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1 Introduction

How much species diversity is lost in the Brazilian rain forest every year? Is France
culturally more diverse than Great Britain? Is the range of car models offered by
BMW more or less diverse than that of Mercedes-Benz? And more generally: What is
diversity, and how can it be measured?

This chapter critically reviews the recent attempts in the economic literature to
answer this question. As indicated, the interest in a workable theory of diversity and
its measurement stems from a variety of different disciplines. From an economic per-
spective, one of the most urgent global problems is the quantification of the benefits
of ecosystem services and the construction of society’s preferences over different con-
servation policies. In this context, biodiversity is a central concept that still needs to
be understood and appropriately formalized. In welfare economics, it has been argued
that the range of different life-styles available to a person is an important determinant
of this person’s well-being (see, e.g., Dowding and van Hees, 2007). Again, the question
arises how this range, can be quantified. Finally, the definition and measurement of
product diversity in models of monopolistic competition and product differentiation
is an important and largely unresolved issue since Dixit and Stiglitz’s (1977) seminal
contribution.

The central task of a theory of diversity is to properly account for the similarities
and dissimilarities between objects. In the following, we present some basic approaches
to this problem.1

2 Measures based on Dissimilarity Metrics

A natural starting point to think about diversity is based on the intuitive inverse
relationship between diversity and similarity: the more dissimilar objects are among
each other, the more diverse is their totality. Clearly, this approach is fruitful only
to the extent to which our intuitions about (dis)similarity are more easily accessible
than those about diversity. In the following, we distinguish the different concrete
proposals according to the nature of the underlying dissimilarity relation: whether it
is understood as a binary, ternary, or quaternary relation, and whether it is used as a
cardinal or only ordinal concept.

2.1 Ordinal Notions of Similarity and Dissimilarity

Throughout, let X denote a finite universe of objects. As indicated in the introduction,
the elements of X can be as diverse objects as biological species, ecosystems, life-styles,
brands of products, the flowers in the garden of your neighbor, etc. The simplest
notion of similarity among the objects in X is the dichotomous distinction according
to which two elements are either similar or not, with no intermediate possibilities.
Note that in almost all interesting cases such binary similarity relations will not be
transitive. Pattanaik and Xu (2000) have used this simple notion of similarity in order
to define a ranking of sets in terms of diversity, as follows. A similarity-based partition
of a set S ⊆ X is a partition {A1, ..., Am} of S such that, for each partition element
Ai, all elements in Ai are similar to each other. Clearly, similarity-based partitions

1For recent alternative overviews, see Baumgärtner (2006) and Gravel (2007).
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thus defined are in general not unique. As a simple example, consider the universe
X = {x, y, z} and suppose that x and y, as well as y and z are similar, but x and z
are not similar. The singleton-partition (i.e. here: {{x}, {y}, {z}}) always qualifies as
a similarity-based partition. In addition, there are the following two similarity-based
partitions in the present example, namely {{x, y}, {z}} and {{x}, {y, z}}. Pattanaik
and Xu (2000) propose to take the minimal cardinality of a similarity-based partition
of a set as an ordinal measure of its diversity.

Evidently, the ranking proposed (and axiomatized) by Pattanaik and Xu (2000) is
very parsimonious in its informational requirements. Inevitably, this leads to limita-
tions in its applicability, since differential degrees of similarity often appear to have a
significant effect on the entailed diversity. To enrich the informational basis while stick-
ing to the ordinal framework, Bervoets and Gravel (2007) have considered a quaternary
similarity relation that specifies which pairs of objects are comparably more dissimilar
to each other than other pairs of objects.2 Bervoets and Gravel (2007) axiomatize the
“maxi-max” criterion according to which a set is more diverse than another if its two
most dissimilar elements are more dissimilar than those of the other set.3 One evident
problem with this approach (and the ordinal framework, more generally) is that it
cannot account for trade-offs between the number and the magnitude of binary dissim-
ilarities. Intuitively, it is by no means evident that a set consisting of two maximally
dissimilar elements is necessarily more diverse than a set of many elements all of which
are pairwise less dissimilar. In order to properly account for such trade-offs one needs
cardinal dissimilarity information.

2.2 Cardinal Dissimilarity Metrics

In a seminal contribution, Weitzman (1992) has proposed to measure diversity based on
a cardinal dissimilarity metric, as follows. Let d(x, y) denote the dissimilarity between
x and y, and define the marginal diversity of an element x at a given set S by

v(S ∪ {x})− v(S) = min
y∈S

d(x, y). (2.1)

Given any valuation of singletons (i.e. sets containing only one element), and given any
ordering of the elements x1, ..., xm, formula (2.1) recursively yields a diversity value
v(S) for the set S = {x1, ..., xm}.4 The problem is that the resulting value in general
depends on the ordering of the elements. Weitzman (1992) observes this, and shows
that (2.1) can be used to assign a unique diversity value v(S) to each set S if and only
if d is an ultrametric, i.e. a metric with the additional property that the two greatest
distances between three points are always equal.5 To overcome the restrictiveness of

2Denoting the quaternary relation by Q, the interpretation of (x, y)Q(z, w) is thus that x and y are
more dissimilar to each other than z and w. Bossert, Pattanaik and Xu (2003) have also considered
relations of this kind and observed that the dichotomous case considered above corresponds to the
special case in which Q has exactly two equivalence classes.

3The maximal distance between any two elements is often called the diameter of a set. The ranking
of sets according to their diameter has been also proposed in the related literature on freedom of
choice by Rosenbaum (2000). In the working paper version, Bervoets and Gravel (2007) also consider
a lexicographic refinement of the “maxi-max” criterion.

4Indeed, by (2.1) we have v({x1, ..., xk}) = mini=1,...,k−1 d(xk, xi) + v({x1, ..., xk−1}) for all k =
2, ..., m. Thus, given the ordering of elements, v({x1, ..., xm}) can be recursively determined from the
dissimilarity metric and the value v({x1}).

