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Abstract How can diversity be measured? What does it mean to value biodiversity?
Can we assist Noah in constructing his preferences? To address these questions, we
propose a multi-attribute approach under which the diversity of a set of species is the
sum of the values of all attributes possessed by some species in the set. We develop
the basic intuitions and requirements for a theory of diversity and show that the multi-
attribute approach satisfies them in a flexible yet tractable manner.

A natural starting point is to think of the diversity of a set as an aggregate of
the pairwise dissimilarities between its elements. The multi-attribute framework allows
one to make this program formally precise. It is shown that the program can be realized
if and only if the family of relevant attributes is well-ordered (“acyclic”). Moreover,
there is a unique functional form aggregating dissimilarity into diversity, the length of
a minimum spanning tree. Examples are taxonomic hierarchies and lines representing
uni-dimensional qualities. In multi-dimensional settings, pairwise dissimilarity infor-
mation among elements is insufficient to determine their diversity. By consequence,
the qualitative and quantitative behavior of diversity differs fundamentally.
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1 Introduction

“An angel is more valuable than a stone. It does not follow, however, that two angels
are more valuable than one angel and one stone.” Thus Thomas Aquinas in Summa
contra Gentiles, IIL.> While contemporary readers may not subscribe to the premise of
St. Thomas’ argument, they have good reason to follow its logic, as in the following up-
dated version: “A human being is more valuable than a chimpanzee. It does not follow,
however, that 6,000,130,000 human beings and no chimpanzees are more valuable than
6,000,000,000 human beings and 130,000 chimpanzees.”® Thomas’ argument suggests
that “ontological diversity” has intrinsic value; the contemporary, narrower version
makes an analogous case for biological diversity. By showing why straight counting is
not good enough, the argument presents in a nutshell two major requirements on any
satisfactory mathematical theory of valuing diversity: valuing as opposed to counting
cannot treat single objects equally nor can it be additive. The argument points to
similarity as the source of non-additivity: presumably, while a second angel is very
similar to the first one, the stone is not. Hence, the marginal diversity value of the
second angel is less than that of the stone. While equal valuation of single objects may
sometimes be defensible, similarity and hence non-additivity are essential to the very
concept of diversity. Relevance of similarity suggests also a third, cardinal requirement:
since it is presumably the harder for objects to add to the diversity of an existing set
the larger that set already is, one would expect diversity to be a submodular function.

In this paper, we explore a multi-attribute approach to valuing diversity whose
starting point is the idea that the value of diversity consists in the realization of certain
attributes/potentialities of life by some existing species; examples of such attributes
are “being a primate,” “a carnivore,” “being able to live for more than 1000 years,”
“possessing a certain gene,” etc. The diversity of a set is simply taken to be the sum
of the numeric values (“weights”) of the attributes realized by some object in the set;
set functions of this kind are called diversity functions.

Diversity functions satisfy the requirements outlined above in a natural and flexible
manner. First, individual objects will be valued more highly if they realize higher-
valued attributes; presumably, Aquinas valued the spirituality of an angel more highly
than the raw physicality of a stone. Second, similarity and hence non-additivity are
accounted for naturally: adding a stone to an angel enriches the universe by a significant
attribute (physicality), whereas the second angel adds less (playing the harp perhaps?).
The submodularity of diversity functions is also clear since the marginal diversity of
an object is the total value of all of its attributes not already realized by the existing
set, hence non-increasing in the size of that set. A somewhat stronger condition called
“total submodularity” in fact characterizes diversity functions.

The basic purpose of the paper is to show that the multi-attribute approach can
serve as a useful and in some contexts perhaps even canonical conceptual framework
for thinking about diversity. In particular, we try to demonstrate that the framework
provides a sound basis for quantifying the benefit of biodiversity preservation.

2The quotation is taken from Hurka (1983).
3In 1995, the number of chimpanzees on planet earth was less than the number of inhabitants of a
small city (according to Dobson (1996)).



A Decision-Theoretic Foundation for Existence Value

The formalism developed in this paper is designed to capture the intrinsic (“existence”)
rather than the instrumental (“use”) value of biodiversity; prime instances of the lat-
ter are agricultural and pharmaceutic uses of genetic resources. The instrumental
value of biodiversity derives from the entailed provision of natural resources and thus
depends critically on the amount of resource. For instance, the instrumental value
of rhinoceroses for use of their horn, say as aphrodisiac or shaft of a dagger, clearly
depends on their number. By contrast, the existence value of rhinoceroses derives from
their possessing a unique combination of specific features. Additional individual rhinos
have no marginal existence value, unless they have valuable features of their own.?
While the instrumental value is much easier to integrate into economic analyses, it is
only a poor approximation of the intrinsic value. For instance, in terms of use value
the rapid development of genetic engineering technology promises to more than make
up for what is lost in natural genetic resources. However, such technological progress
cannot substitute for the lost intrinsic value.

Since “existence value” may seem rather elusive a concept, it is highly desirable to
endow it with a decision-theoretic foundation. For this purpose, we provide in Sec-
tion 2 a representation theorem® for a decision-maker’s preferences whom, borrowing
a metaphor from Weitzman (1998), we shall call Noah. Noah’s preferences are de-
fined over probability distributions of sets of existing species (“species lotteries”). The
representation justifies the functional form assumed by the multi-attribute approach;
specifically, it is shown that Noah’s von-Neumann-Morgenstern utility function must
be a diversity function which, moreover, uniquely reveals his attribute weights.” Noah’s
(i.e. our) very real problem of constructing a preference relation thus boils down to one
of assigning appropriate attribute weights.

Diversity as Aggregate Dissimilarity

The basic contribution of the multi-attribute approach is to explain diversity in terms
of something simpler, the weight of different attributes. It is attractive partly because
of its generality and flexibility; this flexibility comes, however, at an (apparent) price,
namely the lack of specific structure and the great number of possible ways to fill it.
One way to obtain more specific structure is to restrict the set of admissible attributes
to a patterned family by setting the weight of all others to zero; this strategy will be
extensively explored in this paper.

A natural alternative is to conceptualize diversity as “aggregate dissimilarity,” that
is: as determined by the pairwise dissimilarities between objects. This indeed was the
program of Weitzman (1992), who realized it for contexts in which attributes have an
especially simple organization as “taxonomic hierarchies.” However, the hierarchical
model entails strong restrictions on the associated dissimilarity metric.

4By contrast, the value supplied by the largest industrial user of biodiversity, the tourist and
recreational industry, is arguably derived to a significant part from its intrinsic value.

5Indirectly, the number of currently existing individuals of a species matters also from an existence
value perspective as it influences the survival probability of the species in the long run.

6The result is a re-interpretation of Nehring (1999a, Th.2).

"Strictly speaking, the latter requires an identification of co-extensive features, i.e. features pos-
sessed by exactly the same set of objects/species in the domain; thus, technically, attributes have to
be understood as equivalence classes of co-extensive features (see Section 2.1).



Here, we will show that aggregation of dissimilarities is possible for more general
dissimilarity metrics using more flexible organizations of attributes (“models”). Indeed,
a main concern of this paper is to determine exactly when the view of diversity as
aggregate dissimilarity is compatible with the multi-attribute approach. We find that
the domain of compatibility extends significantly beyond that of taxonomic hierarchies,
but still remains restricted to “one-dimensional” models. We conclude from this that
the view of diversity as aggregate dissimilarity has inherent limitations, and that multi-
dimensional situations need to be understood within a multi-attribute framework.

As a first step beyond the hierarchical model, we study of the line model, in which
objects (species) are described in terms of a uni-dimensional quality characteristic. The
line model assumes that all attributes are quality intervals such as “weighing more than
1 ton” or “weighing between 1 and 10 pounds.” The line model in effect generalizes
the hierarchy model, and diversity is again a simple function of dissimilarity.

When, in general, can the diversity of an arbitrary set be determined from the
pairwise dissimilarities between its elements? This question is made formally precise
in terms of a property of binary determinacy in Section 4. The first main novel result
of the paper, Theorem 4.1, shows binary determinacy to be equivalent to the condition
that there be no cycles of three attributes, i.e. that there be no triple of objects such
that for each pair of them there is an attribute possessed by both but not by the third
object.?

Somewhat paradoxically, for certain binary determinate models the diversity of a
set may decrease as the dissimilarities between its elements increase. Since it seems
unsatisfactory to explain a decrease in diversity by an increase in the underlying dissim-
ilarities, an intuitively compelling notion of diversity as aggregate dissimilarity requires
the diversity of a set to be a monotone function of the dissimilarities between its el-
ements. The second main result, Theorem 6.2, shows this requirement to correspond
to a stronger condition of acyclicity of the underlying attribute family which in addi-
tion excludes cycles of length greater than three. As biologically interesting instances
of acyclic models generalizing lines and hierarchies, we introduce “phylogenetic trees”
that simultaneously incorporate evolutionary and taxonomic information. Theorem
6.2 has the corollary that within the multi-attribute approach, there is a unique way
to aggregate pairwise dissimilarities into diversity, namely via the minimal length of
a spanning tree. We also identify the major restriction imposed by acyclicity on the
underlying dissimilarity metrics (Proposition 6.4).

While the view of diversity as aggregate dissimilarity thus turns out to have a limited
domain of applicability, it offers powerful advantages. Since dissimilarity judgements
translate directly into preference judgements over sets with at most two elements, it
simplifies Noah’s task of constructing a preference ordering substantially.

The Distinction Between One- and Multi-Dimensional Models

An important example of a model that is not acyclic is the “hypercube,” the simplest
and most basic multi-dimensional model, in which objects are described as strings
of zeros and ones (embodying, for example, a genome), and attributes correspond to
particular shared substrings (see Section 3.3). Starting from this example, we argue
that acyclicity can be viewed as a natural definition of the one-dimensionality of an

8The exact characterizing condition (“no-free-triples”) is slightly weaker.



attribute family that is particularly well-suited for a theory of diversity. This perspec-
tive motivates an alternative reading of Theorem 6.2 as a result about one-dimensional
(i.e. acyclic) attribute structures. Together with closely related results of the paper, it
has two main implications. First, diversity behaves in a unified way in one-dimensional
models since it is characterized as the length of a minimum spanning tree; this be-
havior exhibits the common-sense comparative statics property of monotonicity in dis-
similarity. Secondly, the global behavior of diversity in one-dimensional models differs
fundamentally from that in multi-dimensional models. In one-dimensional models the
diversity of a set must grow roughly in proportion to its cardinality, while it may
grow much more slowly in multi-dimensional models. As a result, ignoring the multi-
dimensional nature of a situation may lead to misestimations of the true diversity by
orders of magnitude, as illustrated in Section 7.

Relation to the Literature

Diversity theory can be viewed as a branch of utility theory with a focus on how
marginal utility depends on the set of goods consumed. Valuing biodiversity is clearly
a special case, with society consuming the existence of species as heterogeneous goods.
In terms of utility theory, similarity between goods translates into their closeness as
substitutes. While closeness as substitutes has been understood traditionally as elas-
ticity of substitution between pairs of goods, the novel contribution of the diversity
viewpoint is an analysis of the “combinatorics of substitution,” i.e. of the potentially
complex dependence of marginal utilities on the entire set of goods consumed. A nat-
ural application is to models of differentiated products. Indeed, the multi-attribute
framework can be viewed as a discrete version of the Lancasterian approach in which
consumption goods are described as bundles of ultimately valued characteristics (see
Lancaster (1966), (1979)). Our analysis contributes to this approach the beginnings of
a rich representation theory, both for the general model as well as for the restrictions
entailed by specific “consumption technologies.” In the present paper, we study a few
especially natural and basic examples. A more systematic treatment is provided in a
companion paper, “Diversity and the Geometry of Similarity” (Nehring (1999b)).

In decision theory, preferences over a domain of sets have been studied in the context
of “preference for flexibility” following Kreps (1979). It follows from the analysis in
Nehring (1999a) that “preference for flexibility” can be thought of as preference for
diversity of opportunity sets. The role of diversity has also been emphasized, following
Pattanaik and Xu (1990), in the related literature on the measurement of opportunity
and “freedom of choice” (see, e.g., Sugden (1998) for a recent overview). In the context
of valuing biodiversity, the flexibility value of existing species for instrumental purposes
is often referred to as their option value. In Section 2.5.1, we indicate how this paper’s
framework can be interpreted along these lines.

The literature most directly relevant to our paper consists of the two pioneering con-
tributions by M. Weitzman, “On Diversity” (1992, henceforth W92), and “The Noah’s
Ark Problem” (1998, henceforth W98). The general program of W92 was to derive the
diversity of a set from pairwise dissimilarities between its elements. The multi-attribute
approach is conceptually more general as it derives both diversity and dissimilarity from
more primitive data, namely attribute weights: the dissimilarity of an object z from an-
other object y is defined as the total weight of all attributes possessed by z but not by .
With similar intent, Weitzman proposed in W98 the “species/library” metaphor which
identifies species with collections of books (“libraries”); the multi-attribute approach



developed here can be viewed as a systematic and mathematically fully articulated de-
velopment of Weitzman’s metaphor, confirming (we hope) his belief in the metaphor’s
“staying power.” Both W92 and W98 focus on taxonomic hierarchies. While analyti-
cally especially transparent and well-behaved, taxonomic hierarchies have very special
properties and are thus of limited applicability. The vast space of non-hierarchical
attribute structures is virgin territory.

Since the early 90s, biologists have independently begun to conceptualize diversity
in terms of the counting of attributes in a spirit akin to Weitzman’s species/library
metaphor; see Gaston (1996) for an overview. Most of the specific mathematical mod-
els proposed in this literature attempt to model phylogenetic diversity based on evolu-
tionary trees, and can be viewed as variants or extensions of the hierarchy model. The
most elaborate of these (as far as we know), proposed by Faith and Walker (1994),
can be shown to correspond to an acyclic attribute structure with specific assumptions
about attribute weights; it is thus a special case of the theory developed in Section 6.

