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Abstract We define a general notion of single-peaked preferences based on abstract
betweenness relations. Special cases are the classical examples of single-peaked prefer-
ences on a line, the separable preferences on the hypercube, the “multi-dimensionally
single-peaked” preferences on the product of lines, but also the unrestricted preference
domain. Generalizing and unifying the existing literature, we show that a social choice
function is strategy-proof on a single-peaked domain if and only if it takes the form of
“voting by committees” satisfying a simple condition called the “Intersection Property.”

We then classify all single-peaked domains in terms of the extent to which they
enable well-behaved strategy-proof social choice. In particular, we show that a single-
peaked domain admits a non-dictatorial and neutral strategy-proof social choice function
if and only if the associated betweenness relation has the property that for any triple
of social alternatives there exists a median, i.e. an alternative that is between any pair
of the triple. Generalizing the Gibbard-Satterthwaite Theorem, we also characterize
the domains that admit only dictatorial strategy-proof social choice functions. Finally,
we characterize the single-peaked domains that enable strategy-proof social choice with
anonymity and with no veto power, respectively.



1 Introduction

In view of the celebrated Gibbard-Satterthwaite Impossibility Theorem, non-degenerate
social choice functions can be strategy-proof only on restricted domains, that is: only
when some a priori information on the possible preferences over social states is avail-
able. Two types of preference restrictions in particular have been shown to give rise
to possibility results. On the one hand, in economic contexts it is assumed that indi-
viduals care only about certain aspects of social alternatives, for instance about public
and own private consumption but not about the distribution of the other individuals’
private consumption. If, in addition, utility in private wealth is quasi-linear, the well-
known class of Groves mechanisms offers a rich array of strategy-proof social choice
functions.

By contrast, in “pure” social choice (“voting”) contexts individuals care about all
aspects of the social state. Here, the assumption of single-peaked preferences is natural
and frequently ensures possibility results. The most basic example is that of social
states ordered as in a line, representing, for instance, policy choices that can be de-
scribed in terms of a left-to-right scale. Single-peakedness in this context means that
individuals always prefer social states that are between a given state and their most
preferred state, the “peak” (see, e.g., Moulin (1980)). Another strategy-proofness en-
abling domain arises if the social choice concerns an independent set of yes-or-no issues,
such as which among a set of proposed bills to endorse. Here, one needs to assume
that individual preferences are ordinally separable in issues, i.e. that the preference
over some issues is not affected by what choice is made on other issues (see Barbera,
Sonnenschein and Zhou (1991)). By introducing an appropriate notion of betweenness,
separability can be interpreted as another instance of single-peakedness. Combining
these two examples, single-peakedness relative to an appropriate betweenness relation
has also been shown to enable strategy-proofness on a Cartesian product of lines (see
Barber4, Gul and Stacchetti (1993)).!

The goal of the present paper is to explore the possibility of strategy-proof social
choice for domains of single-peaked preferences based on general betweenness relations.
Following Nehring (1999), a natural way to conceptualize betweenness is in terms of
the differential possession of relevant properties: a social state y is between the social
states x and z if y shares all relevant properties common to x and z. Single-peakedness
means that a state y is preferred to a state z whenever y is between z and the peak
x*, i.e. whenever y shares all properties with the peak x* that z shares with it (and
possibly others as well). As further illustrated below, many domains of preferences that
arise naturally in applications can be described as single-peaked domains with respect
to such a betweenness relation. For instance, the standard betweenness relation in
case of a line is derived from properties of the form “to the right (resp. left) of any
given state.” In fact, to our knowledge all domains that have been shown to enable
strategy-proof social choice in a voting context are single-peaked domains. But there
are also single-peaked domains that give rise to impossibility results. For instance, the
unrestricted domain envisaged by the Gibbard-Satterthwaite Theorem can be described
as the set of all single-peaked preferences with respect to a vacuous betweenness relation
that declares no social state between any two other states; the corresponding relevant
properties are, for any social state x, “being equal to x,” and “being different from z.”

IRelated domain restrictions have been considered, among others, by Border and Jordan (1983)
and Le Breton and Sen (1999).



The Structure of Strategy-Proof Social Choice

The interpretation of betweenness in terms of properties lends useful mathematical
structure to the analysis, but not quite enough. Throughout, we shall rely on the as-
sumption that a property is relevant if and only if its negation is relevant (“closedness
under negation”). This assumption allows us to invoke, and thereby to generalize, a
fundamental insight of the previous literature, namely that strategy-proof social choice
functions on single-peaked domains have the structure of “voting by committees” (see
Barberd, Sonnenschein and Zhou (1991), Barbera, Masso and Neme (1997)). This stru-
cure has two aspects: First, social choice depends on individuals’ preferences through
their most preferred alternative only. Second, the social choice is determined by a
separate “vote” on each property: an individual is construed as voting for a property
over its negation if her top-ranked alternative has the property. In the special case in
which voting by committees is anonymous and neutral, it takes the form of “majority
voting on properties,” that is, a chosen state has a particular property if and only if
the majority of top-ranked alternatives have that property.

Crucially, this fundamental insight describes only a presupposition for strategy-
proofness, not a possibility result. For without restrictions on the family of properties
deemed relevant and/or the structure of committees, the properties chosen by the var-
ious committees may well be mutually incompatible. Consider, for example, majority
voting on properties on a domain of three states z, y and z, and take as relevant the
(six) properties of being equal to or different from any particular state, corresponding
to the unrestricted domain of preferences. If there are three agents with distinct peaks,
a majority of agents votes for each property of the form “is different from state w.”
Since no social state is different from all social states (including itself), the social choice
is therefore empty.

A committee structure is called consistent if the properties chosen by each commit-
tee are always jointly realizable (irrespective of voters’ preferences). We show that a
committee structure is consistent if and only if it satisfies a simple condition, called
the “Intersection Property.” This leads to a unifying characterization of strategy-proof
social choice on abstract single-peaked domains, namely as voting by committees sat-
isfying the Intersection Property.?