5Such metrics arise naturally, e.g. in evolutionary trees as shown by Weitzman (1992), see Section
3.2 below for further discussion.

2



formula (2.1), Weitzman (1992) has also proposed a more general recursion formula.
However, the entailed diversity evaluation of sets has the counterintuitive property
that the marginal diversity of an object can increase with the set to which it is added
(see Section 3.1 below for further discussion). The ordinal ranking corresponding to
Weitzman’s general recursion formula has been axiomatically characterized by Bossert,
Pattanaik and Xu (2003).

The fact that the validity of formula (2.1) is restricted to ultrametrics reveals a fun-
damental difficulty in the general program to construct appropriate diversity measures
from binary dissimilarity information (see van Hees, 2004, for further elaboration of
this point). There do not seem to exist simple escape routes. For instance, ranking
sets according to the average dissimilarity, i.e. v(S) =

∑
{x,y}⊆S d(x, y)/#S, is clearly

inappropriate due to the discontinuity when points get closer to each other and merge
in the limit; other measures based on the sum of the dissimilarities have similar prob-
lems. We therefore turn to an alternative approach that has been suggested in the
literature.

3 The Multi-Attribute Model of Diversity

In a series of papers (Nehring and Puppe, 2002, 2003, 2004a, 2004b), we have developed
a multi-attribute approach to valuing and measuring diversity. Its basic idea is to think
of the diversity of a set as derived from the number and weight of the different attributes
possessed by its elements.6 Due to its generality, the multi-attribute approach allows
one to integrate and compare different proposals of how diversity is based on binary
dissimilarity information, and to ask questions such as “when, in general, can diversity
be determined by binary information?”

3.1 The Basic Framework

As a simple example in the context of biodiversity, consider a universe X consisting
of three distinct species: whales (wh), rhinoceroses (rh) and sharks (sh). Intuitively,
judgements on the diversity of different subsets of these species will be based on their
possessing different features. For instance, whales and rhinos possess the feature “being
a mammal,” while sharks possess the feature “being a fish.” Let F be the totality of
all features deemed relevant in the specific context, and denote by R ⊆ X × F the
“incidence” relation that describes the features possessed by each object, i.e. (x, f) ∈ R
whenever object x ∈ X possesses feature f ∈ F . A sample of elements of R in our
example is thus (wh, fmam), (rh, fmam), and (sh, ffish), where fmam and ffish denote
the features “being a mammal” and “being a fish,” respectively. For each relevant
feature f ∈ F , let λf ≥ 0 quantify the value of the realization of f . Upon normalization,
λf can thus be thought of as the relative importance, or weight of feature f . The
diversity value of a set S of species is defined as

v(S) :=
∑

f∈F :(x,f)∈R for some x∈S

λf . (3.1)

6Measures of diversity that are based (explicitly or implicitly) on the general idea of counting
attributes (“features,” “characteristics”) have been proposed frequently in the literature, see among
others, Vane-Wright, Humphries and Williams (1991), Faith (1992, 1994), Solow, Polasky and Broadus
(1993), Weitzman (1998), and the volumes edited by Gaston (1996) and Polasky (2001).
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Hence, the diversity value of a set of species is given by the total weight of all different
features possessed by some species in S. Note especially that each feature occurs at
most once in the sum. In particular, each single species contributes to diversity the
value of all those features that are not possessed by any already existing species.

The relevant features can be classified according to which sets of objects possess
them, as follows. First, there are all idiosyncratic features of the above species, the
sets of which we denote by F{wh}, F{rh} and F{sh}, respectively. Hence, F{wh} is the
set of all features that are possessed exclusively by whales, and analogously for F{rh}
and F{sh}. For instance, sharks being the only fish in this example, F{sh} contains the
feature “being a fish.” On the other hand, there will typically exist features jointly
possessed by several objects. For any subset A ⊆ X denote by FA the set of features
that are possessed by exactly the objects in A; thus, each feature in FA is possessed by
all elements of A and not possessed by any element of X \A. For instance, whales and
rhinos being the only mammals in the example, the feature “being a mammal” belongs
to the set F{wh,rh}. With this notation, (3.1) can be rewritten as

v(S) :=
∑

A∩S 6=∅

∑
f∈FA

λf . (3.1′)

Intuitively, any feature shared by several objects corresponds to a similarity between
these objects. For instance, the joint feature “mammal” renders whales and rhinos
similar with respect to their taxonomic classification. Suppose, for the moment, that
the feature of “being a mammal” is in fact the only non-idiosyncratic feature deemed
relevant in our example, and let λmam denote its weight. In this case, (3.1) or (3.1′)
yield v({wh, sh}) = v({wh}) + v({sh}), i.e. the diversity value of whale and shark
species together equals the sum of the value of each species taken separately. On the
other hand, since v({wh, rh}) = v({wh})+v({rh})−λmam, the diversity value of whale
and rhino species together is less than the sum of the corresponding individual values
by the weight of the common feature “mammal.” This captures the central intuition
that the diversity of a set is reduced by similarities between its elements.

It is useful to suppress explicit reference to the underlying description F of relevant
features by identifying features extensionally. Specifically, for each subset A ⊆ X
denote by λA :=

∑
f∈FA

λf the total weight of all features with extension A, with the
convention that λA = 0 whenever FA = ∅. With this notation, (3.1′) can be further
rewritten as

v(S) =
∑

A∩S 6=∅

λA. (3.1′′)

The totality of all features f ∈ FA will be identified with their extension A, and we will
refer to the subset A as a particular attribute. Hence, a set A viewed as an attribute
corresponds to the family of all features possessed by exactly the elements of A. For
instance the attribute {wh} corresponds to the conjunction of all idiosyncratic features
of whales (“being a whale”), whereas the attribute {wh, rh} corresponds to “being a
mammal.”7 The function λ that assigns to each attribute A its weight λA, i.e. the
total weight of all features with extension A, is referred to as the attribute weighting

7Subsets of X thus take on a double role as sets to be evaluated in terms of diversity on the one
hand, and as weighted attributes on the other. In order to notationally distinguish these roles we will
always denote generic subsets by the symbol “A” whenever they are viewed as attributes, and by the
symbol “S” otherwise.
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function. The set of relevant attributes is given by the set Λ := {A : λA 6= 0}. An
element x ∈ X possesses the attribute A if x ∈ A, i.e. if x possesses one, and therefore
all, features in FA. Furthermore, say that an attribute A is realized by the set S if it
is possessed by at least one element of S, i.e. if A ∩ S 6= ∅. According to (3.1′′), the
diversity value v(S) is thus the total weight of all attributes realized by S.

