X, X,). Since &, X, X)ET, one has
o(X,, X,) < o(Xs X,) by adaptedness, hence the line-submodularity condition follows
also in this case.

By Theorem 1 there exists a unique extensio?” — R satisfying line compatibility
with respect to=. It remains to show thai, =0 for all intervals AZ 5 U {X}.
Assume, by way of contradiction, that, ,, > 0 for some intervaly, ] not contained in
7 U{X}. Consider the sed,, ,:== N{AE€ # U{X}:AD[x Z]}. Since is a hierarchy,
one hasA,, ,, € # U {X}. Since by assumptioA,, ,, # [x, Z], there must exisy £ [x, Z]
with ye A, 5, i.e. with &, y, 2 € T, Without loss of generality, assunye>z This
would imply d(x, y) > d(x, 2), which is not possible by adaptednessito

Proof of Theorem 3. We only prove sufficiency of the stated conditions. By Fishburn
(1985, Theorem 6), a ternary relatidncan be represented as= T, for ¥ associated

to some unique (up to reversal) linear order on X if and only if T is symmetric,
triple-connected and line-asymmetric. Clearll, is symmetric, and line-asymmetry
holds by assumption; triple-connectedness follows at once from the observation that, for
all x, y, z

X ¥, 2 ETy= o(x, 2 < min{o(x, y), o(y, 2)}. (A.3)
Let = be the linear order oX such thatlT, = T,. The dissimilarity metria satisfies
all requirements in order to apply Theorem 1. Hence, there exists a unique extension of
v” to a diversity functionv on X that is compatible with=. By Fact A.3 below,
T,=T,=T,.
For the proof of Theorem 4, we need the following results from DGS.

Fact A.1. If T satisfies T1-T3, theit =T_,, where
o ={ACX:forall(x,y,2 €ET{x,zZ CAO yE Al

Fact A.2. & is a hierarchy if and only if, for alk, T%, is complete.
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Fact A.3. If v is line compatible with respect to some orderigg, thenT, =T,.
Fact A4. If 7 is a hierarchy and’,, = T,,, for some 3", then & U {X} = 5" U {X}.

Proof of Theorem 4. The equivalence of (ii) and (iii) is easily established. Necessity of
(ii) and (iii) for the existence of a hierarchical extension is also obvious. We now show
the sufficiency of (ii) using Facts A.1-4 above. Clearly, satisfies conditions T1
(reflexivity) and T2 (symmetry). Right below we show that under condition Tjj)also
satisfies T3 (transitivity). Consider

#:={ACX:forall(x,y,2 ET;{x, zzC AT yE A},

and note thatX € & by definition. By Fact A.1,T,=T,. Hence, by the assumed
completeness of ; and Fact A.2, is a hierarchy. By definitiond is monotone with
respect tol, = T,,, hence adapted t@&. By Theorem 2, there exists a unique extension
v:2° & R of v” such thatd C % This demonstrates existence.

To verify uniqueness (o), let v’ be an extension of”, and let ' denote the
(hierarchical) support of its attribute weighting function. By Fact AT3, =T, =T,,
hence by Fact A.47¢= 3¢’ up to the inclusion of the universal attribu¥e However,
the weight ofX is uniquely determined by, = min,, ., o(X, y), which is non-negative
by the boundedness af

It remains to be shown thdt, satisfies the transitivity condition T3. This is done in
two steps. First, we show that completenesg pfimplies (standard) transitivity of
i.e. all relationsT} are weak orders. We then show that, for any symmetric ternary
relationT such that alll* are weak ordersT satisfies the transitivity condition T3. Thus,
suppose thaix( y, 2) € T, and &, z, w) € T,. We have to show thak(y, w) € T,. Using
(A.3), one haso(x, w) < o(x, 2) (from (x, z, w) € T,) and o(X, 2 < o(X, y) (from (x, v,

2 €T,), henceo(x, w) < o(x, y). Now assume thatx( y, w) & T,; by completeness of
T, this implies & w, y) €T, in particular o(x, y) < a(w, y) = o(y, w). Thus, o(X,
w)<o(x, y) and oX, w)=<o(y, w), which by (A.3) implies X, y, WET,, a
contradiction.

We now show that symmetry, completeness and transitivity o altogether imply
transitivity of T. Takex, X', y, z, 2’ such thatX, x’, 2 €T, (x, Z, 2 €T and &', vy,
Z')€T. By completenessx({x’, Z)ET or (x, Z', X') €T; without loss of generality,
assume X, X', Z)€T. By symmetry, ', x’, XYET as well as ', y, xX')ET. By
transitivity of T*, (z, y, X) €T, hence by symmetry,x( y, z')ET. Finally, by
transitivity of T*, (x, y, 2 €T.

X,y €
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