Strong Possibility on Median Spaces

The Intersection Property imposes restrictions on the committee structure that reflect
the structure of the underlying space. It does not answer the question for which single-
peaked domains there exist well-behaved strategy-proof social choice functions. This
problem is the central concern of the present paper. While, as indicated above, the
literature has come up with a number of examples of such domains, it has not posed the
question in generality. First, we ask which betweenness relations (respectively, which
restrictions on the class of relevant properties) ensure consistency of any (well-defined)
committee structure. In this case, we shall say that voting by committees is universally
consistent, thereby ensuring the existence of a maximal class of strategy-proof social

2In the context of subsets of the product of lines, Barberd, Masso and Neme (1997) already have
provided a characterization of consistency in terms of a property they also called “intersection prop-
erty.” Their condition is less transparent and workable than the one obtained here; for instance, in
the anonymous case of “voting by quota,” our condition directly translates into a system of linear
inequalities, representing appropriate bounds on the quotas (see Section 3.4 below for details).



choice functions. Our first main result in this context shows that voting by committees
is universally consistent if and only if the betweenness relation has the property that,
for any three distinct states, there exists a state between any pair of them. Such a
state is called a median of the triple, and the resulting space a median space.® A
second result shows that the existence of a median for any triple of alternatives is also
necessary and sufficient for the possibility of neutral and non-dictatorial strategy-proof
social choice.

The Gibbard-Satterthwaite Theorem Generalized:
A Characterization of Dictatorial Domains

The strong possibility results on median spaces contrast sharply with the Gibbard-
Satterthwaite impossibility result according to which the only strategy-proof social
choice functions on an unrestricted preference domain (over at least three alterna-
tives) are dictatorial. In Section 5, we derive a condition (“total blockedness”) that
is both necessary and sufficient for a single-peaked domain to enable only dictatorial
strategy-proof social choice. The unrestricted domain as well as many other single-
peaked domains are totally blocked. To illustrate the scope of the analysis, consider
the following figure.
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3A related but different approach emphasizing the role of medians is taken by Bogomolnaia (1999)
who considers generalized “median rules” on sets of alternatives which are embedded into an Euclidean
space. In contrast to our analysis, Bogomolnaia (1999) restricts attention to anonymous rules, and
obtains characterizations only in special cases.
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Figure 1: Examples of single-peaked domains based on graphs

Each graph corresponds to a different set of social states represented by its nodes. The
relevant betweenness relation is the natural one: a state/node is between two other
states/nodes if it lies on some shortest path connecting them.* Endowed with this
notion of betweenness, the three graphs in the top row are all median spaces. Indeed,
in Fig. 1a the betweenness relation is the standard one with the middle point y as the
median of z, y and 2. In Fig. 1b and 1c, y is the median of z, z and w.

By constrast, none of the remaining graphs in Fig. 1 is a median space: in each
case the indicated triple z, z, w does not admit a median.? In fact, as we will see, the
three graphs in the bottom row of Figure 1 give rise to strong impossibility results in
the sense that the associated single-peaked domains only admit dictatorial strategy-
proof social choice functions. For the single-peaked domain associated with the graph
in Fig. 1g this follows from the Gibbard-Satterthwaite Theorem: since every point is
connected with any other point by an edge, no point is between two other points; but in
this case any preference is (vacuously) single-peaked, i.e. the associated single-peaked
domain is the unrestricted preference domain.

4A shortest path is one with a minimal number of edges; note that such paths are, in general, not
unique.

5The interpretation of the blank circle in Fig. le is that the shortest path connecting z and w
comprises two edges; at the same time, no social state is (strictly) between x and w.



Partial Possibility on Quasi-Median Spaces

Spaces that are not totally blocked need not be median spaces; examples are given
in Fig. 1d, 1e and 1f. For instance, as a non-median space the graph in Fig. 1d does
not admit majority voting by properties; nonetheless, it does admit “qualified majority
voting on properties.” In this figure, the relevant properties are the three four-cycles
and their complements. For example, the rule according to which the social choice
belongs to any of the four-cycles if and only if at least one third of the voters’ peaks
are in that four-cycle is well-defined (consistent) and strategy-proof; see Section 7 for
a broad class of spaces generalizing this example.

By constrast, while Fig. 1f does admit non-dictatorial strategy-proof social choice
functions, none of these is anonymous. Fig. 1le, on the other hand, admits anonymous
social choice functions; all of these are fairly degenerate, however, in that at least one
property must be chosen unanimously. This implies in particular that the condition of
“no veto power,” which guarantees that a social state is chosen whenever it is the peak
of all but one voters, can never be satisfied.

In the two final sections of this paper, we thus ask which spaces enable not merely
non-dictatorial but anonymous and veto-free social choice under strategy-proofness.%
It turns out to be possible to characterize these spaces geometrically in terms of the
notion of a “median point:” a state/node y is a median point if any triple containing
y has a median. For instance, in Fig. 1d the median points are exactly the four non-
labelled points (all points except z, z and w); similarly, the median points in Fig. le
are the two points different from z, z and w. By contrast, in Fig. 1f there are no
median points, since for any given alternative one can find two other alternatives such
that the resulting triple has no median. A space with at least one median point will be
referred to as a quasi-median space. In Section 6, we show that if a space has a median
point then it admits an anonymous strategy-proof social choice function, and that this
is almost necessary. In the final Section 7, we show that strategy-proof social choice
functions with no veto power exist, roughly speaking, if and only if the set of median
points is “connected” in an appropriate sense.”

The remainder of the paper is organized as follows. Section 2 introduces the central
concept of betweenness relations based on families of relevant properties, the derived
notion of convexity, and the definition of single-peakedness.

