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Abstract

Within the multi-attribute framework of Nehring and Puppe [Econometrica, 70 (2002) 1155],
hierarchies and lines represent the simplest and most fundamental models of diversity. In both
cases, the diversity of any set can be recursively determined from the pairwise dissimilarities
between its elements. The present paper characterizes the restrictions on the dissimilarity metric
entailed by the two models. In the hierarchical case, this generalizes a classical result on the
representation of ultrametric distance functions.
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1 . Introduction

In ‘A Theory of Diversity’ (Nehring and Puppe, 2002a, henceforth TD), we proposed
a multi-attribute approach according to which the diversity of a set of objects is
determined by the number and weight of the different features (‘attributes’) possessed by
them. In some cases, the diversity of a set can be computed recursively from the
pairwise dissimilarities between its elements (plus their value as singletons). Two basic
models for which this is possible are the hierarchical model studied by Weitzman (1992,
1998) in the context of biodiversity and the more general line model introduced in TD.
The line model assumes that objects can be linearly ordered in such a way that any
attribute possessed by two objects is also possessed by all intermediate objects. The
hierarchical model in addition requires the relevant attributes to be ‘nested’ in the sense
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that, for any two attributes possessed by a given object, one is (unambiguously) more
specific than the other. As argued in Nehring and Puppe (1999b), lines and hierarchies
can serve as useful benchmark models not only in the context of biodiversity but also in
the analysis of the cost structure of multi-product firms that operate under economies of
scope; in this context, attributes correspond to shared inputs and costs reflect the

1technological diversity of a range of products. The purpose of the present paper is to
characterize the restrictions on the induced dissimilarity metric imposed by the line and
hierarchy models. Specifically, we provide the necessary and sufficient conditions for a
given dissimilarity metric to be extendable to a diversity function that is compatible with
the line and with the hierarchy model, respectively. This is important for practical
purposes, since the entailed restrictions on the dissmilarity metric represent a primary
criterion for the applicability of a particular model.

As already observed by Weitzman (1992), the hierarchical model implies that the two
greatest dissimilarities between three points are always equal if singletons are equally
valued (‘ultrametricity’). We show that a generalization of this condition characterizes
the metric implications of the class of hierarchical models. While in some contexts
ultrametricity or appropriate weakenings of it may be plausible, distance functions that
arise in specific applications will only exceptionally exhibit the required property. For
instance, in a biological context, there is no reason why genetic distances between
species should satisfy ultrametricity. On the other hand, from the viewpoint of
phylogenetic (rather than genetic) diversity a closely related but weaker condition is still
applicable, as argued in Nehring and Puppe (2002b).

The main restriction entailed by the line model is a submodularity condition according
to which an increase in the gap between two elements results in a smaller increase in
dissimilarity the larger the gap already is. A particularly transparent special case is the
translation invariant case: A given dissimilarity metric is induced by a translation
invariant diversity function on a line if and only if dissimilarity is a concave transform
of Euclidean distance. In terms of the underlying preferences, this translates into a
‘preference for even spacing.’

The plan of the paper is as follows. Section 2 provides the necessary background from
TD and from ‘Diversity and the Geometry of Similarity’ (Nehring, 1999, henceforth
DGS). Sections 3 and 4 reconsider in more detail the hierarchy and line models,
respectively. Sections 5 and 6 are devoted to the ‘extension problem,’ i.e. the conditions
under which a given dissimilarity metric can be extended to a diversity function. In
Section 5, we derive the necessary and sufficient conditions for agiven hierarchy and a
given line model, respectively. Section 6 addresses the extension problem then in
generality. Specifically, we ask when a dissimilarity metric can be extended to a
diversity function that is compatible withsome hierarchical model andsome line model,
respectively. Generalizing a classical result on the representation of ultrametric distance
functions, we give a complete answer in the hierarchical case. In the context of a line,
we provide a characterization for the case of a ‘sufficiently rich’ family of relevant
attributes. All proofs are collected in Appendix A.

1The line and hierarchy models are less natural in other applications of diversity theory such as, e.g., to the
measurement of opportunity, see Nehring and Puppe (2002c).
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2 . Background

This section reviews the concepts and tools needed for our later analysis. First, we
summarize the basic features of the multi-attribute model developed in TD; we then
present the notion of qualitative (comparative) similarity introduced in DGS.

2 .1. The multi-attribute model of diversity

Let X be a finite universe of objects. The basic idea behind the multi-attribute model
is to view the diversity of a setS #X of objects as being determined by the number and
the value of the different features possessed by the objects inS. Throughout, we refer to
features in terms of theirextension, i.e. we identify any feature with the subsetA#X of
those objects in the universe that possess the feature in question. For instance, the
feature ‘mammal’ is identified with the set of all mammals in the universe. Extensionally
identified features are henceforth referred to asattributes. Note that, given a prespecified
universeX of objects,any conceivable feature corresponds to a particular subsetA#X;
conversely, any subsetA#X defines a logically possible attribute (‘belonging toA’).