A function v of the form (3.1′′) with λA ≥ 0 for all A is called a diversity function,
and we will always assume the normalization v(∅) = 0. Clearly, any given attribute
weighting function λ ≥ 0 determines a particular diversity function via formula (3.1′′).
Conversely, any given diversity function v uniquely determines the corresponding col-
lection λA of attribute weights via “conjugate Moebius inversion.”8 In particular, any
given diversity function v unambiguously determines the corresponding family Λ of rel-
evant attributes. This basic fact allows one to describe properties of a diversity function
in terms of corresponding properties of the associated attribute weighting function.

An essential property of a diversity function is that the marginal value of an element
x decreases in the size of existing objects; formally, for all S, T and x

S ⊆ T ⇒ v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T ). (3.2)

Indeed, using (3.1′′), one easily verifies that

v(S ∪ {x})− v(S) =
∑

A3x,A∩S=∅

λA,

which is decreasing in S due to the non-negativity of λ. Property (3.2), known as
submodularity, is a very natural property of diversity; it captures the fundamental
intuition that it becomes the harder for an object to add to the diversity of a set the
larger that set already is.9

Any diversity function naturally induces a notion of pairwise dissimilarity between
species. Specifically, define the dissimilarity from x to y by

d(x, y) := v({x, y})− v({y}). (3.3)

The dissimilarity d(x, y) from x to y is thus simply the marginal diversity of x in a
situation in which y is the only other existing object. Using (3.1′′) one easily verifies
that

d(x, y) =
∑

A3x,A 63y

λA,

that is, d(x, y) equals the weight of all attributes possessed by x but not by y. Note
that, in general, d need not be symmetric, and thus fails to be a proper metric; it does,
however, always satisfy the triangle inequality. The function d is symmetric if and
only if v({x}) = v({y}) for all x, y ∈ X, i.e. if and only if single objects have identical
diversity value.

A decision-theoretic foundation of our notion of diversity can be given along the
lines developed by Nehring (1999a). Specifically, it can be shown that a von-Neumann-
Morgenstern utility function v derived from ordinal expected utility preferences over

8Specifically, one can show that if a function v satisfies (3.1′′) for all S, then the attribute weights
are (uniquely) determined by λA =

∑
S⊆A

(−1)#(A\S)+1 · v(X \ S), see Nehring and Puppe (2002,

Fact 2.1).
9A somewhat stronger property, called total submodularity, in fact characterizes diversity functions,

see Nehring and Puppe (2002, Fact 2.2).

5



distributions of sets of objects is a diversity function, i.e. admits a non-negative weight-
ing function λ satisfying (3.1′′), if and only if the underlying preferences satisfy the
following axiom of “indirect stochastic dominance:” a distribution of sets p is (weakly)
preferred to another distribution q whenever, for all attributes A, the probability of
realization of A is larger under p than under q (see Nehring, 1999a, and Nehring and
Puppe, 2002, for details). In this context, distributions of sets of objects can be in-
terpreted in two ways: either as the uncertain consequences of conservation policies
specifying (subjective) survival probabilities for sets of objects, or as describing (ob-
jective) frequencies of sets of existing objects, e.g. as the result of a sampling process.
In terms of interpretation, different preferences over probabilistic lotteries describe dif-
ferent valuations of diversity (or, equivalently, of the realization of attributes). By
contrast, different rankings of frequency distributions correspond to different ways of
measuring diversity. The multi-attribute approach is thus capable to incorporate either
the valuation and the measurement aspect of diversity.10

3.2 Diversity as Aggregate Dissimilarity

In practical applications, one will have to construct the diversity function from primitive
data. One possibility is, of course, to first determine appropriate attribute weights and
to compute the diversity function according to (3.1′′). Determining attribute weights is
a complex task, however, since there are as many potential attributes as there are non-
empty subsets of objects, i.e. 2n−1 when there are n objects. An appealing alternative
is to try to derive the diversity of a set from the pairwise dissimilarities between its
elements. This is a much simpler task since, with n objects, there are at most n ·(n−1)
non-zero dissimilarities. The multi-attribute approach makes it possible to determine
precisely when the diversity of a set can be derived from the pairwise dissimilarities
between its elements. The central concept is that of a “model of diversity.”

A non-empty family of attributesA ⊆ 2X\{∅} is referred to as a model (of diversity).
A diversity function v is compatible with the model A if the corresponding set Λ of
relevant attributes is contained inA, i.e. if Λ ⊆ A. A model thus represents a qualitative
a priori restriction, namely that no attributes outside A can have strictly positive
weight. For instance, in a biological context, an example of such an a priori restriction
would be the requirement that all relevant attributes are biological taxa, such as “being
a vertebrate,” “being a mammal,” etc. This requirement leads to an especially simple
functional form of any compatible diversity function, as follows. Say that a model A is
hierarchical if, for all A,B ∈ A with A∩B 6= ∅, either A ⊆ B or B ⊆ A. In Nehring and
Puppe (2002) it is shown that a diversity function v is compatible with a hierarchical
model if and only if, for all S,

v(S ∪ {x})− v(S) = min
y∈S

d(x, y),

where d is defined from v via (3.3). This is precisely Weitzman’s recursion formula (2.1)
with the only difference that no symmetry of d is required here. Thus, Weitzman’s
original intuition turns out to be correct exactly in the hierarchical case.11

10For an argument that the measurement of diversity presupposes some form of value judgment, see
Baumgärtner (2007).