The remainder of the paper is organized as follows. Section 2 introduces the multi-
attribute framework. Section 3 describes and analyzes the three paradigmatic models
of taxonomic hierarchies (Section 3.1), lines (Section 3.2), and the hypercube (Section
3.3). A further natural model, the “tree model” is analyzed in Section 5. Sections 4 and
6 form the mathematical core of the paper, providing the characterizations of binary
determinacy and monotonicity in dissimilarity in terms of triple acyclicity and acyclic-
ity, respectively. Central to the latter is a characterization of the geometry of acyclic
attribute structures in terms of trees (Theorem 6.1). Section 7 illustrates the funda-
mentally different quantitative behavior of diversity in one- versus multi-dimensional
models. In the concluding Section 8, we briefly indicate the existence of promising ap-
plications of diversity theory to two other contexts, economies of scope and case-based
decision theory. An application to the measurement of social diversity is sketched in the
body of the paper; see 2.5.2 for the basic idea. All proofs are collected in an appendix.

2 The Multi-Attribute Model of Diversity

2.1 Diversity Functions

Let X be a finite universe of objects, with 2% denoting its power set. In the context of
biodiversity, an object x € X may correspond to a biological species, for instance.® The
basic idea underlying the proposed multi-attribute approach is to view the diversity
of a set S C X as determined by the value of the different features possessed by the
objects (species) in S. An elementary but fundamental step in the development of the
theory is to describe features in terms of their eztension, i.e. to identify each feature
with the subset A of all objects in X that possess the feature in question. A subset
A C X thus defines an equivalence class of co-extensive features, henceforth referred to
as the attribute associated with A. For all A C X, denote by A4 > 0 the weight of the
attribute A, i.e. the weight of all features with extension A. Upon normalization, A4
can be thought of as the relative importance of the corresponding attribute. If there is
no feature possessed exactly by the objects in A, then A4 = 0. An object x possesses
the attribute A, i.e. one and therefore all features with extension A, if z € A. A set

90ther entities may play the role of the fundamental “unit of conservation,” such as genes, habitats,
or individual organisms.



S realizes the attribute A if AN S # (, i.e. if there is at least one element in S that
possesses the attribute A.1°

Definition A function v : 2X — R is called a diversity function if there exists a
positive measure (additive set-function) A on 22" such that for all S C X,

v(S)=A{ACX:ANS#0)= > 4 (2.1)

ACX:ANS#D

where A4 := A({A}) and, by convention, v(f}) = A\g = 0.1' The function X : A — X4
is referred to as the attribute weighting function associated with v. The support
A:={AC X : A4 #0}, ie the set of attributes with non-zero weight, will be called
the family of relevant attributes.

By (2.1), the diversity value of a set S is given by the sum of the weights of all
attributes realized by the set S. Note that each attribute occurs at most once in the
sum. In particular, each single object contributes to diversity the weight of all those
attributes that are not possessed by any already existing object. The functional form
(2.1) may look rather special, both in assuming additive separability and in disre-
garding how often attributes are realized. A rigorous justification will be given via a
representation theorem in Section 2.4 below.

A central aspect of the multi-attribute approach is to characterize the qualitative
and quantitative behavior of diversity in terms of properties of the underlying family A
of relevant attributes. In principle, every conceivable attribute might be deemed rele-
vant, i.e. one may take A = 2%X\{@}. This, however, easily gets too complex since with n
objects there are as many as 2™ — 1 conceivable attributes. As a drastic countermeasure
to this combinatorial explosion, one might consider restricting the family of relevant
attributes to the family of all singleton attributes, i.e. to take A = {{z} : z € X}.
This, however, leads to an additive diversity function, i.e. v(S) = > sv({z}), and
thus ignores any similarities between elements. In most applications, the family of
relevant attributes will exhibit particular structure that one will wish to incorporate.

Example 1 (Whales, Rhinos, and Sharks) Consider a universe consisting of the
three species whales (wh), rhinoceroses (rh) and sharks (sh).!? Considering the bi-
ological classification of species, two natural attributes in this example are “being a
mammal,” corresponding to the set {wh,rh}, and “being a fish,” corresponding to
{sh}.** A finer distinction would also include the two remaining idiosyncratic at-
tributes {wh} (“being a whale”) and {rh} (“being a rhino”) as relevant attributes.
Suppose for now that this list exhausts the attributes deemed relevant. Applying for-
mula (2.1), one obtains v({sh,rh}) = v({sh}) + v({rh}), i.e. the diversity value of
shark and rhino species together equals the sum of the value of each species taken

10Subsets of X thus take on a double role as sets to be evaluated in terms of diversity on the one
hand, and as weighted attributes on the other. In order to notationally distinguish these roles we will
always denote generic subsets by the symbol “A” whenever they are viewed as attributes, and by the
symbol “S” otherwise.

' Technically, diversity functions that are further normalized so that v(X) = 1 are known as plau-
sibility functions (“conjugate belief functions”) in the sense of Dempster-Shafer (Dempster (1967),
Shafer (1976)). Observe that in this case A is a probability measure.

12Frequently, our use of the term “species” is that of a layman rather than that of a biologist.

13Note that, due to their extensional identification, the interpretation of attributes depends on a
prespecified universe. For instance, the idiosyncratic attribute {sh} corresponds to “being a fish” only
in a universe that contains no other fish.



separately. Intuitively, this reflects the heterogeneity of the two species. On the other
hand, the joint attribute “mammal” renders rhinos and whales similar with respect
to their biological classification. Applying (2.1) to the set of these two species yields
v({wh,rh}) = v({wh}) +v({rh}) = Afun,m}, i-e. the diversity value of whale and rhino
species together is less than the sum of the corresponding individual values by the
weight A 5 of their common attribute “mammal.” In this way, the multi-attribute
approach captures the central intuition that the diversity of a set is reduced by simi-
larities between its elements.

The family of relevant attributes in Example 1 exhibits a hierarchical structure
in the sense that any two relevant attributes are either disjoint, or one is contained
in the other (see Figure 1, left, with the small circles representing the idiosyncratic
attributes). This structure underlies most of the work of Weitzman W92 and W98; it
is analyzed in more detail in Section 3.1 below. While particularly transparent and
well-behaved, the hierarchical model turns out to be too restrictive in many cases. To
illustrate, consider again the species in Example 1.

Example 1’ Suppose that v({wh}) = v({rh}), i.e. suppose that whales and rhinos
have equal value in isolation. Then, given the relevant attributes as in Example 1
above, formula (2.1) entails the restriction v({rh,sh}) = v({wh, sh}). However, this
conclusion fails to reflect an important commonality between sharks and whales, namely
their living in the ocean. Adding the relevant attribute {wh, sh} corresponding to
the common habitat sets things right: in accordance with intuition, one now obtains
v({rh,sh}) > v({wh, sh}). For verification, note that, given the new attribute {wh, sh}
(“living in the ocean”), the assumption v({wh}) = v({rh}) implies that Ay > Afuny-

Clearly, including the new attribute {wh, sh} destroys the hierarchical structure
since it overlaps with the attribute {wh,rh} (“mammal”). Nevertheless, the resulting
family of relevant attributes still admits a tractable structure. Indeed, the three species
can be ordered from left to right in such a way that all relevant attributes are intervals
with respect to the ordering (see Figure 1, right). The resulting “line model” is analyzed
in Section 3.2 below.

«, Iy bh)
“mammal” “mammal” ocean 11v1ng

. . i
(@ @ o @ (® o

rh wh sh rh wh sh

Figure 1: Hierarchical versus linear organization of attributes

2.2 Distinctiveness and Dissimilarity

For practical purposes, marginal diversity will often play a decisive role. Consider
the following problem, henceforth referred to as Noah’s local problem: Suppose the
set of existing species is S, but one of the species in {y1,y>} C S must be sacrificed.
Using a metaphor from W98, Noah’s ark cannot carry both y; and y». Which species
should Noah let go? Formally, the obvious solution is to sacrifice y; if and only if
v(S\{y1}) > v(S\{y2}), i.e. to sacrifice the species y with the lower marginal diversity



v(S)—v(S\{y}), intuitively: to sacrifice the least distinct species. Indeed, in the multi-
attribute model, the distinctiveness of species x from the set S is defined naturally as

d(z,S) :=v(SU{z}) — v(9). (2.2)

This interpretation of marginal diversity as distinctiveness is justified by the observation
that d(z,S) is the total weight of all attributes possessed by z that are not already
realized by S, i.e.

d(z,S) = X{A:z€ A, AN S =0}).

Also, let

d(x,y) = d(z, {y}) = v({z,y}) —v({y}) = A{A:z € A,y ¢ A}) (2.3)

denote the dissimilarity of x from y, i.e. the total weight of all attributes possessed
by z but not by y. Due to non-negativity of A, the function d : X x X — R satisfies
the triangle-inequality, i.e. d(z,2) < d(z,y) + d(y, z) for all z,y,z. Hence, d(-,-) is a
pseudo-metric, and we will refer to it as the dissimilarity (pseudo-)metric associated
with a diversity function. In general, the function d may be non-symmetric, and thus
fail to be a proper metric. It is symmetric if and only if v({z}) = v({y}) for all z,y.
This case of equal valuation of singletons will be referred to as the uniform case.

2.3 Recovering Attribute Weights via Conjugate Moebius
Inversion

On the multi-attribute approach, the diversity value of a set is defined as the to-
tal weight of all attributes realized. In this subsection we show how the underlying
attribute weighting function can be recovered from a given diversity function using
conjugate Moebius inversion.

Recovering attribute weights from a given diversity function is particularly simple
in the case of idiosyncratic attributes: the weight Ag,) of the attribute {z} is given
by the total weight of all attributes (= v(X)) minus the total weight of all attributes
possessed by any object different from x (= v(X \ {z})). In general, one has the
following result.

Fact 2.1 (Conjugate Moebius Inversion) For any function v : 2X — R with
v(P) = O there exists a unique function X : 2% — R, the conjugate Moebius inverse,
such that Ay = 0 and, for all S,

v(S)= > Aa
A:ANS#0
Furthermore, the conjugate Moebius inverse X is given by the following formula. For
all A+ 0,
A=) (D)FAIHp(50),
SCA

where S¢ denotes the complement of S in X.

M4 The result is obtained by applying (ordinary) Moebius inversion (cf. Shapley (1953), Rota (1964))
to the associated loss function ¥, defined by 9(S) := v(X) — v(X \ S) (see Nehring (1999a)).



By Fact 2.1, the only restriction on a set function v : 2¥ — R entailed by the multi-
attribute model of diversity is A > 0, i.e. positivity of the corresponding conjugate
Moebius inverse. In order to characterize this restriction directly in terms of properties
of the function v we need the following definitions. A function v : 2% — R is monotone
if W C S implies v(W) < v(S). Furthermore, v is called totally submodular if, for any
collection {S;}ier,

v (ﬂ 5,») < > (FpFty <U 53) : (2.4)

il J:0£ICT icJ
The following fact can be derived from Chateauneuf and Jaffray (1989, Cor. 1).

Fact 2.2 The function v : 25X — R is a diversity function, i.e. has a positive conjugate
Moebius inverse, if and only if v is monotone and totally submodular.

The basic instance of total submodularity is given by the case of #I = 2 in which (2.4)
specializes to the following condition known as submodularity. For all Sy, S2,

U(Sl n 52) + U(Sl U 52) < ’U(Sl) + ’U(SQ).
Equivalently, for all S;,.S; with Sy C Sy, and all z,
v(S1 U {z}) —v(S1) < v(S2 U{z}) —v(S2), (2.5)

i.e. the marginal value of an additional object decreases with the set of objects already
available. In the multi-attribute model, the property of decreasing marginal diversity
is immediate since v(S U {z}) — v(S) = d(z,S) = A{A:z € A, AN S = (}), which is
decreasing in S due to the positivity of A.

2.4 A Decision-Theoretic Representation Theorem

In this subsection, we provide a decision-theoretic foundation of the proposed concept
of diversity. Specifically, we derive the cardinal scale of diversity functions and the pos-
itivity of their conjugate Moebius inverse from properties of an underlying preference
relation. The key to this is to view diversity functions as von Neumann-Morgenstern
utility functions representing binary relations > defined on the simplex A% of set-
lotteries (“species lotteries”) with appropriate properties. The intended interpretation
of > is that for all lotteries p, q € AQX, p = ¢ if and only if p is (weakly) preferred to ¢
in terms of entailed expected diversity. As usual, we denote by ~ and > the symmetric
and asymmetric part of >, respectively. In the biodiversity context, set-lotteries can
be identified with acts that result in the probabilistic survival of certain species. The
desired representation of > is that for all acts p,q € AQX,

prage Y ps-v(S) =Y gs-v(S), (2.6)

SCX SCx

for some diversity function v, where ps and gs denote the probability of S under p and
q, respectively. The representation (2.6) in terms of expected diversity is guaranteed by
the following axioms imposed on >. The first is the set of von Neumann-Morgenstern
axioms.



Axiom vNM (von Neumann-Morgenstern)
i) (Completeness) For all p,q € AQX, pr=gqorq>np.
ii) (Transitivity) For all p,q,r € AQX, p>=qandq>rimply p > r.

iii) (Independence) For all p,q,r € AQX, and all @ € (0,1),
prqgeap+(l—ar=aqg+ (1—a)r.

iv) (Continuity) For all p,q,r € AQX, p > q = r implies the existence of
a € [0,1] such that ¢ ~ ap+ (1 — a)r.

It is well-known that vNM implies the existence of a function v : 2¥ — R, unique up
to a positive affine transformation, such that (2.6) holds. Furthermore, by Fact 2.1, for
any such function v with v()) = 0 there exists a unique measure X satisfying (2.1) for
all S. Consequently, the only additional restriction entailed by the representation of >
in terms of expected diversity is that A4 > 0 for all A. It is non-negativity of all weights
attached to attributes that allows one to interpret v as a diversity function, and thus
demarcates the proposed concept of diversity from overall subjective utility which may
include instrumental components. For instance, an arachnophobic individual attaches
negative instrumental utility to individual spiders, but may well value the existence of
spiders as a species.