X XThe set of conceivable attributes is thus given by the power set 2 . If the subsetA[ 2
is interpreted as an attribute, the statement ‘x [ A’ simply means ‘objectx possesses the
attributeA.’ Similarly, a setS realizes an attributeA if and only if S > A± 5, i.e. if and
only if there exists some object inS that possesses the attributeA.

For each attributeA, let l > 0 quantify the value of the realization ofA. UponA

normalization,l can thus be thought of as the relative importance, orweight of theA
XattributeA. A function v:2 → R is called adiversity function if there exists a function

X
l:2 → R with l > 0 for all A, such that for allS #X,A

v(S)[ O l , (2.1)A
A#X :A>S±5

where, by convention,v(5)5l 5 0.5

The cardinal scale inherent in our concept of diversity is essential; for a rigorous
decision-theoretic justification, see Section 2 of TD. An alternative, ordinal approach to
the measurement of diversity is provided in Bossert et al. (2001) (see also Pattanaik and
Xu, 2000).

According to (2.1), the diversity value of a set of objects is given by the total weight
of all attributes realized by the set. Note especially that each attribute occurs at most
once in the sum. In particular, each single object contributes to diversity the value of all
those features that are not possessed by any already existing species.

Technically, the functionl that assigns to each attributeA its weightl is known asA

the conjugate Moebius inverse; we will also refer to it as theattribute weighting
function. The attribute weighting function underlying a diversity function isuniquely
determined, as shown by the following result.

XFact 2.1. (Conjugate Moebius inversion) For any functionv:2 → R with v(5)5 0
Xthere exists a unique functionl:2 → R, theconjugate Moebius inverse, such thatl 5 05

and, for allS,
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v(S)5 O l .A
A:A>S±5

Furthermore, the conjugate Moebius inversel is given by the following formula. For all
A± 5,

[(A\S )11 c
l 5O (21) ? v(S ),A

S#A

cwhereS denotes the complement ofS in X.

XFor any set functionv:2 → R denote by

L:5 hA:l ±0jA

the support of the corresponding conjugate Moebius inverse. Ifv is a diversity function,
the elements ofL are those attributes that have strictly positive weight; in this case, the
support is also referred to as the family ofrelevant attributes.

By Fact 2.1, the only restriction imposed on a diversity function is non-negativity of
the corresponding conjugate Moebius inverse. In terms of the functionv itself non-

Xnegativity of l corresponds to the following two properties. A functionv:2 → R is
monotone if W # S implies v(W )< v(S). Furthermore,v is calledtotally submodular if,
for any collectionhS j ,i i[I

[J11v > S < O (21) ? v < S . (2.2)S D S Di i
i[I i[JJ :5±J#I

XFact 2.2. The functionv:2 → R has a non-negative conjugate Moebius inverse if and
only if v is monotone and totally submodular.

The basic instance of total submodularity is given by the case of[I 5 2 in which
(2.2) specializes to the following condition known assubmodularity. For all S , S ,1 2

v(S > S )1 v(S < S )< v(S )1 v(S ),1 2 1 2 1 2

or equivalently, for allS, W and all x,

S #W ⇒ v(S < hxj)2 v(S)> v(W < hxj)2 v(W ). (2.3)

i.e. the marginal value of additional objects decreases with the set of objects already
available. Submodularity captures the fundamental intuition that it becomes harder for an
object to add to the diversity of a set the larger that set already is.

That any diversity function satisfies (2.3) follows from noting that

v(S < hxj)2 v(S)5 O l , (2.4)A
A]x,A>S55

which is decreasing inS due to the non-negativity ofl. By (2.4), the marginal diversity
of an objectx at a setS is given by the total weight of all attributes possessed byx but
by no element ofS. Accordingly, we will refer to the marginal diversity also as the
distinctiveness of x from S, which we denote by
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d(x, S)[v(S < hxj)2 v(S).

A diversity function naturally induces a notion of pairwisedissimilarity between
objects as follows. For allx, y,

d(x, y):5 d(x, hyj)5 v(hx, yj)2 v(hyj). (2.5)

The dissimilarityd(x, y) from x to y is thus simply the marginal diversity ofx in a
situation in whichy is the only other existing object. Equivalently, by (2.4),d(x, y) is the
weight of all attributes possessed byx but not byy. Note that, in general,d need not be
symmetric, and thus fails to be a proper metric; it does, however, always satisfy the
triangle inequality. To verify this, we have to show thatd(x, z)< d(x, y)1 d(y, z), or
equivalently by (2.5) and (2.4),

O l < O l 1 O l .A A A
A:x[A,z[⁄ A A:x[A,y[⁄ A A:y[A,z[⁄ A

Consider anyl that occurs as a summand on the left hand side, i.e. suppose thatx [ AA

andz [⁄ A. If y [⁄ A, l occurs as a summand in the first sum on the right hand side; andA

if y [ A, l occurs as a summand in the second sum on the right hand side, the desiredA

inequality thus follows from the non-negativity ofl. The functiond is symmetric if and
only if v(hxj)5 v(hyj) for all x, y [X, i.e. if and only if all single objects have identical
diversity value. A diversity function that gives equal value to all singletons is referred to
as auniform diversity function.