In Section 3, we use these concepts to provide a generalization and unification of
the existing literature, including the main results of Moulin (1980), Barberd, Son-
nenschein and Zhou (1991), Barbera, Gul and Stacchetti (1993), Barbera, Masso and
Neme (1997) and Bogomolnaia (1999). Specifically, we show that any strategy-proof
social choice function on the domain of all single-peaked preferences satisfying a weak
condition of “voter sovereignty” must be voting by committees, i.e. in our framework:
“voting by properties” (Theorem 1). We then derive a simple necessary and sufficient
condition for the consistency of committee structures, the “Intersection Property.” We
thus obtain a general characterization of strategy-proof social choice an abstract single-
peaked domains, namely as voting by committees satisfying the Intersection Property
(Theorem 2).

6As will be shown, spaces that allow for veto-free and strategy-proof social choice functions also
allow for anonymous such functions; thus, there is no trade-off between the two criteria.

"While median spaces (that is: spaces in which all points are median points) are well-known in
abstract convexity theory (see, e.g., van de Vel (1993)), spaces in which only some points are median
points (“quasi-median spaces”) do not seem to have been considered before.



Section 4 introduces the notion of a median space. It is shown that voting by com-
mittees is universally consistent if and only if the underlying domain of social states is a
median space (Theorem 3). Median spaces thus give rise to the possibility of strategy-
proof social choice in the strong sense that any well-defined voting by committees rule
is consistent. Moreover, we show that any neutral strategy-proof social choice function
must be defined on a median space, provided it is to be non-dictatorial (Theorem 4).

In Section 5, we generalize the Gibbard-Satterthwaite Theorem by characterizing
the class of all single-peaked domains that only admit dictatorial strategy-proof social
choice functions (Theorem 5). Roughly, the characterizing condition (“total blocked-
ness”) says that there are too many families of mutually incompatible properties.

In Section 6, we characterize the class of all single-peaked domains that admit
anonymous and strategy-proof social choice functions (Theorem 6), and in Section 7
we provide the conditions on the domain under which such social choice functions can
satisfy “no veto power” (Theorem 7). Section 8 concludes, and all proofs are collected
in an appendix.

2 Single-Peaked Preferences Based on General
Betweenness Relations

2.1 Betweenness

Let X be a finite universe of social states or social alternatives. It is assumed that the
elements of X are distinguished by different basic properties. Formally, these properties
are described by a non-empty family H C 2% of subsets of X where each H € H
corresponds to a property possessed by all alternatives in H C X but by no alternative
in the complement H¢ := X \ H. The basic properties are thus identified extensionally:
for instance, the basic property “the tax rate on labour income is 10% or less” is
identified with the set of all social states in which the tax rate satisfies the required
condition.
Throughout, we assume that H satisfies the following three conditions.

H1 (Non-Triviality) H € H = H # .
H2 (Closedness under Negation) H € H = H¢ € H.
H3 (Separation) for all  # y there exists H € H such that z € H and y ¢ H.

Condition H1 says that any basic property is possessed by some element in X. Con-
dition H2 asserts that for any basic property corresponding to H there is also the
complementary property possessed by all alternatives not in H. We will refer to a
pair (H, H¢) as an issue. Finally, condition H3 says that any two distinct elements are
distinguished by at least one basic property. A pair (X, #) satisfying H1-H3 will be
called a property space.

Following Nehring (1999), a property space (X, ) gives rise to a natural notion of
“betweenness” of alternatives as follows.

Definition (Betweenness) Say that y is between = and z, denoted by (z,y,2) € T,
if y possesses all properties that are jointly possessed by = and z. Formally,

(z,y,2) €T & [foral He H : {z,2} CH =y € H]. (2.1)

The betweenness relation (2.1) has a natural interpretation in terms of comparative



similarity: y is between z and z whenever y is (weakly) more similar than z to z
in the sense that y possesses any basic property jointly possessed by = and z. The
ternary betweenness relation 7" induced by (X, H) satisfies the following four properties
(cf. Nehring (1999)). For all z,y,z,2’, 2,

T1 (Reflexivity) y € {z,2} = (z,y,2) € T.

T2 (Symmetry) (z,y,2) € T < (z,y,2) € T.

T3 (Transitivity) [(z,2',2) € T and (z,2',2) € T and (¢',y,2') € T] = (z,y,2) € T.
T4 (Antisymmetry) [(z,y,2) € T and (z,2,y) € T =y = 2.

The reflexivity condition T1 and the symmetry condition T2 follow at once from the
definition of T'. The transitivity condition T3 is also easily verified; it states that if
both z’ and 2’ are between z and z, and moreover y is between z’' and 2’, then y
must also be between x and z. Finally, the antisymmetry condition T4 is due to the
separation property H3.

2.2 Examples

The following list of examples illustrates the great flexibility of the notion of a property
space; further examples are provided later. All of the following property spaces satisfy
conditions H1-H3.

Example 1 (Lines) The simplest example is the canonical betweenness in a linearly
ordered space (cf. Fig. la above). Specifically, assume that the alternatives can be
ordered from left to right by some linear ordering > on X, and consider the family
H of all sets of the form H>, = {y > w : forsomew € X} or Hc,, := {y < w :
for some w € X'}. Each basic property is thus of the form “lying to the right of w” or
“lying to the left of w.” The induced line betweenness T according to (2.1) is given by

(,9,2) ET & [z >y >z 012>y >a]

(see Figure 2a below).

Example 2 (The Hypercube) Let X = {0,1}X which we refer to as the K-
dimensional hypercube (cf. Fig. 1b). An element x € {0,1}¥ is thus described as a bi-
nary sequence z = (z', ..., %) with 2% € {0,1}. For all k, denote by Hf := {z : 2* = 1}
and HY := {z : 2¥ = 0}, and consider the family H of all such subsets, i.e. let
H = {H} : 1 € {0,1},k = 1,...,K}. Intuitively, each coordinate k corresponds to
some basic property, and HF (respectively, HF) is the set of alternatives that possess
(respectively, do not possess) the property corresponding to coordinate k. The induced
hypercube betweenness T according to (2.1) is given as follows. For all z,y, z,

(2,y,2) €T & [for all k: 2z = 2% = yF = 2k = 2H].