Positivity of the conjugate Moebius inverse A is guaranteed by the following condi-
tion. For any family S C 2%, let p(S) = Y g Ps denote the probability of S.

Axiom POS (Positivity) For all p,q € AQX, p > q whenever

p({S:SNA#0}) >q({S:SNA#(}) for all A.

Axiom POS can be paraphrased as follows: If, for any conceivable attribute A, the
probability that A is realized under p is at least as great as the corresponding probability
under ¢, then p is (weakly) preferred to ¢q. To illustrate, consider subsets Si,S2, W such
that W D (S1 U Sy) and S; NSy = . Then, condition POS implies

1 1 1 1
3 lms + 5 1W\52} = [5 w4 5 Iwsiusy) | (2.7)
where, for any S, 1g denotes the lottery that gives S with certainty. Hence, losing
one of the subsets S; or S, for sure (with equal odds) is always preferred to facing
a fifty-percent chance of losing both S; and S3.'®> This can be verified as follows.
Any attribute A that intersects W \ (S; U S2) will be realized with certainty under
both lotteries in (2.7). On the other hand, all attributes A that intersect W but not
W\ (S1 US,) will be realized with probability 3 under the right-hand lottery, and
with probability > % under the left-hand lottery. By POS, the left-hand lottery must
be preferred. Observe that, given a representation in terms of expected diversity, the
preference in (2.7) is strict whenever there exists a relevant attribute A C (S; U Ss)
such that ANS; # @ and AN Ss # (. For instance, suppose that W consists of whales,
rhinos and sharks. Then, with S; = {wh} and Sy = {rh}, the lottery on the right-hand
side of (2.7) entails a survival probability of % for mammals, while the probability of
survival of at least one mammal is 1 under the lottery on the left-hand side. The strict

15 A risk-aversion implication of this kind has already been highlighted in W98.
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preference for the left-hand lottery thus follows from the attribute “mammal” having
a strictly positive weight.

The following result shows that vINM and POS jointly imply the desired represen-
tation.

Theorem 2.1 Let > be a binary relation on A" The following statements are equiv-
alent.

(i) = satisfies yNM and POS.

(i) There emists a diversity function v : 2%

— R, unique up to multiplication by a
positive scalar, such that for all p,q € AQX,

prae Y ps-u(S) =Y gs-v(S).

SCX SCX

(iii) There exists a non-negative measure A on 22X, unique up to multiplication by a
positive scalar, such that for all p,q € AQX,

prae Y p{S:SNAZI) A>3 q(S:SNA#) A

ACX ACX

The proof of the equivalence of (i) and (ii) parallels the proof of Theorem 2 in Nehring
(1999a) and is therefore omitted here. The representation in part (iii) can be para-
phrased as follows: p is weakly preferred to ¢ if and only if p realizes more valuable
attributes than ¢ in ezpectation. The equivalence of (ii) and (iii) is straightforward in
view of Fact 2.1.

W98 developed a cost-benefit calculus for the case of independent survival prob-
abilities 7, of species x € X, i.e. with ps = J],.g7.. Consider an increase in the
survival probability of species y by €, while those of other species remain unchanged.
By (iii) in the above theorem, the resulting gain in expected diversity is given by

€- Z( H (1 —=mz)) - Aa.

AiyeA zeA\{y}

Note that the weight of any attribute possessed by y is multiplied by the probability
that no other species possessing the attribute survives. In many cases, including almost
all models studied below, the summation ranges over no more than (#X)? non-zero
summands, thus ensuring practical computability.

2.5 Other Interpretations

The multi-attribute framework allows for a variety of interpretations. Besides the inter-
pretation in terms of biodiversity, the following two seem to be natural and important
from an economic perspective.

2.5.1 Option Value

A frequently cited rationale for valuing biodiversity is derived from uncertainty con-
cerning which species possess specific instrumentally desirable features. This is often
referred to as the “option value” of biodiversity. To see how this can be modelled

11



using the multi-attribute approach, assume that society cares for the existence of some
specified natural drug. For simplicity, assume that the utility of a certain set S of
existing species is 1 if there is at least one species € S that carries the drug, and 0
otherwise. Moreover, while the experts are uncertain about which species (of plants)
carry the drug they agree on the relevant probabilities. Any subset A of species can
be interpreted as the “event” that exactly the species in A carry the drug. Denoting
by Aa the probability of event A, the probability that some species in S will carry the

drug is given by
u(S)= > Aa
A: ANS#D

Clearly, for any probability distribution A, the function v is a diversity function. By
Theorem 2.1, a preference relation over set-lotteries satisfying POS uniquely reveals,
for each event A, the subjective probability A4 of A (conditional on the event that
some species carries the drug).t6

2.5.2 Sociodiversity

The steady growth of cultural diversity in contemporary societies has provoked a lively
debate on the entailed benefits and costs both to individual organizations and society
as a whole. Our methodology promises to provide useful tools for modelling both
costs and benefits of social diversity. A benefit of diversity derives from the fact that
different people tend to have different ideas, and thus tend to be more productive as
teams. This can be modelled along the lines of the option value interpretation with
A4 as the (subjective) probability that exactly the group A of agents is able to come
up with a solution to some problem; the probability that someone in S is able to solve
the problem is given by v(S) = A({A: ANS # 0}) as above.

On the other hand, a significant part of the costs of diversity consists in the greater
need for and greater difficulty of communication.!” In the following, we take these
costs as being determined by the heterogeneity of experience of groups of agents. An
individual is described by a set of formative experiences; the heterogeneity of a group of
agents will be measured by the overall range of experiences of members of the group.'®
In the language developed above, a formative experience thus corresponds to a feature
of a person; an attribute, therefore, is a set of individuals sharing the same formative
experience. Attribute weights reflect the relative importance of specific experiences in
defining someones identity.

Using a metaphor from W98, one may refer to a formative experience as a book read
(or, alternatively, a web page hit). The diversity of a set of individuals is then given by
the number of different books that have shaped its members; a group of individuals,
and even a single individual can thus be viewed as the library of these books. With even
greater metaphorical license, the diversity of a group can be viewed as the number of
books that have to be read by an outsider in order to fully understand every member
of the group. Each book can be viewed as a meme in the felicitous expression of

6Due to the assumption Ag = 0 in Fact 2.1, only this conditional probability is revealed.

17 An equilibrium model for cross-cultural teams that emphasizes the tradeoff between productivity
benefits and communication costs of teams can be found in Lazear (1999).

18For a complementary approach to the measurement of group heterogeneity, see Esteban and
Ray (1994). While these authors conceptualize social polarization in terms of an average of socio-
psychological distances among pairs of individuals, our approach focuses “holistically” on the coherence
of a group as a whole.
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R. Dawkins. Note that counting the number of books is only justified for “atomic”
(genuinely different) books.

2.5.3 Valuing and Measuring Diversity

In the sequel, we repeatedly invoke and contrast the bio- and sociodiversity interpreta-
tions. We distinguish between the two not primarily because of a putative fundamental
difference of the bio- and the socio-spheres in terms of diversity. Rather, the distinction
reflects the difference between wvaluing diversity (in the sense of weighting attributes)
and measuring diversity (in the sense of counting books). On the former interpreta-
tion, diversity theory is a branch of utility theory (with sets as consequences), on the
latter a branch of measure/probability theory (where points have the structure of sets).
The measurement interpretation has the advantage of greater objective reality, albeit
at a highly metaphorical level. On the other hand, since valuing can be operational-
ized in terms of preferences (i.e. hypothetical choices), the value interpretation has the
advantage of greater rigor.

While we have sited “valuing” in the biological and “measuring” in the sociological
context in the present exposition, the opposite pairings are also meaningful. Indeed,
there is an inherent interplay between the two dimensions: valuing presumably reflects
in part measured “objective” dissimilarity and distinctiveness; on the other hand, mea-
suring will typically involve subjective judgements of the relevance of factual differences.
We thus view the value and the measurement interpretations as complementary.

3 Paradigmatic Models

While conceptually compelling, the multi-attribute framework is not readily applicable
in its unconstrained form since with n objects there are as many as 2" — 1 poten-
tially relevant attributes. Depending on the specific context, particular applications
will often exhibit additional structure that one may wish to incorporate. A natural
way to represent such additional structure within the multi-attribute framework is
through appropriate restrictions on the family of relevant attributes. In this section,
we study three basic structural restrictions which promise to be particularly useful in
applications. The resulting models are referred to as hierarchies, lines and hypercubes,
respectively. In hierarchies and lines, diversity can be viewed as aggregate dissimilarity,
but not in hypercubes.

3.1 Hierarchies

A concrete starting point for thinking about diversity is to try to derive the diversity of
arbitrary sets from the pairwise dissimilarities between its elements. This, in a nutshell,
is the program of W92 who demonstrated its success in the context of taxonomic
hierarchies in the uniform case. Specifically, he proposed and studied the recursion
formula (3.2) below, and extended it to the non-uniform case in W98. In this section,
we will see that the recursion formula applies only in the hierarchical case; the larger
program, however, can be realized under weaker, but still restrictive assumptions, as
we will show later.

A family A C 2% of sets is called a (tazonomic) hierarchy if the elements A € A
are nested in the following sense.
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Nesting Property For all A, B € A,

ANB#0=[ACBor BCA].

Accordingly, we will refer to a diversity function v, as well as to the associated attribute
weighting function A, as hierarchical if the support A of relevant attributes has the
Nesting Property. The hierarchical case represents the simplest interesting class of
diversity functions and will therefore serve as an important benchmark model. It is of
evident interest in the context of biodiversity, both under an evolutionary and under a
properly taxonomic interpretation.

The hierarchical model is characterized by the following condition on the underlying
preference relation over set-lotteries. For all m € [0,1],2 € X, S € 2X\{0},q,7 € A%

-1+ (A —mg=nm -1+ (1 —m)r foralyeS]
> 7-1us+(1—7)g =7 15+ (1 —m)r. (3.1)

Note that for this condition to have a bite it must be that r > ¢, since otherwise
it is implied by vNM and POS. Condition (3.1) can be paraphrased as follows: If the
disadvantage of getting ¢ instead of r (with probability 1—) is outweighed by a chance
of having z in addition to {y}, for all y € S, then it must also be outweighed by the
chance of having z in addition to S itself.

Theorem 3.1 Let > satisfy vNM and POS, and let v : 2% — R be the corresponding
diversity function with attribute weighting function A. The following statements are
equivalent.
(i) A has the Nesting Property.
(i) = satisfies (3.1).
(iii) For all x and S,
v(SU{z}) —v(S) = min fu({z,y}) —v({y})]. (3.2)
Of particular interest is the formula (3.2) which allows one to compute the diversity
function v recursively from its values on the set B(X) := {W : 1 < #W < 2} of
all non-empty subsets of X containing at most two elements. We refer to B(X) as
the family of binary sets with the understanding that these include all singletons as
well. The recursion formula can be rewritten suggestively in terms of distinctiveness
as follows. For all z, S,
d(z,S) = mind(z,y). (3.2")
yeS
From a purely mathematical point of view, this is the natural way to define a point-set
metric from a metric between objects, namely the familiar Hausdorff metric. By Theo-
rem 3.1, however, the validity of (3.2') is restricted to the special case of hierarchies.?
In view of the recursion formula, Noah’s local problem simplifies dramatically in the
hierarchical case: sacrifice the species that is least dissimilar from its closest neighbour
among the remaining species. Formally, for a given set S and y;,y2 € S, let z; and 25 be
the closest neighbours of y; and ys, respectively, i.e. z; := arg minzes\{yi}d(yi, z). By

19W98 uses (3.2) to define the distance of a point to a set in general, and notes the equality of his
definition with marginal diversity in the hierarchical case.
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(3.2'), the loss in diversity by giving up ¥; is then simply d(y;, z;). On the other hand,
Theorem 3.1 also shows that the “closest neighbor” criterion typically fails outside the
hierarchy model.

Although particularly transparent and well-behaved, the hierarchy model is clearly
highly restrictive, as has already been observed in Section 2.1. This is also reflected
in the properties of the underlying dissimilarity metric. In particular, it is well-known
that in the uniform case (equal valuation of singletons) the recursion (3.2') holds if and
only if d is an ultrametric, i.e. if and only if the two greatest distances between any
three points are equal (see, e.g. Johnson (1967)).

3.2 Lines

In many applications, one will want to exploit pre-existing geometric structure of the
object space. As a simple but fundamental example of geometric structure, consider a
line, i.e. the case in which the universe X is ordered by a given linear (i.e. complete,
transitive and antisymmetric) ordering > according to some one-dimensional quality.
Plausible biological examples are mass, maximal speed, annual number of offspring,
life expectancy, etc.2°

In order to account for the prespecified geometric structure, one needs a concept
of compatibility with that structure. For the line, a natural compatibility requirement,
is that all relevant attributes be intervals in the ordering >. Specifically, denote by £
the family of all intervals with respect to >. We will impose the following condition on
a diversity function v : 2% — R with attribute weighting function A.

Line Compatibility A C L.

Examples of attributes in £ are “being able to run at least 30 mph,” “weighing between
1 and 10 grams.” By contrast, the conceivable attribute “having an odd number of
offspring” is excluded as a relevant attribute by Line Compatibility. The family £ of
all intervals with respect to the ordering > is referred to as the line model. Observe that
Line Compatibility does not require all intervals to be relevant attributes. For instance,
to any hierarchical attribute family A one can associate a (non-unique) linear ordering
such that all elements of A are intervals with respect to that ordering. The line model
is more general in that it allows attributes to (non-trivially) overlap. For instance,
the augmented attribute family {{rh,wh},{wh, sh}, {wh},{rh},{sh}} in Example 1’
above is compatible with the linear ordering rh < wh < sh (cf. Figure 1 above).