11Another example of a hierarchical model emerges by taking the “clades” in the evolutionary tree,
i.e. for any species x the set consisting of x and all its descendants, as the set of relevant attributes.
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A more general model that still allows one to determine the diversity of arbitrary
sets from the binary dissimilarities between its elements is the line model. Specifically,
suppose that the universe of objects X can be ordered from left to right in such a way
that all relevant attributes are connected subsets, i.e. intervals. This structure emerges,
for instance, in the above example once one includes the non-taxonomic attribute
“ocean-living” possessed by whales and sharks (see Figure 1).

r r rg g g
rh wh sh

�� �

“mammal”

@@R r r rg g g
rh wh sh

�� �

“mammal”

@@R �
�

�
�

“ocean-living”

��	

Figure 1: Hierarchical versus linear organization of attributes

A diversity function v is compatible with this line model if and only if, for all sets
S = {x1, ..., xm} with x1 ≤ x2 ≤ ... ≤ xm,

v(S) = v({x1}) +
m∑

i=2

d(xi, xi−1) (3.4)

(see Nehring and Puppe, 2002, Theorem 3.2).
When, in general, is diversity determined by binary information alone? Say that a

model A is monotone in dissimilarity if, for any compatible diversity function v and
any S, the diversity v(S) is uniquely determined by the value of all single elements in
S and the pairwise dissimilarities within S, and if, moreover, the diversity v(S) is a
monotone function of these dissimilarities. Furthermore, say that a model A is acyclic
if for no m ≥ 3 there exist elements x1, ..., xm and attributes A1, ..., Am ∈ A such that,
for all i = 1, ...,m−1 Ai∩{x1, ..., xm} = {xi, xi+1}, and Am∩{x1, ..., xm} = {xm, x1}.
Thus, for instance in the case m = 3, acyclicity requires that there be no triple of
elements such that each pair of them possesses an attribute that is not possessed by
the third element. A main result of Nehring and Puppe (2002) establishes that a model
of diversity is monotone in dissimilarity if and only if it is acyclic.12

An important example of a non-acyclic model is the hypercube model which takes
the set of all binary sequences of length K (“the K-dimensional hypercube”) as the
universe of objects and assumes all relevant attributes to be subcubes (i.e. subsets
forming a cube of dimension k ≤ K).13 The hypercube model is clearly not acyclic
(see Nehring and Puppe, 2002, Section 3.3). To illustrate the possible violations of
monotonicity in dissimilarity in the hypercube model, consider the following five points
in the 4-hypercube: a = (0, 0, 0, 0), b = (0, 0, 1, 1), c = (1, 0, 1, 0), x1 = (0, 1, 1, 0)
and x2 = (1, 0, 0, 1) (see Figure 2). If all subcubes of the same dimension have the

For a critique of the “cladistic model” and an alternative proposal, the “phylogenetic tree model,” see
Nehring and Puppe (2004a).

12The necessity of acyclicity hinges on a weak regularity requirement, see Nehring and Puppe (2002,
Section 6).

13The hypercube model seems to be particularly appropriate in the context of sociological diversity.
In this context, individuals are frequently classified according to binary characteristics such as “male
vs. female,” “resident vs. non-resident” etc.
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same (positive) weight, then the dissimilarity d(y, z) is uniquely determined by the
Hamming distance between y and z.14 Now consider the sets S1 = {a, b, c, x1} and
S2 = {a, b, c, x2}. The two sets are metrically isomorphic since any element in either
set has Hamming distance 2 from any other element in the same set. Nevertheless
S1 is unambiguously more diverse since S2 is entirely contained in the 3-dimensional
subcube spanned by all elements with a “0” in the second coordinate (the white front
cube in Figure 2). By contrast, S1 always gives a choice between “0” and “1” in each
coordinate.
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Figure 2: Two metrically isomorphic subsets of the 4-hypercube

3.3 On the Application of Diversity Theory

In the context of biodiversity a key issue is the choice of an appropriate conservation
policy such as investment in conservation sites, restrictions of land development, anti-
poaching measures, or the reduction of carbondioxid emission. This can be modeled
along the following lines. A policy determines at each point of time a probability
distribution over sets of existing species and consumption. Formally, a policy p can
be thought of a sequence p = (pt)t≥0, where each pt is a probability distribution on
2X×RN

+ with pt(St, ct) as the probability that at time t the set St is the set of existing
species and ct is the consumption vector. Denoting by P the set of feasible policies,
society’s problem can thus be written as

max
p∈P

∫ ∞

0

e−δt · Ept [v(St) + u(ct)]dt, (3.5)

where δ denotes the discount rate and Ep the expectation with respect to p. The
objective function in (3.5) is composed of utility from aggregate consumption u(ct) and

14By definition, the Hamming distance between two points in the hypercube is given by the number
of coordinates in which they differ.
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the existence value v(St) from the set St of surviving species; its additively separable
form is assumed here for simplicity.

Diversity theory tries to help us determine the intrinsic value we put on the survival
of different species which is represented by the function v. The probabilities pt reflect
societies expectations about the consequences of its actions; these, in turn, reflect our
knowledge of economic and ecological processes. For instance, the role of keystone
species that are crucial for the survival of an entire ecosystem will be captured in the
relevant probability distribution. Thus, the value derived from the presence of such
species qua keystone species enters as an indirect rather than intrinsic utility.15

As a simple example, consider two species y and z each of which can be saved
forever (at the same cost); moreover, suppose that it is not possible to save both of
them. Which one should society choose to save? Assuming constant consumption
ceteris paribus, the utility gain at t from saving species x, given that otherwise the set
St of species survives, is

v(St ∪ {x})− v(St) =
∑

A3x,A∩St=∅

λA.

Denote by Qt(x) :=
∑

A3x λA · prob(A ∩ St = ∅) the expected marginal value at t
of saving x, which is given by the sum of the weights of all attributes possessed by
x multiplied by the probability that x is the unique species possessing them. The
expected present value of the utility gain from saving x is given by∫ ∞

0

e−δt ·Qt(x)dt.