Often it will be useful to consider the following derived notion of quantitative
similarity (in contrast to the qualitative ternary similarity relation introduced below). For
all x, y let

s(x, y)[v(hxj)1 v(hyj)2 v(hx, yj)5 O l (2.6)A
A$hx,yj

denote the (quantitative) similarity betweenx and y. Note that in contrast to the
dissimilarity functiond the similarity functions is always symmetric. Also observe that

s(x, y)5 v(hxj)2 d(x, y)5 v(hyj)2 d(y, x).

By Facts 2.1 and 2.2, any diversity function uniquely ‘reveals’ the underlying
collection of attributes and their weights. In particular, any diversity function uniquely
determines the corresponding familyL of relevant attributes. The major theme of TD is
to exploit this basic fact in order to characterize qualitative properties of diversity
functions in terms of corresponding properties of the associated family of relevant
attributes. Central to this is the following notion. A non-empty family of attributes

X! # 2 \h5j is referred to as amodel of diversity. A diversity functionv is compatible
with the model! if the corresponding setL of relevant attributes is contained in!, i.e.
if L#!. A model thus represents aqualitative a priori restriction, namely that no
attributes outside! can have strictly positive weight. Accordingly, a model can be
interpreted as a family ofpotentially relevant attributes, in contrast to the possibly larger

Xset 2 of all conceivable attributes and the possibly smaller setL of all actually relevant
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attributes. The two most basic examples of models, hierarchies and lines, are studied in
detail below; further examples are discussed and analyzed in TD and DGS.

In practical applications, one will have to construct the diversity function from
primitive data. One possibility is, of course, to first determine appropriate attribute
weights and to compute the diversity function according to (2.1). Determining attribute
weights is a complex task, however, since there are as many potential attributes as there
are non-empty subsets of objects. An appealing alternative is to try to derive the
diversity of a set from the pairwise dissimilarities between its elements, as suggested by
Weitzman (1992). Say that a model! is monotone in dissimilarity if, for any
compatible diversity functionv and anyS, the diversityv(S) is uniquely determined by
the value of all single species inS and the pairwise dissimilarities withinS, and if,
moreover, the diversityv(S) is a monotone function of these dissimilarities.

The characterization of the class of models that are monotone in dissimilarity is one of
the main results of TD. Say that a model! is acyclic if for no m > 3 there exist objects
x , . . . , x and attributesA , . . . , A [! such that, for alli 5 1, . . . , m 2 1 A >1 m 1 m i

hx , . . . , x j5 hx , x j, andA > hx , . . . , x j5 hx , x j. Thus, for instance in the case1 m i i11 m 1 m m 1

m 5 3, acyclicity requires that there be no triple of objects such that each pair of them
possesses an attribute that is not possessed by the third object. Theorem 6.2 in TD shows

2that a model of diversity is monotone in dissimilarity if and only if it is acyclic. The two
classes of models studied here, hierarchies and lines, are both acyclic, hence monotone
in dissimilarity.

2 .2. Qualitative similarity

XAs noted in DGS, any family! # 2 of potentially relevant attributes naturally
3induces acomparative similarity relation T #X as follows. For allx, y, z, let!

(x, y, z)[T :⇔[for all A[! :hx, zj# A ⇒ y [ A]. (2.7)!

In this definition, the statement ‘(x, y, z)[T ’ is interpreted as ‘y is more similar thanz!

to x,’ which expresses an understanding of similarity as commonality of attributes: Fory
to be more similar thanz to x, y must possess every attribute shared byx andz. Observe
that judgments on qualitative similarity will typically change with the inclusion of
further attributes. In particular, the larger the set of relevant attributes, the smaller the
qualitative similarity relation, since each attribute can be viewed as a ‘test’ that has to be
passed by any triple inT .!

For any family!, the ternary relationT satisfies the following three properties:!

T1 (Reflexivity) y [ hx, zj ⇒ (x, y, z)[ T .!

T2 (Symmetry) (x, y, z)[T ⇔(z, y, x)[T .! !

T3 (Transitivity) [(x, x9, z)[ T and!

(x, z9, z)[ T and (x9, y, z9)[ T ] ⇒ (x, y, z)[ T .! ! !

2The necessity of acyclicity hinges on a weak regularity requirement.
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3 xFor any ternary relationT #X , and anyx [X, denote byT the following binary
relation. For ally, z,

xyT z:⇔(x, y, z)[T. (2.8)

xIn view of (2.7), the binary relationT describes commonality of attributeswith x;!
xspecifically,yT z means thaty shares (weakly) more attributes withx thanz. Note that!

xby T1–T3, the binary relationT is a preorder (i.e. reflexive and transitive).!