Thus, y is between z and z if and only if y agrees with z and y in each coordinate in
which z and z agree. Geometrically, y is between x and z if and only if y is contained
in the “subcube” spanned by z and z; for instance, in Figure 2b below, both y and v’
are between x and z; similarly, z is between y and w (as well as between y' and w),
and all elements of the pictured cube are between z and w.



Example 3 (The Vacuous Betweenness) Consider a domain (X, ) such that, for
all z € X, {z} € H and X \ {z} € H; hence, assume that for each z, “being equal to
z” and “being different from 2” are basic properties. Then, the induced betweenness
T according to (2.1) is vacuous in the sense that, for all z,y, z,

(z,y,2) €T &y €{z, 2},

i.e. no alternative different from x and y is between these two alternatives. Indeed,
consider any three distinct alternatives x, y, z, and the basic property H = {y}. Clearly,
{z,z} C H° but y ¢ H¢; hence, y is not between = and z (see Figure 2c below).

Example 4 (Products) The hypercube betweenness of Example 2 above is an instance
of a product betweenness. Let X = X' x ... x XX, where the alternatives in each
factor X* are described by a list H* of basic properties referring to coordinate k. Let
H = {H* x[];4, X/ : for some k and H* € #*}, and denote by T* the betweenness
relation on X* induced by H*. The product betweenness T on X according to (2.1) is
given as follows. For all z,y, z,

(z,y,2) € T & [for all k: (2% % 2%) € TH).

Figure 2d below depicts the product of two lines; the alternatives between z and z are
precisely the alternatives contained in the dotted rectangle spanned by z and z.
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Figure 2: Basic examples of property spaces



A large class of examples of property spaces can be obtained as “graphic” spaces, as
follows. A graph + is a symmetric binary relation on X; the elements of -y are referred
to as the edges of 7v. A path connecting the elements z and z in v is a sequence of
distinct elements {y1,...,y,.} C X such that y; =z, y, =z, and for all j =1,...,7 — 1,
(¥j,yj+1) € 7. A shortest path between two elements is a path that connects them
with a minimal number of edges. Note that, in general, a shortest path is not unique.
To any graph 7 associate the following graphic betweenness T, (ctf. Figure 1 above).
For all z,y, z,

(z,y,2) € T, &y is on some shortest path connecting z and z. (2.2)

Definition (Graphic Property Space) Say that a property space (X, H) is a graphic
property space if the associated betweenness relation is graphic, i.e. if there exists a
graph v such that T' = T, where T and T, are defined by (2.1) and (2.2), respectively.

Many interesting examples of property spaces are graphic; for instance, the spaces
in Examples 1-3 are graphic spaces; furthermore, the product of graphic spaces is
graphic.®  Conversely, many (though not all) graphic betweennesses can be derived
from an appropriate underlying property space; for instance, this holds for all graphs
depicted in Figure 1 above. Further examples include the following.

Example 5 (Trees) Consider a tree, that is, a connected and acyclic graph 7. In a
tree, any two elements are connected by a unique shortest path. The basic properties
underlying a tree are easily identified, as follows. Any edge (z, z) of 7 naturally defines
two basic properties: “lying in direction of z” and “lying in direction of z” (when
viewed from edge (z,z)). Formally, these properties can be described by the following
two subsets, H._(, ) := {y : = is on a shortest path from y to z} and H(, .)-, == {y:
z is on a shortest path from z to y}. Let H be the family of all sets of this form. Then,
(X,H) is a property space, and the induced tree betweenness T according to (2.1)
coincides with the graphic betweenness induced by 7 according to (2.2) (see Figure
3a). Clearly, the line betweenness of Example 1 is a special case.

Example 6 (Cycles) Let X = {xy,...,2;}, and consider the I-cycle on X, i.e. the graph
with the edges (x;, x;+1), where indices are understood modulo [ so that z;1; = x; (see
Figure 3b for the case I = 6). The graphic betweenness on the Il-cycle is derived
from a property space as follows. If [ is even, the basic properties are of the form
{zj, x4, ...,J:j_1+%}. If [ is odd, the family of basic properties consists of all sets of

the form {z;, 241, ...,a:j_1+HTl} or {z;,xj11, ...,a:j_l_i_szl}.

8The graph that represents the line betweenness is depicted Fig. 1a above; the graph corresponding
to the 3-dimensional hypercube is depicted in Fig. 1b. The graph corresponding to the vacuous
betweenness on a set of six elements is depicted in Fig. 1g. Finally, the edges of the graph representing
the product of two lines form a grid in which each element is connected by an edge to its north, south,
east and west neighbour, respectively (cf. Fig. 1c which shows a subset of the product of two lines).

More generally, all property spaces that give rise to strategy-proof social choice without veto power
(see Section 7 below) turn out to be graphic.
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Figure 3: Further examples of graphic betweenness relations

Example 7 (The Permutahedron) Let A = {a,b,c,d, ...} be a finite set, and con-
sider the set X 4 of all permutations (linear orderings) of A. A typical element z € X 4
is thus a bijective mapping = : A — {1,2,...,# A}, where #A is the cardinality of A.
In a social choice context, the elements of X 4 can be interpreted as decision rules that
govern future choices among the ultimate social states a, b, ¢, ... before the feasibility
constraints are known. Choosing the alternative z € X 4 amounts to commiting oneself
to future choices according to the decision rule z. A natural class of basic properties is
given by the sets of the form H(, ) := {z : z(a) < z(b)}, for every pair (a,b) € A x A
with a # b; the basic properties are thus of the form “ranks a above b.” According
to (2.1), a linear ordering y is between the linear orderings xz and z if y agrees in all
pairwise comparisons in which 2 and z agree. Endowed with this betweenness, the
set X4 is referred to as the permutahedron. To illustrate, consider a three-element
set A = {a,b,c}. In this case, the permutahedron X4 is isomorphic to the 6-cycle as
shown in Figure 3b. Specifically, let z1 = abe, 2 = bac, 3 = bea, x4 = cba, x5 = cab
and zg = ach, where, e.g., bca denotes the linear ordering that ranks b on top, ¢ on
second and a on third position. Then, the “half-circle” {z1,z2,x3} corresponds to the
basic property “ranks b above ¢,” whereas {x2, 3,24} corresponds to “ranks b above
a,” and so on. All linear orderings are between “opposite” elements, such as z; and
x4, Or T2 and x5, or x3 and xg; finally, for any j, z;41 is between z; and xj4o (with
indices understood modulo 6).