For concreteness, let y be one of the few species of rhinoceroses, and z a unique endemic
species which currently has a sizeable number of fairly distant relatives. In view of
the fact that all rhino species are currently endangered, this leads to the following
trade-off between maximizing diversity in the short-run and in the long-run. Saving
the endemic species z yields a significant short-run benefit, while the expected benefit
from safeguarding the last rhino species would be very high. This suggests the following
qualitative behavior of the streams of intertemporal benefits accruing from the two
policies:

- t

6

undiscounted

marginal benefit at t

Qt(z)

Qt(y)

Figure 3: Streams of expected marginal benefits

15Alternatively, the multi-attribute framework can also be interpreted in terms of option value, as
explained in Nehring and Puppe (2002, p.1168). As a result, measures of biodiversity based on that
notion, such as the one proposed in Polasky, Solow and Broadus (1993), also fit into the framework of
the multi-attribute model.
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The strong increase in the expected marginal value of saving y stems from the fact that,
due to the limited current number of rhinos, the extinction probability of their unique
attributes becomes high as t grows. Clearly, the rhino species y should be saved if the
discount rate is low enough; otherwise, z should be saved. The decision thus depends
on three factors: the discount rate, the value of the relevant attributes at stake, and
the probability of the survival of close relatives over time.

4 Abstract Convexity and the Geometry of
Similarity

4.1 Convex Models described by Structural Similarity
Relations

A key issue in applications of diversity theory is the danger of combinatorial explosion,
since the number of conceivable attributes, and hence the upper bound on the number of
independent value assessments, grows exponentially in the number of objects. Nehring
(1999b) proposes a general methodology of taming this combinatorial explosion refining
the idea of a model as a family of (potentially relevant) attributes A ⊆ 2X \ {∅}
introduced in Section 3.2.

The key idea is to assume that the family of potentially relevant attributes is pat-
terned in an appropriate way. Such patterning is important for two related reasons.
First, excluding an isolated attribute rather than a patterned set of attributes typi-
cally does not correspond to an interpretable restriction on preferences.16 Second, an
isolated exclusion of an attribute will not capture a well-defined structural feature of
the situation to be modeled.

Nehring (1999b) argues that an appropriate notion of pattern is given by that of an
“abstract convex structure” in the sense of abstract convexity theory.17 To motivate
it, consider the case of objects described in terms of an ordered, “one-dimensional”
characteristic such as mass for species or latitude for habitats. Here, the order structure
motivates a selection of attributes of the form “weighs no more than 20 grams,”“weighs
at least 1 ton,”“weighs between 3 and 5 kilograms,”that is: of intervals of real numbers.
This selection defines the “line model” introduced in Section 3.2; it rules out, e.g., the
conceivable attribute “weighs an odd number of grams”.

Any family of relevant attributes A induces a natural ternary structural similarity
relation TA on objects as follows: y is at least as similar to z than x is to z if y shares
all relevant attributes with z that x shares with z. In the line model, e.g., in which all
attributes are intervals, the weight “5 kilograms” shares all attributes with the weight
“10 kilograms” that the weight “1 kilogram” does; by contrast, the weight “1 ton”
does not share all attributes common to “10 kilograms” and “1 kilogram.” Likewise,
in a hierarchical model in which the set of relevant attributes of species is given by

16In view of conjugate Moebius inversion (see Section 3.1 above), excluding a particular attribute A
by imposing the restriction “λA = 0” is equivalent to a linear equality on v involving 2#(X\A)−1 terms
which will lack a natural interpretation unless #(X \A) is very small. In Nehring and Puppe (2004b)
it is shown more specifically that this restriction can be viewed as a restriction on a #(X \A)-th order
partial derivative (more properly: #(X \ A)-th order partial difference) of the diversity function.

17Abstract convexity theory is a little known field of combinatorial mathematics whose neighboring
fields include lattice and order theory, graph theory, and axiomatic geometry. It is surveyed in the
rich monograph by van de Vel (1993).
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biological taxonomy, a chimpanzee is at least as similar to human than a pig is, since
the chimpanzee shares all taxonomic attributes with a human that a pig does.

A family of attributes can now be defined as “patterned” if it is determined by its
similarity geometry TA. To do so, one can associate with any ternary relation T on X
(i.e. any T ⊆ X×X×X) an associated family AT by stipulating that A ∈ AT if, for any
(x, y, z) ∈ T, {x, z} ⊆ A implies y ∈ A. A family of attributes AT derived from some
T satisfies three properties: Boundedness (∅, X ∈ A), Intersection Closure (A,B ∈ A
implies A ∩B ∈ A) and Two-Arity to be defined momentarily. These three properties
define a convex model. The second is the most important of the three. Translated into
the language of attributes, it says that an arbitrary conjunction of relevant attributes
is a relevant attribute. For example, if “mammal” and “ocean-living” are relevant
attribute, so is the conjoint attribute “is a mammal and lives in the ocean.”Note that
this closure property is much more natural than closure under disjunction; for example,
“is a mammal or lives in the ocean” is entirely artificial.18

The first two properties identify A as an abstract convex structure in the sense of
abstract convexity theory (see van de Vel, 1993). In particular, the first two prop-
erties allow one to define, for any S ⊆ X the (abstract) convex hull coA(S) :=
∩{A ∈ A : A ⊇ S} . Two-Arity says that A ∈ A whenever A contains, for any x, y ∈ A,
their convex hull coA ({x, y}) . It is easily verified that if the families A and B are con-
vex models, so is A ∩ B. It follows that for any family (model) A ⊆ 2X \∅, there exists
a unique smallest superfamily A∗ of A that is a convex model, the convexity hull of
A. Nehring (1999b) shows that A(TA) = A∗ for any A; it follows that A is a convex
model if and only if A = A(TA). Thus convex models are exactly the models that are
characterized by their associated qualitative similarity relation TA.