3.2.1 Characterizing the Line Model

The key to characterizing diversity in the line model is the following observation. Con-
sider any set {y1, ..., Ym } with the elements ordered such that y; < y2 < ... < ys,. The
distinctiveness d(ym, {y1, .-, Yym—1}) of the right endpoint y,, from the remaining ele-
ments is simply given by its dissimilarity d(ym, ym—1) from its closest neighbor. Indeed,
any interval containing y,, intersects {yi, ..., ym—1} if and only if it contains y,,_1. By
induction, one thus obtains the following formula which we henceforth refer to as the

20Tn many applications more than one quality dimension will be of interest. This can be incorporated
with the help of an appropriate notion of the product of lines, as shown in Nehring (1999b).
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Line Equation. For all y1 < y2 < ... < yYm,

m

v({y1, - um}) = v }) + D di,yi)- (33)

i=2

In terms of the underlying preference relation > over set-lotteries, the Line Equation
(3.3) translates into the following “risk-neutrality” condition. For all z,y, 2 and all S
with y € S,

1 1 1 1
r<y<z= |3 -lsur+5- 1SU{z}:| ~ [5 s+ 5 Lsugaay |- (3.4)

The following result shows that (3.3) and (3.4) are indeed equivalent, and that either
condition characterizes the line model.

Theorem 3.2 Let > satisfy vNM and POS, and let v : 2% — R be the corresponding
diversity function with attribute weighting function X\. The following statements are
equivalent.

(i) A satisfies Line Compatibility.

(ii) > satisfies (3.4).

(iii) v satisfies the Line Equation (3.3).

Note that by the Line Equation, a diversity function on a line is determined by its
values on the family B(X) of all binary sets, as in the hierarchical case.
3.2.2 Noah’s Local Problem on a Line

Consider a set S = {w,z,y, z} with w < < y < z (see Figure 2). Assume that species
x and z are safe, while species w and y are endangered, and that in fact one of them
has to be sacrificed. Which one of w and y should Noah choose?

w Yy

Figure 2: Noah’s local problem in a line

Using the Line Equation (3.3), one easily verifies that the loss in diversity is given by
v(S) —v(S\ {w}) = d(w,z) and

v(S) —v(S\{y}) = d(z,y) + d(y, z) — d(z, ), (3.9)

respectively. Observe that the right-hand side of (3.5) is zero whenever the dissimilarity
metric d is additive in the following sense. For all x, vy, z,

x<y<z=d(z,z)=d(z,y)+dy,x). (3.6)

In particular, if d were additive, Noah would sacrifice y no matter how “close” w is to
z. As a general rule, this seems implausible. Indeed, additivity implies that interior
elements have zero marginal diversity value as follows.
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Proposition 3.1 Let X = {x1,...,z,} with 11 < 79 < ... < Ty, and let v : 2%¥ = R
be a diversity function such that the support A of the corresponding attribute weighting
function satisfies Line Compatibility. The following statements are equivalent.

(1) The associated dissimilarity function d is additive, i.e. satisfies (3.6).

(i) Every A € A contains at least one of the endpoints, x1 or xn, of X = {x1,...,xn}.
(iii) The diversity of any set equals the diversity of its two endpoints, i.e. for all
Y1 < oo <Yy V({Y1, -, Ym}) = v({y1, ym ).

Two general lessons can be gleaned from this discussion. First, rather than being ad-
ditive, dissimilarity can in general only expected to be subadditive. Indeed, in view of
(3.5), Noah’s choice between giving up the outer species w or the middle species y pre-
cisely depends on the “extent of subadditivity” of the dissimilarity metric d (at (z,y, 2)).
By contrast, “objective” measures of distance such as difference in log mass, for ex-
ample, are additive. Hence, dissimilarity cannot be equated with objective distance.
This suggests that judgements about diversity and similarity contain an irreducibly
subjective element.

Secondly, the above analysis reveals that the distinctiveness d(y,S) of an object
y to a set S is in general not determined by the dissimilarities d(y,z) of y to any
z € S. For instance, in the above example d(y, {w,z, z}) also depends on d(z,z). The
dependence of d(y,S) on dissimilarities within the set S shows that the relationship
between (marginal) diversity and dissimilarity is subtle and complex even in simple
models such as the line model. The general analysis of this relationship is the central
theme of Sections 4 and 6 below.

3.3 The Hypercube

In this subsection, we consider the simplest multi-dimensional model in which ob-
jects are described as vectors of binary characteristics. Let K = {1,...,k}, and con-
sider the set X = {0,1}¥ of binary sequences of length k, which we refer to as
the (k-dimensional) hypercube. The intended interpretation is that an element z =
(z*,...,2%) € {0,1}¥ corresponds to a particular combination of k basic properties
with 2/ = 1 (2/ = 0) denoting possession (non-possession) of property j € K. In the
context of biodiversity, a natural interpretation of = is as a genome. Alternatively, the
coordinates may correspond to physical or behavioral properties. It will often be useful
to describe e.g. the size or the maximal speed of motion of species in first approximation
by the opposites large vs. small, slow vs. fast, etc.

In the context of sociodiversity, an example of the hypercube structure is the Myers-
Briggs typology of psychological orientations that is used, among other things, to facil-
itate understanding and communication in the workplace (see, e.g., Keirsey and Bates
(1984)). It is based on a classification according to the following four characteristics: in-
troversion (z! = 1) vs. extroversion (z! = 0), intuition (z? = 1) vs. sensation (22 = 0),
thinking (2% = 1) vs. feeling (® = 0), and perception (z* = 1) vs. judgement (z* = 0).
Hence, e.g. the vector (1,0,1,0) correponds to an introvert, fact-oriented (“sensation”)
person guided by thought (rather than feeling) and normative judgement.

A natural notion of compatibility of a diversity function with the hypercube struc-
ture is the requirement that all relevant attributes be sub(-hyper)cubes. Specifically,
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denoting by
C:={A={0}"" x {1}/> x {0,1}* : K;NK; =0 and K;UK>UK3 =K}

the family of all subcubes of the hypercube, we will impose the following condition on
K
a diversity function v : 2{%1}") 4 R with attribute weighting function \.

Hypercube Compatibility A C C.

Clearly, the grand cube {0,1}¥ corresponds to the universal attribute. The family of
all (k — 1)-dimensional subcubes corresponds to the k basic properties and their nega-
tions; for instance, the subcube A = {1}17} x {0, 1}%\J} describes the set of all objects
that possess property j € K. Subcubes of lower dimension describe conjunctions of
the basic properties (and their negation); for instance, the (k —2)-dimensional subcube
A = {134} x {0} x {0, 1} M5} identifies the set of objects that possess property
j but not property I. In general, a (k — m)-dimensional subcube describes conjunc-
tions of m basic properties. If the elements of X are pictured as genomes, subcubes
intuitively correspond to genetically determined properties. In the four-dimensional
Myers-Briggs typology, a prominent role is played by the basic characteristics them-
selves, i.e. three-dimensional subcubes that fix only one coordinate, by maximal con-
junctions of characteristics, i.e. zero-dimensional subcubes that fix every coordinate,
and by certain conjunctions of two characteristics, i.e. two-dimensional subcubes fixing
exactly two coordinates (cf. Keirsey and Bates (1984)).

The hypercube model differs from the line and hierarchical models in a fundamen-
tal respect: unlike in the hierarchy and line models, pairwise dissimilarities between
objects (plus their values as singletons) fail to determine the diversity of their set in
the hypercube, as shown by the following example.

Example 2 (Insufficiency of Binary Information) Consider the three-dimensional
hypercube X = {0,1}? and the subset S = {(1,1,0),(1,0,1),(0,1,1)} (see Figure 3).

3

A

(0,1,1)

(1,0,1)

(1,1,0)

Figure 3: The 3-hypercube

Construct two diversity functions v; and v, satisfying Hypercube Compatibility from
their respective attribute weighting functions A; and A2 as follows. Set A; equal to
zero except at the grand cube X, for which A\ (X) = 1/3, and at all singletons {z}
(zero-dimensional subcubes), for which A ({z}) = 2/3. Furthermore, set A, equal to
zero except for all “faces” (two-dimensional subcubes) A, for which A2(A) = 1/3. One
has, for all z,y € S with x # y,

v({z}) = Mz} + M (X) 241 = 1,
v({zy}) = Mz +M{y) + &) = 2+2+1 = 2
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To compute the corresponding values for v2, observe that any = € S is contained in
exactly three faces, and that any pair {z,y} C S intersects with five different faces;
hence, for all z,y € S with z # y,

v({z}) = Yas, Aa(4)
v({z,y}) = ZAO{z,y};é(Z\ A2(4) = 5-
Thus, v; and v9 agree on all one- and two-element subsets of S, so that the value of

singletons and the induced dissimilarities within S coincide. Yet, v1 and v, give different
diversity value to the set S itself. Indeed, v1(S) =3-2+1% = I but v2(S) =6-1 =2.

Wl Wl

wlot =

4 Diversity Determined by Binary Information

In the previous section, we have observed a structural difference between the hypercube
on the one hand and the line and hierarchy models on the other. From the Line
Equation (3.3) it follows that the diversity value v(S) of any subset S of the line is
determined by the dissimilarities within S (together with the values of all singletons
in S). As we have just seen, this is no longer true for the 3-hypercube. This suggests
the following question: under what condition on a model is binary information (value
on singletons plus dissimilarity) on an arbitrary subset S sufficient to determine the
diversity of S? To provide an answer, think of a “model” as a family A C 2X of
potentially relevant attributes. A diversity function v is compatible with a model A if
A C A, i.e. if the induced family of relevant attributes is contained in A. Note that
the inclusion can be strict, that is, a model only gives an upper bound on the family
of actually relevant attributes. The line model corresponds to A = £, the hypercube
model to A =C.

Definition Say that a model A is binarily determinate, henceforth: bideterminate,
if it satisfies the following condition. For all diversity functions v;,vs : 2¥ — R with
A, A2 C A4, and all S,

vf(s) = vf“’) = v1(S) = v2(9),

where vB(%) denotes the restriction of v to the family B(S) of all binary subsets of S
with one or two elements.?!

Bideterminacy is introduced as a property of a model; this reflects the fact that,
evidently, the binary information cannot determine the diversity of arbitrary sets all
by itself, as many extensions to a diversity function are mathematically possible. A
particular model restricts the set of possible extensions by specifying which attributes
are admissible; it therefore represents additional qualitative information.

A simple necessary condition for bideterminacy can be derived from Example 2
above. Consider again the triple S = {(1,1,0),(1,0,1),(0,1,1)} in the 3-hypercube.
The key feature of the example is that, for any non-empty subset W C S, there is an
attribute (subcube) that, among the elements of S, is possessed exactly by the objects
in W; formally, with A as the family of all subcubes,

for all non-empty W C S there exists A € A such that ANS =W. (4.1)

210bserve that v8(5) specifies both the dissimilarities within S and the value of all singletons in S;
conversely, the restriction d|s of d to S and the values v({z}) for all z € S jointly determine v5(5),
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Indeed, each singleton in S is distinguished by a zero-dimensional subcube, and the
set S itself is obtained as the intersection of S with the grand cube; furthermore, for
each pair there is a two-dimensional subcube (a “face”) that distinguishes the given
pair from the third element of S. For instance, (1,1,0) and (1,0, 1) but not (0,1, 1) are
contained in the front face of the cube in Fig. 3 above. In general, say that a triple
S is free in a model A, if S and A satisfy (4.1). Thus, a triple S is free in A if for
any subset W C S, there is an attribute in A possessed by all elements of W but by
no other object in S. Bideterminacy in a free triple would require solving six linear
equations — as in Example 2 — for seven unknowns, which obviously is not possible.
More generally, any free triple S in an arbitrary model A4 allows one to construct, in
analogy to Example 2, two diversity functions v; and v2 such that vf(s) = vf ) but
v1(S) # v2(S).2? Bideterminacy thus presupposes that there be no free triples. This
condition turns out to be sufficient as well.

Theorem 4.1 A model A is bideterminate if and only if no triple is free in A.

As we have just seen, hypercubes of dimension > 3 admit free triples. On the other
hand, all hierarchical models and the line model clearly satisfy the no-free-triple con-
dition. As to the former, the Nesting Property implies that, for any triple S, at most
one pair {z,y} C S can be obtained as the intersection of an attribute A with .S, since
otherwise attributes would non-trivially overlap. As to the latter, Line Compatibility
implies that for any linearly ordered triple z < y < z, the set {z, 2} of the two outer
points cannot jointly be distinguished from the middle point ¥, since any interval con-
taining = and z must also contain y. A less obvious example of a bideterminate model
is the 2-hypercube.