A key insight of DGS is the observation that the comparative similarity relationTL

associated with the supportL of a particular diversity function has an ‘observational
equivalent’ in terms of the diversity function itself. Specifically, given any diversity
function v say thatx is independent from z conditional on (the inclusion of ) y, denoted
by (x, y, z)[ T , if the distinctiveness ofx from any setS that includesy does notv

change with the addition ofz to S. Formally,

(x, y, z)[T :⇔ for all S ] y, d(x, S)5 d(x, S < hzj).v

A central result in DGS establishes that for any set functionv, T 5T , that is:y isL v

more similar thanz to x if and only if x is independent fromz conditional ofy.
Intuitively, the relationT (5T ) induced by a diversity functionv can be viewed asL v

the ‘qualitative core’ of the corresponding quantitative dissimilarity metricd. Indeed, by
submodularity, the dissimilarity metricd associated withv is monotone with respect to
T in the sense thatL

(x, y, z)[T ⇒ d(x, y)< d(x, z).L

Hence, greater qualitative dissimilarity implies greater quantitative dissimilarity (but, of
course, not necessarily vice versa). In general, say thatd is monotone with respect to T if

(x, y, z)[T ⇒ d(x, y)< d(x, z).

Moreover, say thatd is adapted to a model! if d is monotone with respect toT .!

3 . Hierarchies

XA model* # 2 is called a (taxonomic) hierarchy if the elements of* are nested in
the sense that, for allA, B [*,

A>B ± 5 ⇒ [A#B or B # A].

Accordingly, we will refer to a diversity functionv, as well as to the associated attribute
weighting functionl, as hierarchical if the supportL of relevant attributes forms a
hierarchy. Theorem 3.1 in TD shows that a diversity function is hierarchical if and only
if, for all x and S,

v(S < hxj)2 v(S)5min v(hx, yj)2 v(hyj) , (3.1)f g
y[S

or, equivalently,
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d(x, S)5min d(x, y).
y[S

By (3.1), the entire diversity function can be recursively determined from its values on
the set@ :5 hS:[S < 2j of all binary sets of X containing at most two elements. Note
that the restriction ofv to @ contains the same information as the associated
dissimilarity metric plus the value of singletons.

xFor a hierarchical family*, the associated binary relationT according to (2.7) and*

(2.8) is complete (hence, a weak order) for allx [X. This follows at once from the
observation that the family* [hA[* :A] xj of all attributes in* that containx isx

xtotally ordered by set-inclusion, i.e. a chain. Completeness of allT in fact characterizes*

the hierarchical model, as shown in DGS.
In a hierarchy, attribute weights are determined by the dissimilarity metric in a simple

way, as shown by the following result.

Proposition 3.1. (Conjugate Moebius inverse on a hierarchy)Let v be a diversity
function with attribute weighting function l. If v is hierarchical, then for all A[L and
all x [ A,

l 5min d(x, z)2maxd(x, z). (3.2)A c z[Az[A

cConversely, suppose that for all A[L and all x [ A, l 5 d(x, A )2max d(x, z).A z[A

Then l is hierarchical.

Observe that positivity of the term (3.2) says that anyx in an attributeA is less similar
to any element outsideA than to any element inA. In the hierarchical case, attributes are
thus ‘similarity clusters’ of objects.

Despite its specific structure, the hierarchical model is quite flexible, as illustrated by
the following two degenerate cases: the class of all additive diversity functions of the
form v(S)5o v(hxj), and the class of all functions of the formv(S)5max v(hxj).x[S x[S

As is easily verified, the first class of ‘additive counting’ is characterized by the property
that all relevant attributes are singletons, i.e.L# hhxj:x [Xj; the second class, in which
only the object richest in attributes counts, is characterized by attributes being totally
ordered, i.e. by the property thatL forms a chain.

4 . Lines

As another simple and fundamental model of diversity, we consider the ‘line model’
introduced in TD. Assume that the universeX is ordered by some given linear (i.e.
complete, transitive and antisymmetric) ordering> . For instance, objects may be
ordered according to size, mass, age, etc. For anyx, z [X with x < z, denote by
[x, z]: 5 hy:x < y < zj the interval spanned byx and z; furthermore, denote by+ the
family of all intervals with respect to the ordering> . We refer to+ as theline model
associated with> . A diversity functionv is line compatible if L#+. Note that any
hierarchical diversity function is line compatible, since to any hierarchical attribute
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family one can associate a (non-unique) linear ordering such that all attributes are
intervals. Line compatibility is more general in that it allows attributes to (non-trivially)
overlap.

The induced qualitative similarity relation according to (2.7) is the canonical
betweenness relation on a line. Indeed, for allx, y, z,

(x, y, z)[T ⇔[x < y < z or z < y < x],+

i.e. y is more similar thanz to x if and only if y is betweenx and z.
By Theorem 3.2 in TD, diversity in a line model is characterized by the following

simple formula, referred to as the ‘line equation.’ A diversity functionv is compatible
with a line model if and only if, for ally , y , ? ? ? , y ,1 2 m

m

v(hy , . . . , y j)5 v(hy j)1O d(y , y ). (4.1)1 m 1 i i21
i52

By the line Eq. (4.1), a diversity function on a line is again determined by its values on
the family @ of all binary sets.

As in the hierarchical case, one obtains a simple formula for the conjugate Moebius
inverse on a line. For notational convenience, we henceforth identify (X, > ) with the set
h1, . . . , nj of natural numbers endowed with the standard ordering, wheren 5[X.