2.3 Convexity

A property space (X,7H) gives rise to a natural notion of “convexity” of subsets as
follows.

Definition (Convexity) Say that a subset S C X is convez in the space (X, H) if
there exists family Hg C H such that S is the intersection of all elements of Hg, i.e. if
S = NHg. Thus, a set is convex if it corresponds to some combination of the basic
properties. By convention, we set N) = X, hence the universal set X is also convex.
The terminology is justified by the observation that for any convex set S and for all
z,Y, 2,

[{z,z} C S and (z,y,2) € T] =y € S. (2.3)

10



Hence, if a set is convex then it contains with any two elements all elements that are
between them.? Note also that the intersection of convex sets is always convex.

In a graphic property space, a subset S is convex if and only if it contains with
any two elements all shortest paths connecting them. For instance, a subset of a line
is convex precisely if it is an interval with respect to the linear ordering. Similarly,
the convex subsets of the hypercube are the subcubes, i.e. the sets of the form S =
S x ... x SK with ¢ # Sk C {0,1} for all k. In Example 3 of the vacuous betweenness,
all subsets are convex. In a product (Example 4), a set S is convex if and only if it is
of the form S = S! x ... x SX where each S* is convex in X*.

The following additional concepts will be useful in our subsequent analysis.

Definition (Segments, Convex Hull) For any z, z € X, the segment [z, z] between x
and z is defined by [z, 2] := {y € X : (z,y, 2) € T}, i.e. the segment [z, ] is the set of all
elements between = and y. Furthermore, for any set A C X, denote by CoA the convezx
hull of A, i.e. the smallest convex set containing A; formally, CoA :=N{H : H D A}.
As is easily verified, the segment [z, 2] is the convex hull of {z, z}.

2.4 Single-Peakedness

Given a property space (X, ), the notion of a single-peaked preference is naturally
defined as follows. A binary relation = is called a preference ordering if it is irreflexive
and transitive, i.e. a strict partial order. Note that we thus allow for non-trivial indif-
ference represented by the relation z ~ y :< [ not z > y and not y > z]. In general,
the associated indifference relation need not be transitive. If the associated indifference
~ is transitive, the relation > is called a weak order; if, in addition, z ~ y = = = v,
the relation > is called a linear ordering.

Definition (Single-Peakedness) A preference ordering > of the alternatives in X is
single-peaked on (X, H) if there exists z* € X such that for all y # z,

(*,y,2) €T =y = 2. (2.4)

Thus, a preference is single-peaked if there exists an alternative z* (the “peak”) such
that y = z whenever y is between z* and z. Equivalently, by (2.1), a preference is
single-peaked if there exists z* such that y > z whenever y # 2z and y possesses all
properties jointly possessed by z and x*, i.e. whenever y is more similar than z to z*.
Note that, by (2.4), the peak is unique since, for all z, (z*,2*,2) € T.

In the literature, linear preferences that are single-peaked in this sense have been
considered, among others, by Moulin (1980) in the case of lines, Demange (1982)
in the context of trees, Barberd, Sonnenschein and Zhou (1991) in the hypercube,
and Barbera, Gul and Stacchetti (1993) in the context of the product of lines. It
is important to realize that single-peakedness becomes less restrictive when there are
fewer instances of betweenness, i.e. when T (viewed as a subset of X?) becomes smaller.
For instance, any preference ordering with a unique best element is single-peaked with
respect to the vacuous betweenness of Example 3 above. As another example, consider

90ne might ask whether, conversely, any set S satisfying (2.3) is convex in the sense of the above
definition. While this holds in many examples, it is not true in general. In the language of abstract
convexity theory, the property that any set S satisfying (2.3) is convex is known as “2-ariness” (see
van de Vel (1993)).
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the permutahedron (Example 7 above). Single-peakedness of a preference among the
decision rules represented by the elements of the permutahedron follows, for instance,
from the assumption of expected indirect utility maximization.'®

In view of its centrality, the assumption of single-peakedness deserves a closer look.
In the case of a line, and more generally in all trees, single-peakedness is equivalent to
the standard notion of a convex preference; but in general, convexity is too strong a
condition. Say that a preference ordering = is convez if, for any x, the upper contour
set {y € X :y = x} is a convex set (in the sense of Section 2.3 above). If > is convex
in this sense, then, for all  and all y # z,

[0 = 2 and (,9,2) € T) = y > 2. (2.5)

Intuitively, condition (2.5) says that a move in the direction of something preferred
always yields a (weakly) preferred alternative. This may appear similar to the intu-
ition underlying condition (2.4) defining single-peakedness. In fact, however, (2.5) is
much stronger since it applies to all z whereas (2.4) only applies to the “ideal point”
z*. To illustrate the difference, consider the four elements xz,y, %y’ and z in the three-
dimensional hypercube as shown in Figure 2b. Without loss of generality, assume that
x is the most preferred of these. Then, single-peakedness only requires that the oppo-
site element z is the least preferred of the four elements. On the other hand, no strict
ranking among the remaining three elements can satisfy (2.5): if z is ranked second,
any move from z in direction of z would yield the less preferred alternative y or y’,
respectively; if z is ranked third, there would still be one move from z in direction of x
yielding a less preferred alternative; finally, if z is ranked fourth, the move from the less
preferred element of {y,y'} to z violates (2.5). This shows that no linear preference
ordering on a hypercube can be convex.