Example 3 (The 2-Hypercube) Consider the two-dimensional hypercube X =
{0,1}* = {(0,0),(1,0),(0,1),(1,1)}. Any triple S C {0,1}? necessarily contains two
diagonally opposite elements; by Hypercube Compatibility, such elements cannot share
an attribute that is not also possessed by the third element of S. Hence, no triple is
free. By Theorem 4.1, the diversity of any subset of the 2-hypercube can thus be de-
termined from binary information alone. An explicit formula, e.g. for total diversity
v(X), can be derived as follows. Let z,y,z,w be a consecutive numbering of the four
vertices of the 2-hypercube, say in clockwise orientation as depicted in Figure 4. Then,
for any diversity function v on X = {0, 1}? satisfying Hypercube Compatibility,

v(X) =v({z}) —d(z,2) + d(z,y) + d(y, 2) + d(z,w) + d(w, T). (4.2)

For verification, note that the first term v({z}) — d(z, z) gives the weight Ax of the
universal attribute; each of the following four dissimilarities quantifies the weight of
one singleton plus the weight of one adjacent “edge” (one-dimensional subcube).

y=1(0,1) z=(1L1)

z = (0,0) w = (1,0)

Figure 4: The 2-hypercube

228pecifically, for any W C S, choose an attribute AW € A such that AW NS = W; for all distinct
z,y € S set: A ({A{#3}) =2/3, A1 ({AS}) = 1/3 and A; = 0 otherwise; similarly, Ao({A1}}) = 1/3,
A2 ({A1=¥3}) = 1/3 and A2 = 0 otherwise.
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A striking feature of formula (4.2) is the negative sign with which one of the dis-
similarities enters; it implies that the diversity v(X) can decrease as the dissimilarities
between elements increase.?> To exclude such somewhat paradoxical behavior, we will
study in Section 6 below a condition of “monotonicity in dissimilarity” which requires
diversity to be a monotone function of dissimilarity. It will turn out that in this case
the diversity of any set S can always be represented as the value of a singleton plus the
sum of an appropriate subset of pairwise dissimilarities, generalizing the Line Equation
(3.3). Specifically, one can write,

v(S) =v({wh) + D dz,y(@), (4.3)

z€S\{w}

for some w € S and appropriately chosen elements y(z) # z. Note that each z € S\ {w}
occurs exactly once in the sum on the r.h.s. of (4.3). In particular, identifying each
pair {z,y(z)} with an edge in a graph, formula (4.3) will be seen to define a connected
and acylic graph, i.e. a tree on S. Thus, trees, to which we turn now, will play a central
role in the analysis of monotonicity in dissimilarity.

5 Trees

In this section, we study a natural generalization of the line model, the tree model.
An application in the context of biodiversity is to evolutionary trees. The results of
this section also serve as an important step towards the analysis of monotonicity in
dissimilarity provided in Section 6 below.

A graph v on a set S C X is a symmetric binary relation on S; the elements of
~ are referred to as the edges of the graph. A tree is a connected and acyclic graph.
Given a tree 7 on X, denote by 7 the family of all 7-connected subsets of X, where
A C X is 7-connected if for all z,y € A there exists a path in 7 that connects z and
y and that lies entirely in A. The tree model associated with a tree 7 on X requires
all potentially relevant attributes to be 7-connected, i.e. the tree model imposes the
following condition on a diversity function v : 2%X — R.

Tree Compatibility A C 7.

Important examples in the context of biodiversity are evolutionary trees. Here,
Tree Compatibility can be motivated as follows. Let X be the set of all species that
ever existed, and consider a rooted tree 7., on X with the interpretation that y is an
ancestor of z if y is on the path from the root zo to = (see Figure 5 in which w is
an ancestor of y which, in turn, is an ancestor of x). Denote by 7., the family of all
Tew-connected subsets. Compatibility with the evolutionary tree (A C 7g,) amounts to
the following two conditions on relevant attributes. First, any two species sharing an
attribute must descend from a common ancestor with the same attribute. Secondly,
an attribute once left behind by an evolutionary lineage is never recovered. Both
are natural requirements under a genealogical interpretation of attributes; for specific
examples of connected attributes, see Subsection 5.2 below.

230ne needs to verify that d(z, z) can be increased without altering the other terms in formula (4.2);
the proof of Proposition 6.3 below shows how this is done.

21



To

time

Figure 5: An evolutionary tree

5.1 Characterizing the Tree Model

In the tree model, total diversity v(X) is given by the length of the underlying tree 7
as follows. Fix any w € X, and denote by 7,, the set of all “edges directed away” from
w, ie. Ny = {(x,y) € 7 : y lies on any path from w to x} (see Fig. 5 for the required
location of z and y relative to w). Given a diversity function v on X, the length of T

is defined as
la(r) :=v({wh) + > d(z,y). (5.1)

(z,9)€Nw

That the r.h.s. of (5.1) does indeed not depend on the “starting point” w is easily
verified using the equality d(z,y) + v({y}) = v({z,y}) = d(y, z) + v({z}).

Proposition 5.1 A diversity function v : 25X — R is compatible with a tree 7 on X

(i.e. A CT)if and only if v(X) = l4(7).

Note that in case of a line, this result yields the Line Equation (3.3) applied to v(X).
However, in contrast to the line model, the characterization of diversity does not carry
over to arbitrary subsets. Indeed, the tree model is typically not even bideterminate.
The canonical example is the following.

Example 4 (The 3-Star Tree) Consider the “3-star tree” 7 on X = {x,y1,y2,¥3}
that connects the “center” z with each y;, i = 1,2, 3, by an edge (see Figure 6).

Y1

Y2 Y3

Figure 6: The 3-star tree

Clearly, the set S = {y1,92,y3} is a free triple of T since any subset W C S can be
obtained as the intersection with .S of a 7-connected set A C X (for instance, the subset
{y1,y2} is the intersection with .S of the dotted attribute in Fig. 6); hence, by Theorem
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4.1, T is not bideterminate. In particular, the diversity v(S) cannot be expressed in a
way similar to formula (5.1) above.

Notice that the line is distinguished among all trees by the property that each
element is connected to at most two other elements by an edge. In particular, any tree
that is not a line contains a 3-star tree as a subtree; thus, in view of Example 4, the
line model is the only bideterminate tree model.

5.2 From Evolutionary to Phylogenetic Trees

From a modelling perspective, one may simply accept the underdeterminacy of the tree
model. However, under an evolutionary interpretation this is unsatisfactory since the
tree model T¢, yields no similarity restrictions on the set Y C X of terminal nodes,
in particular no such restrictions on the subset of currently existing species. Indeed,
as exemplified by the 3-star tree above, any subset W C Y of terminal nodes can be
obtained as the intersection of some attribute A € 7., with Y. In other words, for any
subset W of currently existing species there is a potential attribute that is possessed
by all species in W but by no other currently existing species. But one would expect
the evolutionary tree to deliver substantial similarity implications also for the subset of
currently existing species. Such implications can be obtained by selecting appropriate
subfamilies of T., as the set of relevant attributes. The proposal made in W92 and
W98 can be viewed as an example of this strategy. Given an evolutionary tree ey,
any species z defines an attribute A, := {y : z is an ancestor of y}; in biological
terminology, the set A, of species is the “clade” founded by z. Weitzman selects the
family Hey 1= {4, : ¢ € X} of all such clades as the family of relevant attributes.
As is easily verified, the subfamily H., C T, forms a hierarchy, in particular, H,, is
bideterminate. Moreover, by Theorem 3.1, the requirement A C H,, leads exactly to
the recursion formula (3.2) proposed by Weitzman.
Consider, however, the following segment of an evolutionary tree:

time

shark  salmon human

Figure 7: A segment of an evolutionary tree

In Figure 7, z denotes a common ancestor of salmon and human that is not an ances-
tor of shark. Observe that for any uniform diversity function with A C H,, the set
{salmon, human} is (weakly) less diverse than the set {salmon, shark}, in other words,
d(salmon, human) < d(salmon, shark). It seems counterintuitive that the information
about evolutionary descent should force this ranking. In the biological literature, Weitz-
man’s hierarchical model has similarly been criticized for implicitly assuming a constant
speed of evolution (see, e.g. Faith (1994)). On this account the evolutionary clock has
run faster on the branch from z to salmon than on the branch from z to human, mak-
ing salmon closer than human to shark. In response, Faith and Walker (1994) have
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proposed a model which selects a (non-hierarchical) subfamily of 7.,-connected subsets
as the relevant attributes.

In the following, we propose an alternative resolution of the problem raised by the
evolutionary tree in Figure 7. It is based on the observation that the hierarchy .,
neglects an important similarity between salmon and shark that derives from their be-
longing to the same taxon “fish” (corresponding to the dotted subset in Fig. 7). One
would thus want to combine the underlying evolutionary tree 7., with the similar-
ity information contained in the hierarchy H;,, representing taxonomic classification.
Since the taxonomic classification of species should be compatible with the genealogy
of their descent, it is natural to require H;qz C Tey, i.€. to assume that any taxon is
connected in the evolutionary tree 7.,. Without loss of generality, suppose also that
X € Hiqu, i-e. that the universal attribute is included in the taxonomic classification.
Define the phylogenetic tree Tpnyi C Tey corresponding to 7e, and Hiq, as the family
of all intersections of attributes in H,, and Hqz, i.€.,

7;)hyl = {Am N Atam : Am € HevaAtam € Htam}-

Observe that since X € Hyq, and X € H.y, Tpny contains both hierarchies H., and
Htqz; including intersections of attributes is natural as it allows one to assign positive
weight to combinations of the underlying features. Note that by including all clades
A, € Hey, the phylogenetic tree model still allows ranking the set {salmon, shark}
as more diverse than the set {salmon, human}; indeed, salmons and humans share
an important common phylogenetic feature, cartilaginous bones, which sharks do not
have. This point also illustrates why it would be mistaken to simply replace H, by
Htiaz- One can show that the class of phylogenetic tree models is strictly more general
than the line model.?* Nevertheless, one has the following result.

Proposition 5.2 Any phylogenetic tree is bideterminate.

The proof in the appendix verifies this by showing that no triple is free in T,p,; the
assertion thus follows from Theorem 4.1.

6 Diversity as Aggregate Dissimilarity

The concept of bideterminacy does not fully exhaust our intuitive notion of diversity
as aggregate dissimilarity. As already noted in Section 4 above, one would also expect
some kind of “monotonicity in dissimilarity.”

Definition Say that a model A is monotone in dissimilarity if it satisfies the
following condition. For all diversity functions vy, vs : 2X¥ — R with A, Ay C A, and
all S,

07 =0 and dis > das] = v1(S) > va(9),

where v5(5) denotes the restriction of v to the family S(S) := {{z} : 2 € S} of all
singletons in S, and d|s is the restriction of the induced dissimilarity metric to S x S.

24For a proof of this assertion and a deeper analysis of the phylogenetic tree model, see Nehring
and Puppe (2001). In particular, it is shown there that phylogenetic trees satisfy the property of
“monotonicity in dissimilarity” which is defined in the next section as a natural strengthening of
bideterminacy.
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Holding the value on singletons fixed, the defined notion of monotonicity thus de-
scribes the dependence of diversity on a pure change of dissimilarity.?> Note that, by the
Line Equation (3.3), the line model is clearly monotone in dissimilarity. Also observe
that, by definition, monotonicity in dissimilarity implies bideterminacy. The converse
does not hold as the simple counterexample of the 2-hypercube shows (cf. Example 3
in Section 4 above).

To illustrate the above definition, assume that Noah has quasi-linear preferences
over sets of species and money; specifically, interpret v(S) as his willingness to pay
for the preservation of all species in S (if otherwise no species survives). Further-
more, assume uniformity (equal valuation of singletons) along with the normalization
v({z}) = 1, so that single species serve as the numeraire. In particular, d(z,y) can be
interpreted as Noah’s willingness to pay for the preservation of species z if otherwise
only y survives. Consider a situation in which the set of existing species is Y C X
with the subset S C Y as the set of endangered species. Noah had made up his mind
initially about all dissimilarities d(z,y) within X; he then reconsiders some of the dis-
similarities within the set S, finding that in all pairwise comparisons he is willing to
pay for each species in S at least as much as before. In other words, Noah’s revised
assessment d'(x,y) satisfies: d'(x,y) > d(x,y) for all z,y € X, and d'(z,y) = d(z,y)
whenever x ¢ S. Then, monotonicity in dissimilarity ensures that his willingness to pay
for the preservation of all of S cannot go down, i.e. v'(Y) =o' (Y \S) > v(Y)—v(Y'\S),
for it implies both /(Y \ S) = »(Y \ S) and v'(Y) > v(Y). Thus, monotonicity in
dissimilarity ensures that Noah can derive his valuations of complex sets of species
from those about pairs of species. This may be a much easier and more transparent
task; for instance, Noah can derive his dissimilarity judgements from evolutionary or
genetic distances.

6.1 Characterization of Monotonicity in Dissimilarity

The characterization of the class of models that are monotone in dissimilarity proceeds
in three steps. Based on the analysis of the tree model, we first derive a sufficient
condition, “tree-consistency” (Subsection 6.1.1). Based on the counterexample of the
2-hypercube, we then formulate a natural necessary condition for monotonicity in dis-
similarity, “acyclicity.” The third and crucial step is to establish the equivalence of
tree-consistency and acyclicity (Subsection 6.1.2). The implications of this result, in-
cluding the desired characterization of monotonicity in dissimilarity, are described in
Subsection 6.1.3.

6.1.1 A Sufficient Condition: Tree-Consistency

By Proposition 5.1, compatibility with a tree model entails that ¢otal diversity v(X)
is given by the length of the underlying tree, and thus a monotone function of the
dissimilarities in X. However, it follows from Example 4 that compatibility of v with
a tree model on X does not imply compatibility of the restriction v|s to S C X with a
tree model on S. A brute force method to ensure monotonicity in dissimilarity is thus
to require compatibility of the restriction v|s with some tree model on S for all subsets
S C X, as follows.

. S5(8 S5(8 .
25The assumption v] ) _ vy ) fixes a common scale for v; and v2 and thus ensures meaningfulness

of the condition in terms of the underlying preferences over set-lotteries.
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For amodel A on X, denote by A|s := {ANS : A € A} the relativization of A to S;
thus, A|s describes the potential attributes among the elements of S. If v is compatible
with A, then v|g is compatible with A|s.2 Say that a model A is tree-consistent
if, for all subsets S C X, there exists a tree 75 on S such that any A € A|g is 75-
connected. To see what is involved, consider again the subset S = {y1,y2,ys} of the
3-star tree in Example 4 above. We have already observed that S is a free triple in the
corresponding tree model 7 on X = {z,y1,y2,y3}; this means that every non-empty
subset of S is an element of the relativization to S, i.e. T|s = 2%\ {#}. But this implies
that there cannot exist a tree 7g on .S such that any A € T|g is 7g-connected. Hence,
the model 7T is not tree-consistent.

A model is tree-consistent exactly when the diversity of any set is given by the
minimal length of a tree on that set, as shown by the following result.