XProposition 4.1. (Conjugate Moebius inverse on a line)Let v:2 → R be a set function
with conjugate Moebius inverse l. If L#+, then for all x, z [X with 1, x < z , n,

l 5 v(hz 1 1, xj)2 v(hz, xj)2 v(hz 11, x 2 1j)2 v(hz, x 21j) . (4.2)f g[x,z ]

Furthermore, for 1< z , n and 1, x < n,

l 5 v(hz 1 1, 1j)2 v(hz, 1j)2 v(hz 1 1j)2 v(hzj) ,f g[1,z ]

l 5 v(hxj)2 v(hn, xj)2 v(hx 2 1j)2 v(hn, x 2 1j) ,f g[x,n ]

l 5 v(h1j)2 v(hn, 1j)1 v(hnj).[1,n ]

5 . The extension problem for a given model

As observed above, hierarchical and line compatible diversity functions are de-
termined by their values on the family@ of all binary sets with at most two elements,
or, equivalently, by their values on singletons together with the induced dissimilarity
metric d. A natural question is: What restrictions do the hierarchical model and the line
model impose on the induced dissimilarity metric, respectively? In the present section,
we will study these restrictions for agiven hierarchy and agiven line model. Formally,

@we will study the conditions under which a functionv :@ → R is the restriction of
some diversity functionv with L#* for some given hierarchy*, respectivelyL#+
for some given line model+. In Section 6 below, the corresponding results will be used
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to achieve a more ambitious goal, namely to characterize compatibility of a dissimilarity
metric with some line structure andsome hierarchy, respectively.

We start with the line model, and then derive the result in the hierarchical case as a
corollary. As before, letX 5 h1, . . . ,nj and let+ be the line model corresponding to the
standard ordering ofh1, . . . , nj. Using (4.1), it is easily verified thatany function
@ Xv :@ → R can be uniquely extended to a set functionv:2 → R with L#+. It thus

remains to find the conditions under which the extensionv is a diversity function. Since
diversity functions are characterized by non-negativity of the corresponding conjugate
Moebius inverse, these conditions follow at once from Proposition 4.1. To make these
intuitively more transparent, we reformulate them in terms of dissimilarity.

@Let v :@ → R be a function on the family of all binary sets with associated
dissimilarity metricd. Say thatd is bounded if, for all x, y,

@d(x, y)< v (hxj).

Furthermore, say thatd is submodular with respect to T if the following condition holds.
For all x , x , x , x such that (x , x , x )[ T whenever 1< i , j , l < 4,1 2 3 4 i j l

d(x , x )2 d(x , x )< d(x , x )2 d(x , x ).4 1 3 1 4 2 3 2

Finally, say thatd is line-submodular if it is submodular with respect toT . Line-+

submodularity says that increasing a gap between two elements results in a smaller
increase in dissimilarity the larger the gap already is. Observe that line-submodularity
entails the triangle inequality by takingx 5 x .2 3

@Theorem 1. (Line extension theorem)Any v :@ → R can be uniquely extended to a
Xset function v:2 → R with L#+. The extension v is a diversity function if and only if

@the dissimilarity metric d associated with v is bounded, and monotone and submodular
with respect to T .+

Theorem 1 follows as an immediate corollary of Proposition 4.1 above. Indeed,
rewriting (4.2) in terms of dissimilarity one obtains, for 1, x < z , n,

l 5 d(z 1 1, x)2 d(z, x)2 d(z 11, x 2 1)2 d(z, x 21) .f g[x,z ]

Non-negativity ofl at interior intervals thus follows from line-submodularity. Similarly,
for z , n and 1, x, one hasl 5 d(1, z 1 1)2 d(1, z), l 5 d(n, x 2 1)2 d(n, x),[1,z ] [ x,n ]

and l 5 v(h1j)2 d(1, n). Hence, non-negativity at all other intervals follows from[1,n ]

monotonicity with respect toT and boundedness, respectively.+

By Theorem 1, the metric implications of the line model are somewhat stronger than
the minimal ‘canonical’ implications given by adaptedness (i.e. monotonicity with
respect toT ) and the triangle inequality. To further illustrate the crucial condition of+

line-submodularity, consider the benchmark case in which the diversity of a set only
depends on its internal shape and not on its location within the line. Specifically, say that
a diversity function on a line istranslation invariant if, for all S #X and all integerst,

v(S)5 v(S 1 t),



K. Nehring, C. Puppe / Mathematical Social Sciences 45 (2003) 167–183 177

wheneverS 1 t:5 hx 1 t:x [ Sj#X 5 h1, . . . , nj. As is easily verified,v is translation
invariant if and only if the associated dissimilarity metricd is translation invariant in the
sense thatd(x, z) only depends on the Euclidean distanceuz 2 xu. In this case,
line-submodularity is equivalent toconcavity of d, i.e. to the condition that, for allx, z
with z > x, the differenced(x, z 11)2 d(x, z) is decreasing inz. The following result is
thus an immediate corollary of Theorem 1.