Structural similarity relations are characterized by transitivity and symmetry prop-
erties; symmetry in particular means that if y is at least as similar to z than x is to z,
then y must also be at least as similar to x than z is to x. In view of these properties,
structural similarity can be interpreted geometrically as betweenness (“y lies between
x and z”). For example, structural similarity in the line model is evidently nothing
but the canonical notion of betweenness on a line: y lies between x and z if and only
if x ≥ y ≥ z or x ≤ y ≤ z. A structural similarity relation can therefore be viewed
as describing the similarity geometry of the space of objects. This endows a convex
model with the desired qualitative interpretation.

4.2 Structural Similarity Revealed

Besides this direct conceptual significance, structural similarity relations are useful
because they directly relate the structure of the support of λ to that of the diversity
function itself. In the following, denote by d(x, S) := v(S ∪ {x}) − v(S) the marginal
value of x at S (the “distinctiveness” of x from S). Say that x is revealed at least as
similar to z than y – formally, (x, y, z) ∈ Tv – if d(x, {y}) = d(x, {y, z}). To understand
the definition, note that

d(x, {y})− d(x, {y, z}) =
∑

A:x∈A,y/∈A

λA −
∑

A:x∈A,y/∈A,z/∈A

λA =
∑

A:x∈A,y/∈A,z∈A

λA.

18In a related vein, the philosopher Gärdenfors has argued in a series of papers (see, e.g. Gärdenfors,
1990) that legitimate inductive inference needs to be based on convex predicates.
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By non-negativity of λ, one always has d(x, {y}) ≥ d(x, {y, z}); moreover, d(x, {y}) >
d(x, {y, z}) if and only if a single term on the right-hand side is positive, i.e. if there
exists an attribute A ∈ Λ that is common to x and z but not possessed by y. But this
simply says that, for any diversity function v, the revealed similarity Tv is identical to
the similarity associated with the family of relevant attributes TΛ,

Tv = TΛ.

This result has the following two important corollaries. The first characterizes compat-
ibility with a convex model: for any convex model A and any diversity function with
corresponding set Λ of relevant attributes,

Λ ⊆ A ⇔ Tv ⊇ TA. (4.1)

The second corollary shows that the set of relevant attributes is revealed from Tv

“up to abstract convexification:”for any diversity function v, Λ∗ = A(Tv).
The equivalence (4.1) is as powerful as it is simple, since it amounts to a universal

characterization result for arbitrary convex models. For example, noting that for diver-
sity functions, (x, y, z) ∈ Tv is equivalent to the statement that d(x, {y}) = d(x, S) for
any S containing y, it allows one to deduce the line equation (3.4) and the hierarchy
recursion (2.1) straightforwardly.

4.3 Application to Multi-Dimensional Settings

An important application of (4.1) is to the characterization of multi-dimensional models
in which X is the Cartesian product of component spaces, X = ΠkXk; an example is the
hypercube introduced in Section 3.2. In the context of biodiversity, multi-dimensional
models arise naturally if diversity is conceptualized in functional, morphological19 or
genetic rather than in, or in addition to, phylogenetic terms. In multi-dimensional
settings, it is natural to require that any relevant attribute share this product structure
as well, i.e. that Λ ⊆ Asep, where Asep is the set of all A ⊆ X of the form A = ΠkAk.
Diversity functions with this property are called separable. Since Asep is easily seen
to be a convex model, the equivalence (4.1) can be applied to yield a straightforward
characterization of separability that allows one to check whether the restrictions on
diversity values/preferences imposed by this mathematically convenient assumption
are in fact reasonable. Indeed, (x, y, z) ∈ TAsep if and only if, for all k, yk ∈ {xk, zk}.
Thus separability amounts to the requirement that d(x, {y}) = d(x, {y, z}) for all x, y, z
such that, for all k ∈ K, xk = zk ⇒ yk = xk = zk.

Note the substantial gains in parsimony: while X = ΠkXk allows for 2Πk#Xk − 1
conceivable attributes, #Asep = Πk

(
2#Xk − 1

)
; in the case of the K-dimensional

hypercube, for example, #Asep = 3K .
Under separability, it is further frequently natural (and mathematically extremely

useful) to require independence across dimensions, i.e., for any A = ΠkAk, λA =
Πkλk

Ak
for appropriate marginal attribute weighting functions λk; Nehring (1999b)

provides simple characterizations of independence in terms of the diversity function
and the underlying preference relation. Independence achieves further significant gains

19The “charisma” of many organisms is closely associated with their anatomy and shape, as in case
of the horn of the rhino, the nobility of a crane, the grace of a rose, or the sheer size of a whale.
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in parsimony, as now only
∑

k

(
2#Xk − 1

)
independent attribute weights need to be

determined, in the K-dimensional hypercube, for example, 3K such weights.
In spite of the obvious importance of multi-dimensional settings, to the best of our

knowledge only the pioneering contributions by Solow, Polasky and Broadus (1993)
and Solow and Polasky (1994) have tried to model diversity in such settings; we do
not survey their work in detail, since their measures are quite special and not well
understood analytically.20

5 Absolute vs. Relative Conceptions of Diversity

The literature is characterized by two competing intuitive, pre-formal conceptions of
diversity that we shall term the “absolute” and the “relative.”On the absolute con-
ception, diversity is ontological richness; it has found clear formal expression in the
multi-attribute model described in Section 3. On the relative conception, diversity
is pure difference, heterogeneity. To illustrate the difference, consider the addition of
some object z to the set of objects {x, y}. On the absolute conception, the diversity
can never fall, even if z is a copy of x or very similar to it. By contrast, on the relative
conception, the diversity may well fall; indeed, if one keeps adding (near) copies of x,
the resulting set would be viewed as nearly homogenous and thus almost minimal in
diversity.