The following characterization of single-peakedness reveals that rather than con-
vexity, a key assumption behind single-peakedness is a notion of separability.

Proposition 2.1 A preference ordering = is single-peaked on (X, H) if and only if
there exists a partition H = Hy U Hy with HoNHy =0 and H € Hy < HE € Hy such
that

(i) y > z whenever y # z and y € H for all H € H, such that z € H, and
(ii) there exists ©* such that z* € H for all H € H,.

In view of condition (i), single-peakedness requires that it must be possible to partition
all basic properties into a set of “good” properties (those in 7 ) and a set of “bad”
properties (those in Hy) in a separable way: a property is good or bad no matter with
which other properties it is combined. In addition to separability, single-peakedness
also requires, by condition (ii), that all good properties are jointly consistent, that is:
possessed by some “ideal point” z*. Note that in the hypercube example, condition
(ii) is automatically satisfied.!! Thus, in the hypercube a preference ordering is single-
peaked if and only if it is separable in the sense of condition (i) alone. This explains
why in the hypercube our notion of single-peakedness coincides with the notion of
separability used in Barberd, Sonnenschein and Zhou (1991).

10More precisely, given any decision rule & € X 4, a probability distribution on the family 24\ {¢} of
all possible feasibility constraints induces a probability distribution on the set A of ultimate states. A
preference on the set X 4 of all decision rules is single-peaked whenever these probability distributions
are evaluated in accordance with expected utility maximization.

ndeed, for any partition H = H+ UH~ with H € Ht < H¢ € H~, the intersection NH1 is
non-empty (and consists of a single element) in the case of the hypercube.
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3 Voting by Committees as Voting by Properties

3.1 Definition

Let N = {1,...,n} be a set of voters. Each voter i is characterized by a preference
ordering >; on X. Denote by z} the unique best element of X with respect to >;.
Furthermore, let P be the set of all preference orderings on X, and D a generic subset
of P. A social choice function is a mapping F' : D™ — X that assigns to each preference
profile (>1,...,>5) in a domain D" a unique social alternative F(>1,...,>5,) € X.

An important class of social choice functions are those that only depend on the
peaks of voters’ preferences; these are referred to as “voting schemes” (cf. Barberd, Gul
and Stacchetti (1993)). A social choice function F' is a voting scheme if there exists
a function f : X" — X such that for all (>1,....,>4), F(>1,...,=n) = f(x7,...,x%),
where z is voter ¢’s peak. In this case, we say that F' satisfies peaks only. With slight
abuse of terminology, we will also refer to any f : X™ — X as a voting scheme, since
any such function f naturally induces a social choice function satisfying peaks only.

Given a description of alternatives in terms of its properties, a natural way to
generate a social choice is to determine the final outcome via its properties. This is
described now in detail.

Definition (Committees) A committee is a non-empty family W of subsets of N
satisfying [W € W and W' D W] = W' € W. The coalitions in W are called winning.

For instance, majority voting corresponds to W% ={W C N : #W > % - n}.
Majority voting is a special case of voting by quota: for any number ¢ € (0,1), voting

by quota g corresponds to the committee Wy = {W C N : #W > ¢ - n}.

Definition (Committee Structures) A committee structure on (X, ) is a mapping
W : H — Wy that assigns a committee to each basic property H € H satisfying the
following two conditions.

CS1W e Wy & W ¢ Wye.
CS2 [H CH and W e W] =W € Wgyr.

As is easily verified, CS1 implies that, for any basic property H, the committees
corresponding to H and H¢ are interrelated as follows (cf. Barberd, Masso and Neme
(1997, Prop. 1)).

W ={WCN:WNW'#£0 for all W' € Wy} (3.1)

Consider now the following voting procedure, adapted to the present framework
from Barbera, Sonnenschein and Zhou (1991).

Definition (Voting by Committees) Given a property space (X, H) and a commit-
tee structure W, voting by committees is the mapping fyy : X™ — 2% such that, for all
£e X",

z € fw(€) e foral He Hwithe e H:{i:§ € HY € Wy. (3.2)

4

In our present framework, voting by committees amounts to “voting by properties”
in that each committee decides whether or not the final outcome is to have one out
of two complementary basic properties. Note that fy,(£) € X is not assumed to be
non-empty; in particular, fyy does not yet define a voting scheme in the sense of the
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above definition.

Definition (Consistency) A committee structure W is called consistent if fyy(£) #
for all £ € X™. If W is consistent, the corresponding voting procedure fyy will also be
referred to as consistent.

Fact 3.1 If fiy(&) # 0, then fw (&) is single-valued. In particular, voting by commit-
tees defines a voting scheme whenever it is consistent.

If fyy is consistent, one has for all H and &,
wl eH s {i: e H € Wy (3.3)

by (3.2) and CS1. Since N € Wy for all H, this implies that fy, satisfies unanimity,
ie. forall z € X, f(x,x,...,x) = z. In particular, fyy is onto whenever it is consistent,
i.e. each z € X is in the range of fyy.

Voting by committees is characterized by the following monotonicity condition. Say
that a voting scheme f : X™ — X is monotone in properties if, for all £,&', H,

[f() € Hand {i:& € HY C{i:¢ € HY > f(¢) € H.

Monotonicity in properties states that if the final outcome has some property H and
the voters’ support for this property does not decrease, then the resulting final outcome
must have this property as well.

Proposition 3.1 A wvoting scheme f : X™ — X is monotone in properties and onto if
and only if it is voting by committees with a consistent committee structure.

3.2 The Equivalence of Strategy-Proofness and Voting by
Committees

A social choice function F : D" — X is strategy-proof on D if for all i and =, =i€ D,

F(1, ey iy ey 2 n) =i F(1, ey ey )

Furthermore, say that F' satisfies voter sovereignty if F' is onto, i.e. if any z € X is
in the range of F. For any committee structure ¥V, denote by Fyy : D* — 2% the
mapping defined by Fy(>1,...,>n) = fw(a],...,z}), where for each i, z} is the peak
of =; on X. The mapping Fyy will also be referred as voting by committees. Denote
by S(x,3) the set of all single-peaked preferences (strict partial orders) on (X, H); we
will refer to [Six, 3] as a single-peaked domain. When no confusion can arise, we will
simply write S for S(x 7).