@Corollary 5.1. A function v :@ → R can be extended to a translation invariant
Xdiversity function v:2 → R with L#+ if and only if d is translation invariant,

bounded, monotone with respect to T and concave.+

Concavity of the dissimilarity metric implies the following ordinal ‘preference for
even spacing.’ For allx, y , y , z with x , y , z, andS :5 hx, y , zj, S [hx, y , zj,1 2 i 1 1 2 2

v(S )> v(S )⇔ y is closer thany to the midpoint (z 2 x) /2, (5.1)1 2 1 2

where v(S ) and v(S ) are defined fromd via the line Eq. (4.1). ForX 5N, one can1 2

show that, conversely, condition (5.1) implies concavity ofd (cf. Nehring and Puppe,
1999a, Section 4.5).

In hierarchies line-submodularity is automatically satisfied. By consequence, the
metric implications of the hierarchical model are canonical, as shown by the following
result.

Theorem 2. (Hierarchy extension theorem)Let * be a hierarchy. A function
@ Xv :@ → R can be uniquely extended to a diversity function v:2 → R with L#* <

hXj if and only if the associated dissimilarity metric d is bounded and adapted to *.

The proof of Theorem 2 in Appendix A is based on the fact that adaptedness to a
hierarchy implies line-submodularity with respect to any ordering such that all elements
of the hierarchy are intervals. Theorem 2 thus also follows as a corollary from the above
line extension theorem.

6 . The general extension problem

In the previous section, we have characterized the restrictions on a dissimilarity metric
for it to be consistent with agiven line model associated with a particular linear ordering
of the object space. A more fundamental question addresses the restrictions of the line
model as such: Under what conditions on a dissimilarity metricd is theresome linear
ordering > of the object space such thatd is the dissimilarity associated with a
diversity functionv that is compatible with the betweenness induced by> ? This is a
non-trivial problem, and we provide an answer for the two polar and most interesting
cases of hierarchies and ‘exact’ lines, i.e. the case in whichT 5 T for an appropriateL +

line model+.
@Let v :@ → R be given, and denote byd the corresponding dissimilarity metric. The
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Fig. 1. The 2-hypercube.

following metric betweenness relation introduced in DGS will play a crucial role in the
present analysis. For allx, y, z,

(x, y, z)[T :⇔[d(x, y)< d(x, z) andd(z, y)< d(z, x)]. (6.1)d

Furthermore, say that a ternary relationT is line-asymmetric if, for all x, y, z, w such
that y [⁄ hx, z, wj and (x, y, z)[ T,

(w, y, z)[T⇔(x, y, w)[⁄ T.

@Theorem 3. A function v :@ → R can be uniquely extended to a diversity function v
Xon 2 such that T 5 T for + associated with some linear order > on X if and only ifL +

T is line-asymmetric, and d is bounded and submodular with respect to T .d d

The condition that drives the result is line-asymmetry. Line-asymmetry as a condition
on T is already quite restrictive. For instance, it is neither satisfied in hierarchies nor inL

multi-dimensional models. Typical examples are the following two graphs. Fig. 1 depicts
the graph corresponding to the 2-dimensional hypercube model (see Section 3 of TD),
while Fig. 2 depicts the ‘3-star’ tree (see TD, Section 5).

In both cases, a natural specification ofL leads to the following qualitative similarity
relation: (x, y, z)[ T if and only if y lies on a shortest path that connectsx andz. Thus,L

in Fig. 1 one has (x, y, z)[ T , but neither (w, y, z)[T nor (x, y, w)[ T in violationL L L

of line-asymmetry.
In Fig. 2, one has again (x, y, z)[ T ; now the violation of line-asymmetry occursL

since (w, y, z)[T as well as (x, y, w)[T .L L

Line-asymmetry is even more powerful when applied to the less regularT . Consider,d
Xfor instance, the caseX 5 hx, y, z, wj with L52 \h5j. As is easily verified, the

corresponding betweennessT is ‘vacuous’ in the sense that no other element is betweenL

two given elements. By consequence,T vacuously satisfies line-asymmetry. On theL

other hand, giving each attribute inL unity weight, say, results in a diversity function
such that the inducedT violates line-asymmetry.d

Fig. 2. The 3-star tree.
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In order to prove Theorem 3 one wishes to make use of the line extension theorem for
a given line structure. To make use of this result one needs to find conditions on a
ternary relation that are necessary and sufficient for its being the betweenness of a linear
ordering. These can be found in the literature. Specifically, by Fishburn (1985), Theorem
6, a betweenness relationT is a line-betweenness (T 5T for some line+ ) if and only+

if T is symmetric (in the sense of T2 above), line-asymmetric, andtriple-connected in
the sense that, for allx, y, z, at least one of the three triples (x, y, z), (y, z, x), (z, x, y) is
an element ofT. An additional contribution of Theorem 3 consists in obtaining
triple-connectedness from the definition ofT . The insight of the result is thus thed

appropriateness ofT as the ‘right’ notion of betweenness derived fromd in the contextd

of the line structure.
For the class of all hierarchical models, we have the following result.

@Theorem 4. Let v :@ → R be given with associated dissimilarity metric d and
quantitative similarity s. The following statements are equivalent.