Proposition 6.1 Let v : 2X — R be a diversity function with attribute weighting

function X\. Then, A is tree-consistent if and only if, for all S,
v(S) = minly(7), (6.1)

where the minimum 1is taken over all trees T on S.

In the following, we refer to a tree on S that achieves minimal length with respect to
d as a minimum spanning tree on S.2” Note that the minimum in (6.1) is taken over
all trees on S, no matter whether A|s is compatible with them.

Clearly, Proposition 6.1 establishes tree-consistency as a sufficient condition for
monotonicity in dissimilarity since the length of a tree on S is a monotone function
of the dissimilarities within S. Moreover, formula (6.1) expresses diversity without
reference to a specific underlying tree. In particular, a tree 7 with which A|s is
compatible can be found by length minimization.

Diversity in a tree-consistent model can also be understood in terms of the following
condition introduced by Weitzman as the “Link Property” (see W92, p.378).2% For all
S with #S > 2 there exist distinct z,y € S such that

o(S) = v(S \ {x}) = d(z,y)- (6.2)

The Link Property asserts that in each set S there exists an “outer point” z and
its “gate” y to S\ {z} such that the distinctiveness of z from S\ {z} is simply the
dissimilarity of = from y.

Proposition 6.2 Let v : 2X — R be a diversity function with attribute weighting

function X\. Then, A is tree-consistent if and only if v satisfies the Link Property (6.2).

26Tndeed, the attribute weighting function \|s of v|s is given by \|s(B Aa, for

) =2 seaans—s
all non-empty B C S; hence, the family of relevant attributes induced by v|s on S is Als.

27 According to the acknowledgement of W92, the proposal to measure diversity in terms of the
length of a minimum spanning tree is due to S. Hart. Note that, in contrast to standard usage in
combinatorics, the metric underlying a minimum spanning tree in our sense is typically non-additive;
also, the trees over which the minimum is taken are restricted to lie in S.

28The Link Property does very different work in Weitzman’s approach. In particular, the framework
of W92 does not allow to derive a result similar to Proposition 6.2. The reason is that W92 (in contrast
to W98) does not assume diversity to be a submodular function. Indeed, the hierarchical model is the
only case in which the set functions considered in W92 can be rationalized in terms of a multi-attribute
model.
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6.1.2 A Necessary Condition: Acyclicity

A closer examination of the no-free-triple condition of Section 4 points to a necessary
condition for monotonicity in dissimilarity. A model A will be called regular if it
contains the universal attribute X and the family S(X) = {{z} : z € X} of all
singletons; note that both the line and hypercube models are regular. For regular
models, the no-free-triple condition is equivalent to the following, otherwise slightly
stronger condition. Say that a model A is triple acyclic if in any triple S there exists a
pair {z,y} C S such that forno A € A, ANS = {z,y}. Thus, a model is triple acyclic
if there is no triple of objects such that any pair of them possesses an attribute that
is not shared by the third object. In Section 4, we have already seen that hierarchical
models, the line model and the 2-hypercube are all triple acyclic, while hypercubes of
dimension > 3 are not.

Consider again the 2-hypercube as a counterexample to monotonicity in dissimi-
larity. While triple acyclic, hence bideterminate, the 2-hypercube admits a “cycle” of
four attributes, namely the four edges (one-dimensional subcubes) (cf. Fig. 4 above).
This motivates the following definition.

Let m > 3; say that a model A is m-cyclic if there exist m distinct elements
Z1,..., T, and m attributes Ay, .., A, € A such that, for alli =1,...,m,

Aindzy, ., zm} = {zi, i1}, (6.3)

where indices are understood modulo m so that z,,41 = x1. A model is called m-
acyclic if it is not m-cyclic; finally, a model is acyclic if it is m-acyclic for all m > 3.
The 2-hypercube is an example of a 4-cyclic model, the 3-star tree in Example 4 is
a 3-cyclic model. Also, observe that the notion of 3-acyclicity just defined coincides
with triple acyclicity as defined above. The following result shows that, for regular
models, acyclicity is necessary for monotonicity in dissimilarity; for a discussion of the
regularity assumption, see Section 6.1.3 below.

Proposition 6.3 Any reqular model that is monotone in dissimilarity must be acyclic.

Being already violated in the 2-hypercube, acyclicity can be viewed as a condition
of one-dimensionality of a model. To confirm the appropriateness of this interpretation,
consider the following class of models. With any connected graph v on X associate its
graphical model M., consisting of all sets A with the property that, if {z,y} C A and 2
is on a shortest path?® between z and y, then z € A. The class of graphical models is
rather flexible; in particular, it contains the line, tree and hypercube models. It is easily
seen that a graphical model M., is acyclic if and only if +y is a line, the paradigmatic
one-dimensional graph. Indeed, the line model is clearly acyclic; conversely, since M.,
contains all edges of v, acyclicity of M., forces v to be acyclic, i.e. to be a tree. But
any tree that is not a line contains a 3-star subtree, and is hence not acyclic.

Note that any selection A" C A of an acyclic model A is acyclic as well. For instance,
hierarchical models are acyclic as selections from the line model. On the other hand, not
every acyclic model is a selection from the line model. For instance, any phylogenetic
tree model can be shown to be acyclic (see Nehring and Puppe (2001)). The following
central result entails that any acyclic model is a selection of a tree model.

Theorem 6.1 A model is acyclic if and only if it is tree-consistent.

29That is, a path with the minimum number of edges.
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Thus, the necessary condition for monotonicity in dissimilarity, acyclicity, is in fact
equivalent to the sufficient condition, tree-consistency. While it is easy to show that
tree-consistency implies acyclicity, the converse implication is substantially more diffi-
cult (see the appendix for the proof and its underlying intuition).3°

6.1.3 The Equivalence of Acyclicity and Monotonicity in Dissimilarity

Combining Theorem 6.1 with Propositions 6.1 and 6.3, we obtain our main result.

Theorem 6.2 An acyclic model is monotone in dissimilarity. Conversely, a regular
model that is monotone in dissimilarity must be acyclic.

In view of formula (6.1) above, Theorem 6.2 has the surprisingly strong consequence
that there is essentially only one way for deriving diversity from dissimilarity in a
monotone fashion, namely as the length of a minimum spanning tree.

Corollary 6.1 For any regular model that is monotone in dissimilarity, the diversity
of any set is given as the length of a minimum spanning tree on that set.

Both Corollary 6.1 and the necessity of acyclicity for monotonicity in dissimilarity in
Theorem 6.2 hinge on the assumption of regularity, i.e. on the requirement that a model
A contains the family S(X) of all singletons and the universal set X as potentially
relevant attributes; in Appendix A, we give an example of an irregular model that is
monotone in dissimilarity without being acyclic. However, regularity is arguably a weak
requirement since, as an assumption on a model (and not on the support of a diversity
function), it only restricts potential attributes: a regular model A allows all singletons
and the universal attribute to have positive weight.?! As already noted, both the line
model £ and the hypercube model C are regular; regularity of hierarchical models can
be assumed without loss of generality, since the inclusion of the universal attribute and
all singletons preserves the hierarchical structure. The condition S(X) C A states that
it must be possible to uniquely distinguish each object by a potential attribute that
is not shared with any other object. In particular, the condition is equivalent to the
existence of a diversity function v that is compatible with 4 and strictly monotone in
the sense that v(W) < v(S) whenever W is a proper subset of S.32 The requirement

30 Acyclicity has been suggested as one way to formally define a notion of “one-dimensionality” of
models. Does it make sense to view acyclic, i.e. tree-consistent, models as one-dimensional but to deny
that status to tree models themselves? The following observation suggests a positive answer. Recall
from Section 5.2 that a tree model on X entails no restrictions on the set Y C X of terminal nodes.
That is, any model on Y can be obtained as the relativization to Y of a tree model on X. In particular,
the model 2Y \ {0} of all conceivable attributes on Y can be obtained in this way. But clearly this
model cannot be viewed as one-dimensional on Y hence, it would seem inappropriate to view the
corresponding tree model on X as one-dimensional. While relativizations of tree models need not
have any structure, those of tree-consistent models inherit the tree-like structure by definition. Tree-
consistency /acyclicity thus satisfies one fundamental requirement on a concept of one-dimensionality,
namely that one-dimensionality be preserved under restrictions of the domain.

31Note that in Proposition 6.3 and Theorem 6.2, regularity is of interest only as an assumption on a
model since monotonicity in dissimilarity is; indeed, the latter can only be formulated for models and
not for particular diversity functions.

32In some contexts, one may wish to model dominance of objects in the sense that v({z}) > v({y})
for all diversity functions compatible with some model A. Clearly, in that case A cannot contain
the singleton attribute {y}. In the working paper version (Nehring and Puppe (1999a)), we show
that in the definition of regularity, the requirement S(X) C A may be replaced by the requirement
that A be closed under intersections. Regularity of a model A with X € A thus in effect reduces
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X € A, on the other hand, ensures that diversity is monotone in the values of singletons
(see the example in Appendix A for an illustration).

Theorem 6.2 shows that monotonicity in dissimilarity requires acyclicity. How re-
strictive is acyclicity? Two natural types of restrictions come to mind: those on the
underlying dissimilarity metrics and those on the resulting global behavior of diversity.
The first will be described now, the second in Section 7 below.

Just as the Nesting Property of the more special hierarchical model entails strong
restrictions on the associated dissimilarity metrics (ultrametricity in the uniform case),
so does acyclicity. Specifically, any dissimilarity metric associated with a diversity
function with acyclic support must satisfy the following “Metric Link Property.”

Metric Link Property For all S with #S > 2, there exist distinct =,y € S such that,
for all z € S\ {z},
d(z,y) < d(z,z) and d(z,z) > d(z,y). (6.4)

That is, any set S with at least two elements contains distinct = and y such that z
is closer to y than to any other element of S, and conversely, any other element of S
is farther away from z than from y. For verification, observe that by Theorem 6.1,
acyclicity of A implies the existence of a tree 7¢ with which A|g is compatible; then
simply take in (6.4) any pair z,y such that y is the only other element of S to which z
is connected by an edge of 75 (for instance, the elements x and y in Fig. 5 above have
the required properties).

The Metric Link Property (6.4) provides a fairly tight criterion to distinguish di-
versity functions based on one-dimensional (i.e. acyclic) models from those based on
multi-dimensional models. Say that a model A has a minimal cycle of length m if there
exists S C X such that A|g is m-cyclic while A|w is acyclic for every proper subset
W C S. One has the following result.

Proposition 6.4 Let v be a diversity function with attribute weighting function .
(i) v satisfies the Metric Link Property whenever A is acyclic.
(i1) v violates the Metric Link Property whenever A has a minimal cycle of length > 4.

(iii) If all diversity functions compatible with a model A satisfy the Metric Link Prop-
erty, then A is m-acyclic for all m > 4.

Minimal cycles of length 4 arise already in the simplest case of structured multi-
dimensionality, the hypercube of dimension at least two.?? On the other hand, in mod-
els with “diffuse multi-dimensionality” such as the unconstrained model A = 2%\ {#},
all minimal cycles have length 3; in such models, the Metric Link Property may be
satisfied for some attribute weights. By part (iii), it will however be violated for other
attribute weights compatible with the same model, unless all attribute cycles have
length 3; this is an extremely special case.

to the requirement that it either contain all singletons or be closed under intersections. Intersection-
closedness is a natural property in that intersections of attributes correspond to conjunctions of the
attribute-defining features.

33More generally, using the notion of a product of models introduced in Nehring (1999b), one can
show that any product of models gives rise to minimal cycles of length 4.
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6.2 Discussion

Our main result, Theorem 6.2, shows that while diversity can be understood as ag-
gregate dissimilarity in situations significantly more general than those of a taxonomic
hierarchy, a “well-orderedness” of the family of relevant attributes remains essential
to this possibility. This general condition of well-orderedness, or one-dimensionality,
is formally expressed as acyclicity rather than the more demanding Nesting Property.
Acyclicity has been shown to yield strong restrictions on the underlying dissimilarity
metrics in form of the Metric Link Property; it also imposes significant restrictions on
the global quantitative behavior of diversity, as will be shown in Section 7 below. The-
orem 6.2 might thus be viewed as an impossibility result with an “Arrovian flavor,”
with monotonicity in dissimilarity as an ITA-type condition. As Arrow’s celebrated
impossibility theorem, the result shows that coherent aggregation of binary informa-
tion works only on highly restricted domains. In both cases, aggregation is possible on
one-dimensional domains (line viz single-peakedness and tree-like generalizations; see
Demange (1982)), while on multi-dimensional domains it fails generically.

That “monotonicity in dissimilarity” should be as restrictive as it turns out to be
seems rather remarkable; indeed, it is easy to formulate simple rules that incorporate
this property by definition such as, for instance, the minimum spanning tree or W92’s
“Link Recursion” formula. However, for metrics without the Metric Link Property,
these cannot yield a diversity function or even a submodular function.?* But submod-
ularity is equivalent to distinctiveness d(z,S) being weakly decreasing in the reference
set S, and thus represents itself a fundamental requirement of diversity aggregation.

Nonetheless, Theorem 6.2 is far from purely negative in its implications. First of
all, it precisely characterizes the domains on which dissimilarity aggregation is pos-
sible, namely the class of all acyclic models. This class considerably generalizes the
hierarchical model. In particular, it contains lines and allows to model diversity based
on evolutionary information in a rich way, for instance through phylogenetic trees.
Secondly, the result singles out a unique way of aggregation, the length of a minimum
spanning tree. Finally, the multi-attribute approach already represents a framework
in which the informational constraints of relying exclusively on binary dissimilarity
information can be overcome.

7 Global Behaviour of Diversity in One- versus
Multi-Dimensional Models

In the previous section, we have shown that diversity can be understood as aggregate
dissimilarity only when the underlying model is sufficiently “well-ordered,” essentially
“one-dimensional.” This, we shall argue now, is not merely a matter of nicety of func-
tional form and analytical convenience, but reveals a fundamental difference in the
quantitative behaviour of diversity.