Proposition 3.2 Let F : S — X be represented by the voting scheme f : X™ — X.
Then, F' is strategy-proof on S if and only if f is monotone in properties.

In combination with Proposition 3.1, this implies that a voting scheme is strategy-proof
on the domain of all single-peaked preferences if and only if it is voting by committees
with a consistent committee structure. We now want to show that any strategy-proof
social choice function F': S — X satisfying voter sovereignty is voting by committees.
For this, it remains to show that any such F' is a voting scheme, i.e. that it satisfies
peaks only.

14



Proposition 3.3 (Barberi, Masso and Neme) Every strategy-proof social choice
function F : 8™ — X that satisfies voter sovereignty is a voting scheme, i.e. satisfies
peaks only.

The proof of Proposition 3.3 provided in the appendix is a translation of Proposition 2
in Barberd, Masso and Neme (1997). However, we cannot directly invoke their result
since it is formulated for certain subdomains of single-peaked preferences on a product
of lines. The main step that allows the translation is provided by the following fact,
which is well-known in the literature on abstract convexity theory (see, e.g., van de Vel
(1993)).

Fact 3.2 Any property space (X,H) is isomorphic to a subset Y C {0,1}¥ of a hy-
percube with K = (#H)/2.

Combining Propositions 3.1 — 3.3, we obtain the following result which generalizes
corresponding results of Barberd, Sonnenschein and Zhou (1991) for the case of the
hypercube and Barberd, Gul and Stacchetti (1993) for the case of the product of lines.

Theorem 1 A social choice function F : 8™ — X satisfies voter sovereignty and is
strategy-proof on S if and only if it is voting by committees with a consistent committee
structure.

3.3 Anonymity and Neutrality

A social choice function F' is called anonymous if it is invariant with respect to per-
mutations of individual preferences; similarly, a voting scheme f is called anonymous
if f(&1,.6n) = f(§o1)s s &o(ny) for any permutation o : N — N. The following fact
is easily verified; the second part follows at once from (3.1).

Fact 3.3 Voting by committees fyy is anonymous if and only if it is voting by quota,
i.e. for all H there exists qu € [0,1] such that Wy = {W : #W > qu -n} if qu < 1
and Wy = {N} if qu = 1.12 If fyy is consistent, the quotas can be chosen such that,
forall H € H, qge =1 —qpg.

In the following definition, we call a profile (>1, ..., =p) simple if #{>1,...,=,} < 2,
i.e. if it contains at most two different preference orderings.

Definition (Neutrality) Say that a social choice function F' is neutral if it satis-
fies the following condition. For all simple profiles (=1, ..., >5), (=1, ..., =) and all
permutations o : X — X such that z =; y & o(x) >} o(y) for all z,y and 1,

F(-1, =) =0 (F(>1,..c,n)) -

Similarly, a voting scheme f is called neutral whenever the induced social choice func-
tion F'is neutral.

Proposition 3.4 a) Voting by committees is neutral if and only if, for all H H' € H,
W = Whar.

b) Voting by committees is anonymous and neutral if and only if it is issue-by-issue
magjority voting with an odd number of voters, i.e. if and only if n is odd and, for all
H, Wy corresponds to voting by quota qg = %

I2Note that the quotas gz are not uniquely determined.
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3.4 Consistent Committee Structures: The Intersection
Property

By Theorem 1 above, a social choice function is strategy-proof on a domain of single-
peaked preferences if and only if it is consistent voting by committes. It is, however,
not self-evident whether a given committee structure is consistent. The needed char-
acterization of consistency is provided in this subsection. As a simple example of an
inconsistent committee structure, consider the vacuous betweenness on X = {x,y,z},
and assume that voting by committees takes the form of issue-by-issue majority voting
among three voters. If all three peaks of the voters are distinct, each of the follow-
ing basic properties gets a majority of two votes: {y,z} (“being different from z”),
{z, 2z} (“being different from y”), and {z,y} (“being different from z”). But clearly,
{y,z} n{z,z} N{z,y} = 0, i.e. the basic properties determined by the committees are
jointly incompatible. Consistency of voting by committees requires that the committee
structure be compatible with the structure of basic properties, as follows.

Definition (Critical Family) Say that a family G C H of basic properties is a critical
family if NG = () and for all G € G, N(G\ {G}) £ 0.

The interpretation of a critical family is as an exclusion of a certain combination of
basic properties. “Criticality” (i.e. minimality) means that this exclusion is not already
entailed by a more general exclusion. More concretely, consider G = {G1,...,G,}; to
say that G is a critical family is to say that for any combination of [ — 1 basic properties
in G there are states possessing them jointly, but any state possessing [ — 1 of the basic
properties cannot possess the remaining [-th property. Thus, critical families reflect the
“entailment logic” of the underlying property space, a theme explored in more detail
in Section 4.3 below. Trivial instances of critical families are all pairs {H, H} of com-
plementary properties. A non-trivial example of a critical family are the three basic
properties {y, z}, {z,2} and {z,y} in the above example of the set {z,y, 2z} endowed
with the vacuous betweenness: any two of these basic properties have a non-empty
intersection, while the intersection of all three is empty.

Intersection Property Say that voting by committtees Fyy satisfies the Intersection
Property if for any critical family G = {G1, ..., G}, and any selection W; € Wg;,

!
(W; # 0.
j=1

Using (3.1), it is easily verified that the Intersection Property applied to critical families
with two elements yields precisely conditions CS1 and CS2 above.

Proposition 3.5 Voting by committees is consistent if and only if it satisfies the In-
tersection Property.

Combining this result with Theorem 1, we obtain the following characterization of
all strategy-proof social choice functions on single-peaked domains.