@ X(i) v can be uniquely extended to a hierarchical diversity function on 2 .
x(ii) d is non-negative, bounded and, for all x, T is complete.d
@(iii)s is non-negative, bounded (i.e. s(x, y)< v (hxj)) and, for all x, y, z,

midhs(x, y), s(y, z), s(x, z)j5minhs(x, y), s(y, z), s(x, z)j. (6.2)

Theorem 4 generalizes a classical result (Johnson, 1967; Benzecri et al., 1973) on the
representation of ultrametric distance functions by not assuming symmetry ofd. A
symmetric distance functiond is calledultrametric if, for all x, y, z,

midhd(x, y), d(y, z), d(x, z)j5maxhd(x, y), d(y, z), d(x, z)j, (6.3)

i.e. if the two greatest distances between any three points are equal. In the symmetric
case, one hasv(hxj)5 v(hyj) for all x, y, hence (6.2) and (6.3) are equivalent.
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A  ppendix A. Proofs

Proof of Proposition 3.1. Suppose thatL is a hierarchy. Letx [ A[L, and define
z*[arg max d(x, z). SinceL 5 hB [L:x [Bj is a chain, one hasB , A⇔z* [⁄ Bz[A x

for all B [L , where ‘, ’ denotes theproper subsethood relation. Hence, using (3.1),x
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min d(x, z)2maxd(x, z)
c z[Az[A

c c
5 v(hxj< A )2 v(A )2 d(x, z*)
5l(hB:x [B # Aj)2l(hB:x [B, z* [⁄ Bj)
5l 1l(hB:x [B , Aj)2l(hB:x [B, z* [⁄ Bj)A

5l .A

Conversely, suppose thatL is not a hierarchy, i.e. suppose there existA, C [L such that
A>C, A\C, and C\A are all non-empty. Letx [ A>C. Without loss of generality we
may assume thatA is a minimal element ofL satisfyingx [ A and A\C ± 5, i.e. for no
proper subsetA9 of A, x [ A9[L and A9\C ± 5. Let y [ A\C. By construction one has
hB [L:x [B, B , Aj, hB [L:x [B, y [⁄ Bj sinceC belongs to the latter but not to the
former set. Since by assumption,l .0, this impliesl(hB:x [B , Aj)2l(hB:x [B,C

y [⁄ Bj), 0. Therefore,

cd(x, A )2maxd(x, z)
z[A

c c
5 v(hxj< A )2 v(A )2maxd(x, z)

z[A
c c

< v(hxj< A )2 v(A )2 d(x, y)
5l(hB:x [B # Aj)2l(hB:x [B, y [⁄ Bj)
5l 1l(hB:x [B , Aj)2l(hB:x [B, y [⁄ Bj)A

,l .A

Proof of Proposition 4.1. Let v be compatible with the line model. We prove the
formula for the case 1, x < z , n. The other cases follow along the same lines. Since
L#+,

v(hz 1 1, xj)2 v(hz, xj)
(A.1)

5l(hA:z 1 1[ A, z [⁄ Aj)2l(hA:z [ A, A# [x, z], x [⁄ Aj),

and

v(hz 1 1, x 21j)2 v(hz, x 2 1j)
(A.2)

5l(hA:z 1 1[ A, z [⁄ Aj)2l(hA:z [ A, A# [x, z]j).

Subtracting (A.2) from (A.1) one obtains (4.2).

Proof of Theorem 1. Sufficiency of the stated conditions has already been established in
the main text. The proof of necessity is straightforward.

Proof of Theorem 2. Necessity of the stated conditions is straightforward. In order to
prove their sufficiency, we want to make use of Theorem 1. Let> be a linear ordering
of X such that all elements of the hierarchy* are intervals with respect to> . First,
note that since all elements of* are intervals, adaptedness to* in particular implies
adaptedness to the line (X, > ).

Next, we show that adaptedness to* also implies line-submodularity. To do so, it
will be convenient to reformulate both conditions in terms of the similarity functions
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@ @associated tov . Recall thats(x, y)5 v (hxj)2 d(x, y), and observe that, in contrast to
d, s is always a symmetric function. As is easily verified, line-submodularity is
equivalent to

s(x , x )1s(x , x )>s(x , x )1s(x , x ),4 1 3 2 4 2 3 1

wheneverx < x < x < x . Let d be adapted to*. In terms of similarity, this is easily1 2 3 4

seen to be equivalent to

(x, y, z)[T ⇒ s(x, z)<minhs(x, y), s(y, z)j.*

Considerx < x < x < x . Suppose first that (x , x , x )[ T ; by adaptedness, this1 2 3 4 2 1 4 *

impliess(x , x )<s(x , x ). Since (x , x , x )[ T , one also hass(x , x )<s(x , x ),4 2 4 1 1 2 3 * 3 1 3 2

again by adaptedness. Together, this implies line-submodularity. If, on the other hand,
(x , x , x )[⁄ T , one must have (x , x , x )[T since * is a hierarchy. By2 1 4 * 1 4 3 *

adaptedness, this impliess(x , x )<s(x , x ). Since (x , x , x )[T , one has3 1 4 1 2 3 4 *

s(x , x )<s(x , x ) by adaptedness, hence the line-submodularity condition follows4 2 3 2

also in this case.
XBy Theorem 1 there exists a unique extensionv:2 → R satisfying line compatibility

with respect to > . It remains to show thatl 50 for all intervals A [⁄ * < hXj.A

Assume, by way of contradiction, thatl . 0 for some interval [x, z] not contained in[x,z ]