In the literature, the relative conception has been articulated via indices defined on
probability (i.e. relative frequency) distributions over types of objects. In a biological
context, these types might be species, and the probability mass of a species may be
given by the physical mass of all organisms of that species as a fraction of the total
mass; in a social context, types might be defined by socio-economic characteristics, and
the probability mass of a type be given by the relative frequency of individuals with
the corresponding characteristics.

Formally, let ∆(X) denote the set of all probability distributions on X, with p ∈
∆ (X) written as (px)x∈X , where px ≥ 0 for all x and

∑
x∈X px = 1. Thus, px is

the fraction of the population of type x ∈ X. The support of p is the set of types
with positive mass, supp p = {x ∈ X : px > 0}. A heterogeneity index is a function
h : ∆ (X) → R.21 It is natural to require that h take values between 1 and #X, as this
allows an interpretation of “effective number of different types” (cf. Hill, 1973). As
developed in the literature, a heterogenity index is understood to rely on the frequency
distribution over different types as the only relevant information; heterogeneity indices
are thus required to be symmetric, i.e. invariant under arbitrary permutations of the p-
vector. This reflects the implicit assumption that all individuals are either exact copies
or just different (by belonging to different types); all non-trivial similarity information
among types is ruled out.

To be interpretable as a heterogeneity index, h must rank more “even” distribu-
20The former paper represents objects as points in a finite-dimensional Euclidean space, and restricts

relevant attributes to be balls in this space. The latter provides a lower bound on diversity values of
arbitrary sets given the diversity values of sets with at most two elements; it also proposes taking these
lower bounds as a possibly useful diversity measure based on distance information in its own right
with an interesting statistical interpretation. It seems doubtful that this measure will be ordinarily a
diversity function, and thus that it will admit a multi-attribute interpretation.

21We use this non-standard terminology to clearly distinguish heterogeneity indices from diversity
functions in terms of both their formal structure and their conceptual motivation.
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tions higher than less even ones; formally Preference for Evenness is captured by the
requirement that h be quasi-concave. Note that Symmetry and Preference for Evenness
imply that the uniform distribution ( 1

n , ..., 1
n ) has maximal heterogeneity.

A particular heterogeneity index h is characterized in particular how it trades off the
“richness” and the “evenness” of distributions. Roughly, richness measures how many
different entities there are (with any non-zero frequency), while evenness measures how
frequently they are realized. For instance, comparing the distributions p = (0.6, 0.3, 0.1)
and q = (0.5, 0.5, 0), intuitively the former is richer while the latter is more even.

The most commonly used heterogeneity indices belong to the following one-para-
meter family {hα}α≥0, in which the parameter α ≥ 0 describes the trade-off between
richness and evenness:

hα (p) =

(∑
x∈X

pα
x

) 1
1−α

.

These indices (more properly: their logarithm) are known in the literature as “gen-
eralized” or “Renyi” entropies (Renyi, 1961). Like much of the literature, we take
these indices to have primarily ordinal meaning; the chosen cardinalization ensures
that uniform distributions of the form ( 1

m , .., 1
m , 0, ...) have heterogeneity m. The class

of generalized entropy indices {hα} can be cleanly characterized axiomatically; for a
nice exposition that draws on a closely related result on inequality measurement by
Shorrocks (1984), see Gravel (2007).

A high α implies emphasis on frequent types, and thus a relatively strong weight
on evenness over richness. Indeed, in the limit when α grows without bound, one
obtains h∞ (p) = 1

maxx∈X px
, i.e. the frequency of the most frequent type determines

heterogeneity completely.22 At the other end of the spectrum (α = 0), hα simply counts
the size of the support #(supp p): here evenness counts for nothing, and richness is
everything. Besides the counting index, by far the most important in applications are
the parameter values α = 1 and α = 2.

For α = 1, the logarithm of hα (p) (defined by an appropriate limit operation) is
the Shannon-Wiener entropy, log2 h1 (p) = −

∑
x∈X px log2 px. An intuitive connection

to a notion of diversity as disorder comes from its origin in coding theory, where it
describes the minimum average number of bits needed to code without redundancy a
randomly drawn member from the population.

For α = 2, h2 (p) = (
∑

x∈X p2
x)−1 is an ordinal transform of the Simpson index

(Simpson, 1949) in the biological literature. Again, an intuitive link to some notion of
heterogeneity can be established by noting that

∑
x∈X p2

x is the probability that two
randomly and independently drawn elements from the population belong to the same
class.

In contrast to the popularity of generalized entropy indices, their conceptual foun-
dations remain to be clarified. We note three issues in particular. First, an important
conceptual gap in the existing literature is the lack of a substantive interpretation of
the parameter α: what does the parameter α represent? On what grounds should a
diversity assessor choose one value of α rather than another? Could α represent a
feature of the world; if so, what could that feature be? Alternatively, could α represent

22The index h∞ is known as the Berger-Parker index (Berger and Parker, 1970) in the biological
literature.
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a feature of the assessor, a “taste” for richness versus evenness? Such a preference
interpretation may be tempting for economists, especially in view of certain formal
similarities to the theory of risk-aversion. Note, however, in the latter the degree of
risk-aversion can reasonably (if controversially) be explained, or at least related to, the
speed at which the marginal (hedonic) utility decreases with income. The problem with
the parameter α is the apparent lack of any such correlate; at least, no such correlate
appears to have been suggested in the literature.

Second, the generalized entropy indices rely on a partitional classification of pairs of
individuals as either completely identical or completely different. Intermediate degrees
of similarity/dissimilarity are ruled out. But these are of evident importance for a rel-
ative conception of diversity no less than for an absolute one. In applications, the need
to fix a partition introduces a significant degree of arbitrariness into the measurement
of heterogeneity.

Third, and perhaps most fundamentally, it is not clear whether the relative concep-
tion constitutes a fundamentally different notion of diversity, or whether it is in some
way derivable from the absolute conception or, indeed, from a “diversity-free” notion
altogether. An example of the latter is Weitzman (2000) model of economically opti-
mal crop variety in which he provides assumptions under which Shannon entropy can
serve as a “generalized measure of resistance to extinction.”To establish irreducibility,
invocations of terms like “surprise” and “disorder” are clearly not enough.23 While
they may serve to visualize notions of (generalized) entropy, they do not establish
their appropriateness of these as measures of diversity. Hill (1973, p.428), for example,
emphatically asserts that “the information-theoretic analogy is not illuminating.”