Let v : 2¥ — R be a diversity function; throughout this section, we assume uni-
formity, i.e. constant valuation of singletons, along with the normalization v({z}) = 1,
for all z € X. Note that, in view of the maintained normalization v(f)) = 0, this fixes a

34The former follows from Propositions 6.1 and 6.2, the latter requires a more elaborate argument
involving Proposition 4.3 in Nehring and Puppe (1999b), which specifies conditions under which sub-
modularity implies total submodularity.
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unique cardinal scale; in particular, the normalizations allow one to attach significance
to absolute diversity values.?® Define the granularity I's of S as the minimal dissimi-
larity between two distinct objects in S, i.e. I's := min, ye .02y d(2,y). In view of the
minimum spanning tree formula (6.1), it is easily verified that in any acyclic model one
has

v(S) > 1+ (#5—1)-Ts. (7.1)

This establishes a remarkable connection between three magnitudes: the granularity,
the cardinality, and the diversity of a given set. From the perspective of diversity as
aggregate dissimilarity, such a connection may not seem troublesome. However, from
the more general perspective of the multi-attribute framework there is no reason why
significant granularity must necessarily be accompanied by large diversity of large sets
as implied by (7.1). Indeed, the coexistence of significant granularity and compara-
tively low diversity of large sets is naturally explained by multi-dimensionality: Any
two distinct objects x and y differ in some dimensions, i.e. for any given y, = possesses
attributes not shared with y; in particular, granularity can be significant. On the other
hand, almost all attributes of an object x in a sufficiently large set S will be shared by
some member of S. By consequence, the marginal value of x can be very small, and
hence the diversity of S relatively low. The following example confirms this intuition.

Example 5 (The k-hypercube) Consider the k-dimensional hypercube. For expos-
itory convenience, suppose that only the (k — 1)-dimensional subcubes have positive
weight, 36 assuming equal weight 1/k for all of these. This implies I's = 1/k for all
S containing two elements that differ in only one coordinate. Diversity in this simple
example is given by the following formula. For all S,

dimS
k b)

v(S) =1+ (7.2)
where (in self-explanatory notation) dimS := #{j : proj;S = {0,1}}. In this exam-
ple of a non-acyclic model, (7.1) is violated whenever k& > 2. To see this, consider
the set S = X. By (7.2), v(X) = 2; on the other hand, the r.h.s. of (7.1) becomes
1+ (2F — 1) /k which exceeds 2 by orders of magnitudes if k is large. Thus, mistakenly
assuming one-dimensionality may lead to gross overestimations of the true diversity of
large sets. Note that this conclusion does not hinge on the specific weights chosen in
this example; indeed, (7.1) will be violated whenever high-dimensional subcubes have
sufficient weight.?” Also observe that as k becomes large, the granularity becomes
arbitrarily small, while the cardinality of the set X becomes large very rapidly (expo-
nentially). Our claim that (7.1) is a substantial and potentially problematic restriction
on the global behavior of diversity is thus consistent with an intuition that large sets
will have small granularity.

35For instance, in a larger context with quasi-linear preferences over sets and money, v(S) can
be interpreted as the willingness to pay for preventing the extinction of all of S, as in Section 6
above. Alternatively, diversity numbers can be interpreted in terms of probabilities. For instance, the
statement “v(S) = «” means that Noah is indifferent between the certainty of saving one single species
and the prospect of saving all species in S in the presence of a (1 — é)—chance of total extinction.

36Recall from Section 3.3 that this means that only the coordinate-defining characteristics themselves
but no conjunctions are relevant.

37Giving some weight to all subcubes would eliminate the degenerate feature that any set S con-
taining two opposite elements achieves the same (maximal) diversity v(S) = 2, and would also make
the model regular.
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An important context in which one would like to model the coexistence of significant
granularity and relatively low diversity for large sets is sociodiversity. The intuitions
motivating multi-dimensionality apply very naturally here: Any two members of a
society possess memes not shared with each other; on the other hand, each individual
corresponds to a recombination of the same basic characteristics, so that most memes
of an individual in a large society will be shared by some other individual. For the sake
of concreteness, consider the diversity of the population of the largest nation, China
(=S5), in the context of the entire world population (=X). We have the following
intuitions:

(i) Any two people (in particular, any two Chinese) differ in a non-negligible way.
(ii) The world is more diverse than China.

(iii) In a large population, most of the total diversity can be realized by appropriately
choosing a subset of relatively few extremely heterogeneous individuals that are
representative for the entire population.

By (ii) and (iii), one can find a comparatively small set of individuals in the world (pre-
sumably including some Chinese) that is more diverse than all of China. Under (7.1),
however, this easily conflicts with hypothesis (i). To see this, consider the following
implication of (7.1) for the ordinal ranking of sets in terms of diversity. For all W, S,

[#s > %] = () > v(W).5® (7.3)

Assume that I's = 0.001, i.e. that any two Chinese differ at least in 0.1% of their
memes. Furthermore, it seems plausible that one can find 100,000 individuals in the
world constituting a set W C X that is more diverse than all of China. Considering that
China has a population of roughly one billion, these hypotheses contradict (7.3), since

109 > 1100_53 by an order of magnitude but at the same time v(S) < v(W). While the
choice of numbers is clearly open to debate, our point is that these numbers represent
reasonable empirical hypotheses which should not be ruled out a priori by adopting
the restrictive framework implied by acyclicity.

Just as in the case of the underlying inequality (7.1), there is no reason to expect
(7.3) to hold in multi-dimensional models. Indeed, the example of the k-hypercube
above also violates (7.3). To verify this, note that for W = {(0, ...,0), (1, ..., 1)} and any
(k — 1)-dimensional subcube S one has v(W) = 2 and v(S) = 2 — (1/k), respectively.
Thus, the comparatively large set S is dominated in diversity by the appropriately
chosen set W of only two extremely heterogeneous objects. In particular, since #S =
2(k=1) " this involves a violation of (7.3) whenever k > 4.

8 Conclusion: Outlook and Further Applications

This paper has provided a fairly in-depth account of diversity in the one-dimensional
case. It has shown the distinction between one- and multi-dimensional models to be
a fundamental one for understanding and modelling diversity, and has thereby set a

38For verification, note first that by uniformity, v(W) < #W for all W; from this and the antecedent
in (7.3),v(S) > 1+ (#S—1)Ts > 14+ ((#W/T's)—1)l's =1+ #W —Tg > v(W).
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clear task for further research: to develop tractable and empirically relevant multi-
dimensional models. This task is addressed in Nehring (1999b), where various notions
of a “product” of models are developed that allow to build multi-dimensional models
from one-dimensional ones. Given an appropriate notion of product, the analysis of this
paper can also be applied in multi-dimensional situations. Specifically, if the universe
has a product structure such that each factor is acyclic, one can define the diversity
function on the product as the product of the one-dimensional diversity functions in the
sense of Hendon et al. (1996), and thus indirectly derive diversity from component-wise
dissimilarity information.

On a methodological level, the paper has tried to demonstrate the great analyt-
ical usefulness of multi-attribute approach. This approach has made it possible, for
example, to translate what is essentially an algebraic problem, the characterization of
monotonicity in dissimilarity, into one concerning the “geometry” of families of sets,
namely the characterization of acyclic models as tree-consistent.

In view of its inherent mathematical generality, the multi-attribute framework
promises to be applicable in a number of contexts beyond the ones for which it was
originally conceived. Indeed, diversity theory can be viewed as a general method of non-
additive similarity-based counting. Two further applications seem particularly promis-
ing: economies of scope and case-based decision making. In another paper, Nehring
and Puppe (1999b), we apply the framework to models of joint production and concep-
tualize economies of scope as resulting from the shared use of joint public inputs which
can be thought of as “fixed cost attributes.” Secondly, the notion of similarity-based
counting should also contribute to the understanding of learning from heterogeneous
experience. To analyze such learning under premises of bounded rationality, Gilboa
and Schmeidler (1995) have proposed a theory of “case-based decision making.” Their
approach thematizes similarity of past experience to present decisions as central; this
has the formal structure of a point (“case at hand”) — set (“past cases”) — metric. Since
such metrics are at the center of diversity theory, it seems reasonable to hope that it
should be able to contribute to the further development of case-based decision theory.

Appendix A: The Free Graph Model

Consider the family B(X) of all one- and two-element subsets of X. As a model,
B(X) can be viewed as the free graph on X in which all elements are connected by
an edge.?® Note that B(X) does not contain the universal attribute X and is hence
not regular. For any set function v : 2¥ — R with A C B(X), and all z,y, one
has Ag; 3 = v({z}) — d(z,y), and Azy = v({z}) — 30 cx .20 AMa.z}. This yields the
following formula by straightforward computation. For all S,

w9 =C-EH Y e +3 Y dee.2). (A1)

z€S z,2€S

Clearly, B(X) is not acyclic whenever #X > 3; on the other hand, it is immediate
from (A.1) that B(X) is monotone in dissimilarity. Observe, however, that this is

39With slight abuse of notation, a set {z,y} C X may be identified with an edge connecting = and
y in a graph. Any subset of B(X) can thus be viewed as a graph on X; the graph associated with
B(X) itself is “free” in that no edge is excluded.
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accompanied by a degenerate behaviour of diversity with respect to changes in the
value of singletons. Indeed, by (A.1) the diversity of a set S with #S > 4 decreases in
the value of singletons provided that all dissimilarities are held constant.

Appendix B: Proofs

Proof of Theorem 3.1 First, we prove the equivalence of (ii) and (iii). Using the
representation (2.6) implied by vNM it is straightforward to show that SB implies
d(z,S) > minyesd(z,y). The converse inequality follows from submodularity of v
(cf. (2.5)). The implication “(iii) = (ii)” is immediate.

Next, we show “(i) = (iii)”. For given = and S, consider the family A* := {4 €
A:z e A} It A* = (), then d(z,S) = d(z,y) = 0 for all y € S, hence (3.2)
holds trivially. Thus, assume that A* # @. The Nesting Property implies that A*
is a chain, i.e. totally ordered by set-inclusion; we may thus write A* = {4;,..., 4;}
with 41 C As C ... C A;. Furthermore, set 49 = 0§ and A;11 = X. Let j be the
maximal index such that A; NS = @ and choose z € Aj1; NS. By construction,
d(z,S) = d(z,z) = A({A1, ..., 4;}). By submodularity, d(z,S) < d(z,y) for all y € S;
hence d(z,S) = d(z,2) = minyes d(z,y).

Finally, “(iii) = (i)” is shown by contraposition. Thus, suppose the Nesting Prop-
erty is violated, i.e. there exist B,C € A such that BN C, B\ C, and C \ B are all
non-empty. Choose z,w, z according to z € BNC, w € B\ C, z € C'\ B, and consider
the set S = {w, z}. Since {z,z} C C and w ¢ C one has

dz,{w,z} ) =AX{A:z €A wg A z¢g A}) < AN{A:z € A,w ¢ A}) = d(z,w).

By a completely symmetric argument, one also obtains d(z,S) < d(z,z). Hence,
d(z,S) < mingesd(z,y).

Proof of Theorem 3.2 The implication “(i) = (iii)” has already been shown in the
main text. In order to verify the converse implication, assume, by way of contraposition,
that there exists A’ € A that is not an interval, i.e. for some y; < y2 < y3, {y1,y3} C A°
and y ¢ A°. This implies A({A :y3 € A, AN{y1,y2} =0}) < A{A:y3 € A,y & A}),
and hence v({y1,¥2,93}) —v({y1,¥2}) < d(ys,y2), in violation of (3.3).

Using the representation (2.6) implied by vNM, condition (3.4) is easily seen to be
equivalent to the condition that d(z,S) = d(z, SU{z}) whenever x <y < zand S 3 y.
From this, the equivalence of (i) and (ii) is straightforward.

Proof of Proposition 3.1 The equivalence of (ii) and (iii) is immediate. Hence, it
suffices to prove equivalence of (i) and (ii). By definition, the function d is additive in
the sense of (3.6) if and only if, for all z <y < z,

DD VEED DD VS D VE D P V'Y (B.1)

A:{z,z}NA£0 A:{y,z}NA#£D A:ye A A:{z,y}NA#£0

It is easily checked that for any interval A containing at least one endpoint, A4 occurs
as a summand on the Lh.s. of (B.1) if and only if it also occurs on the r.h.s. (possibly
twice with a positive sign and once with a negative).

Conversely, let A° 3 g be an interval that contains neither endpoint. Then, e.g. with
x =1z and z = &, A0 does not occur on the Lh.s. of (B.1) but twice with a positive
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sign and once with a negative sign on the r.h.s. of (B.1). Hence, Aqo > 0 implies
d(zn, 1) < d(Tn,y) + d(y, 71).

Proof of Theorem 4.1 Since any set function v : 2¥ — R with A C A can be
represented as the difference of two diversity functions with the same support restriction
(as a straightforward consequence of conjugate Moebius inversion), bideterminacy of
A can equivalently be formulated as follows. For all set functions v with A C A and
all S,

vB) =0 = [v(W) =0 for all W C S]. (B.2)

Necessity of the no-free-triple condition has already been shown in the main text.
Sufficiency is proved by induction on the cardinality of X = {z1,...,z,}. For #X = 3,
we distinguish the following three cases.

Case 1. A F X, ie. A C B(X). Then bideterminacy follows at once from formula
(A.1).

Case 2. A does not contain some pair, say {z;,z3}. Then A is compatible with the
line model given the ordering x; < 2 < x3, whence the assertion follows from the Line
Equation (3.3).

Case 3. A # {z}, say * = x3. Then, for any set function v with support A C A,
v(X) —v({z1,72}) = Mgy} = 0, from which the claim follows immediately.