* < hXj. Consider the setA [> hA[* < hXj:A$ [x, z]j. Since* is a hierarchy,hx,zj

one hasA [* < hXj. Since by assumptionA ± [x, z], there must existy [⁄ [x, z]hx,zj hx,zj

with y [ A , i.e. with (x, y, z)[ T . Without loss of generality, assumey . z. Thishx,zj *

would imply d(x, y). d(x, z), which is not possible by adaptedness to*.

Proof of Theorem 3. We only prove sufficiency of the stated conditions. By Fishburn
(1985, Theorem 6), a ternary relationT can be represented asT 5 T for + associated+

to some unique (up to reversal) linear order> on X if and only if T is symmetric,
triple-connected and line-asymmetric. Clearly,T is symmetric, and line-asymmetryd

holds by assumption; triple-connectedness follows at once from the observation that, for
all x, y, z,

(x, y, z)[T ⇔s(x, z)<minhs(x, y), s(y, z)j. (A.3)d

Let > be the linear order onX such thatT 5 T . The dissimilarity metricd satisfiesd +

all requirements in order to apply Theorem 1. Hence, there exists a unique extension of
@v to a diversity functionv on X that is compatible with> . By Fact A.3 below,

T 5 T 5 T .L d +

For the proof of Theorem 4, we need the following results from DGS.

Fact A.1. If T satisfies T1–T3, thenT 5 T , where!

! :5 hA#X: for all (x, y, z)[ T :hx, zj# A ⇒ y [ Aj.

xFact A.2. * is a hierarchy if and only if, for allx, T is complete.*
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Fact A.3. If v is line compatible with respect to some ordering> , then T 5T .L d

Fact A.4. If * is a hierarchy andT 5 T for some* 9, then* < hXj5* 9< hXj.* * 9

Proof of Theorem 4. The equivalence of (ii) and (iii) is easily established. Necessity of
(ii) and (iii) for the existence of a hierarchical extension is also obvious. We now show
the sufficiency of (ii) using Facts A.1–4 above. Clearly,T satisfies conditions T1d

(reflexivity) and T2 (symmetry). Right below we show that under condition (ii),T alsod

satisfies T3 (transitivity). Consider

* :5 hA#X: for all (x, y, z)[ T :hx, zj# A ⇒ y [ Aj,d

and note thatX [* by definition. By Fact A.1,T 5T . Hence, by the assumedd *
xcompleteness ofT and Fact A.2,* is a hierarchy. By definition,d is monotone withd

respect toT 5 T , hence adapted to*. By Theorem 2, there exists a unique extensiond *
X @v:2 → R of v such thatL#*. This demonstrates existence.

@To verify uniqueness (of* ), let v9 be an extension ofv , and let* 9 denote the
(hierarchical) support of its attribute weighting function. By Fact A.3,T 5T 5 T ,* 9 d *

hence by Fact A.4,* 5* 9 up to the inclusion of the universal attributeX. However,
the weight ofX is uniquely determined byl 5min s(x, y), which is non-negativeX x,y[X

by the boundedness ofd.
It remains to be shown thatT satisfies the transitivity condition T3. This is done ind

x xtwo steps. First, we show that completeness ofT implies (standard) transitivity ofT ,d d
xi.e. all relationsT are weak orders. We then show that, for any symmetric ternaryd

xrelationT such that allT are weak orders,T satisfies the transitivity condition T3. Thus,
suppose that (x, y, z)[ T and (x, z, w)[ T . We have to show that (x, y, w)[T . Usingd d d

(A.3), one hass(x, w)<s(x, z) (from (x, z, w)[ T ) ands(x, z)<s(x, y) (from (x, y,d

z)[ T ), hences(x, w)<s(x, y). Now assume that (x, y, w)[⁄ T ; by completeness ofd d
xT , this implies (x, w, y)[ T , in particulars(x, y)<s(w, y)5s(y, w). Thus,s(x,d

w)<s(x, y) and s(x, w)<s(y, w), which by (A.3) implies (x, y, w)[ T , ad

contradiction.
xWe now show that symmetry, completeness and transitivity of allT together imply

transitivity of T. Take x, x9, y, z, z9 such that (x, x9, z)[ T, (x, z9, z)[T and (x9, y,
z9)[ T. By completeness, (x, x9, z9)[ T or (x, z9, x9)[ T; without loss of generality,
assume (x, x9, z9)[ T. By symmetry, (z9, x9, x)[T as well as (z9, y, x9)[T. By

z9transitivity of T , (z9, y, x)[T, hence by symmetry, (x, y, z9)[ T. Finally, by
xtransitivity of T , (x, y, z)[ T.
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