In the remainder of this chapter, we sketch one way to make sense of relative
diversity as derived from absolute diversity by “sampling.”The sampling could represent
a future evolution/survival process that selects a subset of the given set of individuals.
Alternatively, the sampling may capture the diversity experienced by an embodied
diversity consumer whose physical or mental eye is constrained by the limited capacity
to take in and absorb the existing range of objects. For concreteness, think, for example,
of a tourist on an ecotrip. Under both interpretations, the addition of a common
organism may hinder the likelihood of survival (respectively of observation) of a less
common one, in line with the Preference for Evenness intuition that is characteristic
of the relative conception. To come up with a determinate and simple functional form,
we will assume a very stylized sampling process with fixed sample size, independent
draws and replacement. By building on the multi-attribute model described in Section
3, the resulting family of indices allows one to capture non-trivial similarities in a very
general manner. Furthermore, the sample size can serve as an interpretable parameter
determining the richness-evenness trade-off. The exposition will be heuristic and hopes
to stimulate further research in this important grey area of diversity theory.

Think of individual entities (“individuals”) y ∈ Y as described by their type x ∈ X
and a numeric label i ∈ N. Thus the domain of individuals is given as Y = X×N. For
a given set of individuals S ⊆ Y, it is convenient to write Sx = S ∩ ({x} ×N) for the
subset of individuals in type x, and qS

x = #Sx/#S for the fraction of these individuals.
Individual entities carry no diversity value of their own. That is, the diversity of S
is given by the diversity of the set of extant types: ṽ (S) = v ({x : #Sx 6= 0}) , where
v : 2X → R+ is represented by the attribute weighting function λ ≥ 0.

23For an interpretation of product diversity in terms of “potential for surprise,” see Baumgärtner
(2004).
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Now suppose that the “effective” diversity of some set S is determined by a sampling
process. Specifically, assume that from the individuals in S, a fixed number of times k ≥
1 some individual is randomly drawn with replacement. The replacement assumption is
chosen for mathematical convenience; in some settings, a sampling without replacement
may be more realistic, but we believe the difference between the two scenarios to be
minor in most cases. Note that, due to the assumed replacement, the sample size may
well be strictly less than k. If rk

T denotes the probability of obtaining T ⊆ S as result
of sampling k times with replacement from S, then

vk(S) =
∑
T⊆S

rk
T ṽ(T )

defines the expected diversity of the sample.24

It is easily seen that in fact

vk(S) =
∑

A∈2X

λA

(
1− (1−

∑
x∈A

qS
x )k

)
; (5.1)

indeed, note that 1−
∑

x∈A qS
x is the probability that the sampled individual does not

belong to A, for a single draw; since draws are independent, the probability that some
individual in the sample belongs to A is 1− (1−

∑
x∈A qS

x )k.
Since the expected sampled diversity vk(S) is determined by the distribution of

individuals over types given by the vector
(
qS
x

)
x∈X

, one can think of vk in terms of
an associated heterogeneity index h = wk,v, where, for any p ∈ ∆ (X) with rational
coefficient, wk,v (p) = vk (S) for any S such that qS

x = px for all x; (5.1) yields the
following simple representation in terms of an attribute weighting expression

wk,v (p) =
∑

A⊆X

λA

(
1− (1−

∑
x∈A

px)k

)
. (5.2)

Note that, by Jensen’s inequality, it follows immediately from (5.2) that wk,v is
concave, hence a fortiori quasi-concave. This preference for evenness is explained nat-
urally here by the increased chance of duplication of an individual of the same type in
the sample with the prevalence of that type in the population.

Evidently, for any p, wk,v (p) increases with the sample size k; moreover, as the
sample size becomes infinitely large, the sampled and underlying diversities becomes
equal,

lim
k→∞

wk,v(p) = v(supp p).

Thus, the sample size can be viewed as a parameter measuring the importance of rare
types, thereby controlling the richness-evenness trade-off: the larger the sample, the
more can one take the realization of frequent types for granted, and the more rare types
matter. Since v will not in general be symmetric, neither will be wk,v; heterogeneity will
thus no longer be maximized by uniform distributions. For example, if singletons have
equal value, in the hierarchical model of Figure 1, maximization of sampled diversity
entails an above-average fraction of sharks (to insure against the loss of the taxon “fish”
that is uniquely realized by sharks).

24The exact expression for rk
T is of no relevance; for example, rk

T for #T = k equals
(

1
#S

)k
k!.
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It is instructive to consider the case of “zero similarity” that is implicitly assumed
by the generalized entropy measures described above. This assumption can be made
explicit here by taking the underlying diversity function to be the counting measure,
v (S) = #S for all S ⊆ X. This yields the sampled diversity function wk,# given by

wk,#(p) =
∑
x∈X

(
1− (1− px)k

)
.

The family of functions {wk,#} has two points of intersection with the generalized
entropy measures: the support count and the Simpson rule.25

This model of heterogeneity as sampled diversity invites generalizations. For exam-
ple, instead of a fixed sample size, it would frequently be natural consider the sample
size itself to be random. Inspired by (5.2), one can also take a more abstract route and
consider indices of the form

hφ,v (p) =
∑

A⊆X

λAφ

(∑
x∈A

px

)

for some transformation function φ : [0, 1] → [0, 1]. Preference for Evenness is assured
by concavity of φ; monotonicity of φ is not needed. An especially intriguing choice of φ
is the entropic one φ = φent, where φent (q) = q log q. Since hφent,# (p) is the Shannon
entropy of p, the indices hφent,v can be viewed as similarity-adjusted entropy indices.
Appealing as these look, their conceptual foundation is yet to be determined.
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