Suppose now that the assertion of the theorem holds for all X and A such that
#X < m — 1; we will show it to hold for all X with #X = m. Thus, take any set
function v on X such that A C A and such that v#(X) = 0. Since A has no free triples,
evidently A and indeed all Alg, S C X, have no free triples. Hence, by the induction
hypothesis,

v(S) =0 for all S C X such that S # X. (B.3)

By (B.2), it remains to show that v(X) = 0. Fix any subset Y C X with #Y = #X -3,
and define & : 2X\Y) 5 R by

5(8) == v(SUY) — u(Y).

By (B.3), 5%(X) = 0. Since 9(S) = A({4: ANS #0,AC X \Y}), the support A of
the conjugate Moebius inverse of ¥ has no free triples. By validity of the claim for all
three-element subsets, 9(X \Y) =0, i.e. v(X) = v(Y) = 0.

Proof of Proposition 5.1 Fix any w € X; we have to show that v(X) = v({w}) +
Z(ﬂ%y)an d(way), i.e.

Z/\A: Z Aa+ Z Z Aa | (B.4)

A€A AweA (2,9)Enw \Aim€A,ygA

if and only if A is compatible with 7. Clearly, any A4 with A € A and w € A occurs
exactly once as a summand on both sides of the equality (B.4). Now consider A € A
with w & A; choose 29 € A such that the path connecting w and z¢ has the minimal
number of edges among all paths that connect w with some element in A. If A is
T-connected, such x( is uniquely determined; let g, be the unique element such that
(z0,Y0) € Nw. Then, Ay occurs exactly once on both sides of (B.4), on the r.h.s. as
a summand in the term d(zo,yo). This shows that (B.4) holds if all A € A are 7-
connected.
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On the other hand, if A € A is not T-connected, it is clear that A0 occurs at
least twice on the r.h.s. but only once on the Lh.s. of (B.4). Hence, v(X) < l4(7) since
Ag0 > 0. The argument in particular shows that the length of any tree on X is always
an upper bound for v(X) no matter whether A is compatible with that tree.

Proof of Proposition 5.2 We show that 7,4, has no free triples; this implies bide-
terminacy by Theorem 4.1. Thus, consider a triple S = {z,y, 2z} and assume, by way of
contradiction, that all three pairs {z,y}, {y, 2} and {x, 2z} are elements of the relativiza-
tion Tpnyils, ie. {z,y} = ANAwa NS, {y, 2} = A'NA},, NS and {z, 2} = A"NnA} NS
for some A, A"} A" € Hep and Apan, Al yys Aty € Hian. First, assume that z ¢ A; since
Hey is a hierarchy, this implies z € A’ and y € A”. Therefore, x & A}, and y & A} .,
but this contradicts the hierarchical structure of Hy,. A completely symmetric argu-

ment shows that z &€ A;,, leads to a contradiction as well.

Proof of Proposition 6.1 Applying the argument in the proof of Proposition 5.1 to
the restriction v|g, one obtains v(S) < l4(7) for any tree 7 on S, and v(S) = lg(rs) if
and only if Algs is compatible with 75 (recall that A|gs is the support of the attribute
weighting function corresponding to v|g). This implies the stated equivalence at once.

Proof of Proposition 6.2 Suppose A|s is compatible with the tree 7¢ on S. Then,
d(z, S\ {z}) = d(z,y) holds for all z,y € S such that y is the only element in S\ {z}
to which z is connected by an edge of 5. Thus, tree-consistency implies (6.2).

To verifiy the converse statement, construct a tree 7 on any given .S recursively as
follows. Choose an “outer point” z € S and its “gate” y € S\ {z} according to (6.2)
and connect z and y by an edge. Then apply the same procedure to the set S\ {z},
and so forth. Clearly, the resulting graph 7g is connected and acyclic, hence a tree on
S. By construction, v(S) equals the length of 75 (for instance, take as starting point w
one of the two last elements that were connected by an edge). Hence, by Proposition
6.1, A is tree-consistent.

Proof of Proposition 6.3 The proof is by contraposition. Thus, suppose that A is
regular and m-cyclic for some m > 3; let 1, ..., z,,, and Ay, ..., A,; € A be as required in
the definition of m-cyclicity. Define a diversity function vy from its attribute weighting
function A1 by setting Ay = 1 at the universal attribute X, all singletons and all sets
A1, ..., Ay for all other attributes A € A, set A\;(4) = 0. For 0 < € < 1, define another
diversity function ve by setting Aa(X) = 1 + ¢, Ma({z}) = 1+ € for all singletons,
A2(4;) =1 —e€foralli = 1,...,m, and Ao = 0 otherwise. It is now easily verified
that vf(s) = v‘;(s), di|s > dals, yet v1(S) < v2(S) in violation of monotonicity in
dissimilarity. Indeed, for all x € S, vi({z}) = v2({z}) = 4; furthermore, d; (z;,2;) =
da(x;, x;) = 2 whenever [i—j| =1or |i—j| =m—1, and di (2, z;) = da(z;,2j) +e =3
whenever 1 < |[i — j| <m —1. Yet, v1(S) =2m + 1 < 2m + 1+ € = v2(5).

For the proof of Theorem 6.1, we need the following definitions. Let v be a circular
graph of the form z;vx27y...y2, 21 on the set S = {z1, ...,y }. Denote by K, the
family of all y-connected subsets of S. A family C is called a k-cycle on S if there
exists a circular graph v such that (i) C C K, (ii) for every edge {z;, z;41} of 7,*°
there exists A € C such that A D {z;,z;41}, (iii) for no two A, A’ € C, A C A', and
(iv) #C = k.

40For notational convenience, here and in the following proofs, addition of indices is to be understood
modulo m, so that z,,4+1 = z1.
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Lemma B.1 A model A on X is acyclic if and only if for no S C X there exists
C C A such that C|s is a k-cycle on S for some k > 3.

Proof Let A be m-cyclic for some m > 3, and choose S = {x1,...,2,} and C =
{A1,..., A} C A satisfying (6.3). Clearly, in this case C|s constitutes an m-cycle on
S in the sense of the above definition.

Conversely, suppose that C and S = {z1, ..., ., } are such that C|g is a k-cycle with
respect to the circular graph x1yz27y... 72y, yz1 for some k > 3. Suppose first that there
exist A; and Aj in C such that A;UA; D S. Then, there must exist A; € C\{4;, 4, }
that intersects both A; and Aj;. It is easily verified that in this case one can choose a
three-element set W = {y1,y2,y3} C S such that A;NW = {y1,y2}, ANW = {y2,y3}
and Ay NW = {y1,ys}. Hence, A is 3-cyclic, in particular not acyclic.

Now suppose that S is not included in the union of two elements of C. Then, a set
W = {y1,...,y;} and a family {A4, ..., A;} satisfying (6.3) can be recursively determined
as follows. Let A; € C; choose as y; the “endpoint” of A; in clockwise orientation,
ie. y1 = z; where z; € A; and zj41 ¢ A;. Now consider the set of all A € C with
y1 € A; among these, choose as A, the set whose “endpoint” y» (in clockwise orienta-
tion) is farthest away from y;. Continue recursively until for the first time y; € A;. By
construction, A is I-cyclic with [ > 3.

Proof of Theorem 6.1 First, we show that tree-consistency implies acyclicity. Sup-
pose by way of contradiction, that A is m-cyclic for some m > 3, and consider the set
S ={z1,...,z,} in (6.3). By tree-consistency, there exists a tree 7s on S such that for
all A e A, ANS is tg-connected. But by (6.3), each {x;, z;11} must correspond to an
edge of g which contradicts the acyclicity of 7g.

The basic idea for the proof of the converse implication is to ask, for given S C X,
which connected graphs v have the property that all attributes in the intersection
closure*! (A|s)* of Als are y-connected, and to show that acyclicity of A forces the
minimal such graphs to be acyclic, i.e. to be trees. To make this work, one needs to
derive from the existence of a cycle in a minimal graph v the existence of a k-cycle C
on an appropriate subset S’ C S; the key difficulty is to ensure the v-connectedness
of the elements of (A|s)* in the subset S’. To overcome the difficulty, an induction
argument is used.

Thus, we have to show that acyclicity implies tree-compatibility on every subset
S C X. This is done by induction on the cardinality of S. The claim is evident
for #S < 3. Assuming validity of the claim for S, we need to show its validity for
W = SuU{z} for any z € X \ S. Thus, by assumption there exists a tree 75 on S such
that, for all A,

A e (Als)" = Ais tg-connected in S. (B.5)

Note that 7g-connectedness of any A € A|g implies Ts-connectedness of any A in the
intersection closure (A|g)* by acyclicity of 7s. Let € denote the family of all connected
graphs v C 7s U{{z,y} : y € S} on W such that, for all A,

A e (Alw)* = A is y-connected in W.

Note that  is trivially non-empty, as it contains the graph 75 U {{z,y} : y € W}. Let
~ be any C-minimal graph in 2. We will show by contradiction that v is acyclic, i.e. a

41By definition, the intersection closure A* of a model A is the smallest family that contains A and
is closed under intersections.
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tree. Suppose not. Clearly, any cycle in v must be of the form zyy17...yymyx, where
S":={y1,...,ym} is a Ts-path in S; let yo := z and W' := S" U {yo}.

Claim 1. For any edge {y,y'} in 7, there exists A € A|w with {y,y'} C A such that
N (A x A) contains no cycle through {y,y'} (say that A “ratifies” the edge {y,y'}).
Indeed, suppose that this was false; then, consider v' = v\ {{y,y’}}. By assumption,
every A € Alw with {y,y'} C A contains a y-cycle through {y,y'}; thus, every A €
(Alw)* remains connected with respect to +' (by travelling the cycle in the opposite
direction, if necessary). However, this contradicts the assumed minimality of +.

Claim 2. For any A € (Alw)*, ANS'is y-connected in S.
This follows from (B.5) and 7g-connectedness of S’, since the intersection of any path
in a tree with a connected subset of it yields a 7g-connected subset of the path, which
by the form of S’ is also -y-connected.

By Claim 1, all cycles W' posses a “covering,” i.e. a family C C A|w such that, for
all edges {y;,yi11}, there exists A € C ratifying {y;,y;+1} in the sense that*?

{Yi,yix1} CANW' and A # W',

Pick a cycle W' and a covering C of minimal cardinality (over all cycles and all cov-
erings). Observe that by minimality, the elements of C are non-nested. We note the
following properties of C.

Claim 3. There exist A', A™ € C such that A' N W' = {x,y1,...,yx} and A" NW' =
{yla <3 Yms .’E}

Clearly, for any A € C, A 2 {x,y1,Ym}, since otherwise by Claim 2, A D W', whence
A & C. The sets A! and A™ ratifying the edges {z,y;} and {z,y,, }, respectively, must
thus differ, and have the asserted form by Claim 2 again.

Claim 4. A' N A™ = {z}, ie. k <.

Suppose not, i.e. that I < k. By the construction of v, A' N A™ is y-connected in W,
i.e. there exists a path from g; to « in W that crosses neither y; nor y,,. It follows that
Al contains a y-cycle in W through the edge {z,y;} in contradiction to the fact that
Al ratifies {z,y;}.

By the same token, the sets A* and A! (not necessarily distinct) in C ratifying the
edges {yk, yr+1} and {y;—1,yi}, respectively, do not contain z. In particular, #C|w: >
3. Let k denote the circular graph on W' given by zky1k...kymrxz. We will show that
C induces a cycle on W' with respect to k. For this, it remains to show that every
A" € Clw is k-connected in W'. By Claim 2, this is clear for all A’ # z since on
S’ the graphs k and « coincide. Hence, if A’ € C|w- is to be disconnected in W', it
must be of the form A’ = B U {z} for some non-empty B C S’. By Claim 2, B is v-
connected in S’, hence by the argument in the proof of Claim 4, B C {ygt1,-.-, Yi—1}-
But this contradicts minimality of C, as follows. Let j be the minimal index such
that y; € B and let A € C|w be such that A’ = AN W' By the y-connectedness
of A in W, there exists a y-path {y;,21,...,24,2} in A. Then consider the v-cycle
TYY1Y--YYjY217Y--YZgyx and construct a covering C' on this cycle of lesser cardinality
replacing A™ by A and removing at least A'. We have thus established that C|y. is
a k-cycle on W' with k > 3. By Lemma B.1, A can thus not be acyclic, the desired
contradiction.

Proof of Proposition 6.4 The Metric Link Property (6.4) requires, for any set S, the

42Recall that addition of indices is to be understood modulo m.

38



existence of an “outer point” x € S and its “gate” y to S\{z} such that d(z,y) < d(z, z)
and d(z,z) > d(z,y) for all z € S\ {z}. As already noted in the main text, part (i)
follows at once from Theorem 6.1. Hence, consider part (i), and assume that the
support A of v has a minimal cycle of length m > 4. Specifically, suppose that for
some m > 4, S = {x1,...,2,} and {4, ..., A, } C A satisfy (6.3) while for no proper
subset of S there exist relevant attributes such that (6.3) is satisfied. We verify the
violation of (6.4) by contradiction. Thus, suppose that z; € S is an outer point in S.
Consider any I ¢ {j—1, j,j+1}; by minimality of S, any attribute A € A that contains
z; and z; must also contain z;_; and z;4;. This implies that, for any such index I,
d(zj,z;) > d(zj,z;-1) and d(zj,2;) > d(zj,2;41). Hence, the gate of z; to S\ {z;}
must be either z;_1 or z;41. However, one also has d(zj_1,z;) < d(zj_1,%j+1) and
d(zjt1, ;) < d(xjs1,2j—1), again exploiting minimality of S. Hence neither z;11 nor
x;j—1 can serve as the gate. Since z; was arbitrary, the Metric Link Property must thus
be violated.

Part (iii) follows at once from part (ii) by contraposition: given an m-cyclic model
with m > 4, simply choose a compatible diversity function v such that its support A
has a minimal cycle of length m.
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