Theorem 2 A social choice function F' : S™ — X satisfies voter sovereignty and is
strategy-proof on S if and only if it is voting by committees satisfying the Intersection
Property.
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Theorem 2 generalizes a corresponding result of Barberd, Masso and Neme (1997,
Corollary 3) in the context of single-peaked domains on subsets of a product of lines.
In that context, these authors already provided a necessary and sufficient condition,
also called the “intersection property.” However, their condition is less transparent and
workable then the one given above. The simplicity of our characterization is due to
the concept of critical family, which allows one to formulate the Intersection Property
as a condition on the non-emptiness of certain intersections of winning coalitions; by
contrast, the condition used in Barberd, Masso and Neme (1997) requires, for all sub-
sets of X, the non-emptiness of certain intersections of appropriate unions of winning
coalitions.!?

In the anonymous case, the Intersection Property can be formulated as follows. If,
for any critical family G,

> am > #G-1, (3.4)

Heg

then voting by quotas qg for H € H is consistent. Conversely, if anonymous voting by
committees is consistent, then it can be represented by quotas satisfying (3.4). Observe
that this immediately implies that issue-by-issue majority voting is consistent if and
only if any critical family has two members.

To illustrate the intuition behind the Intersection Property, we verify the necessity
of (3.4) in the special case of the vacuous betweenness on X = {z1,..., 2, }; from this
it is straightforward to infer the non-existence of anonymous and strategy-proof social
choice functions on an unrestricted domain if m > 3. Recall from Example 3 that the
vacuous betweenness corresponds to the basic properties H; = {z;} (“being equal to
z;7) and Hf = X \ {z;} (“being different from z;”), for j = 1,...,m. The non-trivial
critical families are {Hf,...,H:,} and, for all j # k, {H;, Hy}. Consider the critical
family {HY, ..., HS,}, and suppose that (3.4) is violated, i.e. Zj q; < m — 1, where ¢
denotes the quota corresponding to Hf. If g; is the quota corresponding to Hj, one
thus obtains Zj g; > 1, say Zj g; = 14+m- 4 for some § > 0. Now assign to a fraction
of g; — 6 voters the peak x;. Since none of the basic properties H; = {x;} reaches the
quota, all complements are enforced; but since their intersection is empty, consistency
is violated.

4 Strong Possibility on Median Spaces

By Theorem 2 above, strategy-proof social choice on single-peaked domains takes the
form of voting by committees satisfying the Intersection Property. For any given do-
main this yields a simple characterization of non-manipulable social choice under single-
peakedness. We now want to ask the following question: For which property spaces
do there ezist well-behaved strategy-proof social choice functions on the associated do-
main of single-peaked preferences? In this section, we first derive a simple necessary
and sufficient condition on a property space such that all well-defined committee struc-
tures are consistent. We then show that the same condition also characterizes the class
of single-peaked domains that admit neutral and non-dictatorial social choice rules.

133pecifically, the logical form of the intersection property used in Barbera, Masso and Neme (1997)
translated to our framework is as follows. For all families G with H € G = H¢ ¢ G and NG = 0, for
all subsets A C X, and for all selections Wy € Wg: nzeA( UHe’F . Wp) # 0, for appropriately

chosen families F, g C H (depending on z € A and G).
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The property spaces considered in this section thus enable well-behaved strategy-proof
social choice in a very strong sense. In the subsequent sections, we will consider in turn
weaker notions of “well-behavedness” such as the absence of dictators, anonymity, and
no veto, respectively.

4.1 TUniversal Consistency of Median Spaces

As an immediate consequence of (3.4), we have seen that issue-by-issue majority voting
is consistent if and only if every critical family has only two elements. What does that
mean geometrically? To provide the intuition, consider three voters with peaks &, &o,
&3 and denote by m the chosen state under issue-by-issue majority voting. Consider
any basic property H possessed by both & and &, i.e. assume that {£;,&} € H. Then
H gets a majority of at least two votes over H¢, hence we must have m € H (see
Figure 4 below). By (2.1), this means that m must lie between & and &. But the
same argument applies to any basic property jointly possessed by &; and &3, and to any
basic property jointly possessed by & and &3. In other words, a necessary condition
for issue-by-issue majority voting to be consistent is that any triple &1, &, &3 of social
states admits a state m = m (&1, &2, &3) that is between any pair of them. Such a state
will be called a “median” of the triple.

Figure 4: The median property

Definition (Median Space) A property space (X, H) is called a median space if the
induced betweenness relation 7' satisfies the following condition. For all z,y,z € X
there exists an element m = m(x,y,2) € X, called a median of z,y, z, such that m is
between any pair of {z,y, z}, i.e. such that m € [z,y] N[z, 2] N [y, z].

Median spaces are a classic topic in abstract convexity theory (see, e.g., Bandelt and
Hedlikova (1983) and the references in van de Vel (1993)).

Fact 4.1 In a median space, any triple has a unique median.

Median spaces can be characterized in terms of the underlying properties H as
follows. Say that a family A C 2% of subsets of X has the pairwise intersection property
if for any collection Ay, ..., 4; € A such that Ay N Ay # 0 for all k,h € {1,...,1}, one
has NL_, Ay, # 0.

Proposition 4.1 The following statements are equivalent.

(1) (X, H) is a median space.
(ii) H has the pairwise intersection property.

(iii) Any family of convex subsets has the pairwise intersection property.
(iv) For all critical families G, #G = 2.
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Thus, a property space is a median space if pairwise compatibility of a family of basic
properties implies their joint compatibility. Note that in contrast to the Intersection
Property for committees, the pairwise intersection property imposes a restriction only
on the space (X, H).

The existence of a median for any triple is not only necessary for the consistency of
issue-by-issue majority voting but also sufficient; in fact, it turns out to be sufficient
for the consistency of any well-defined committee structure.

Definition (Universal Consistency) Say that a property space (X, H) is universally
consistent if voting by committees fyy is consistent for any committee structure W
(satisfying CS1 and CS2).

Theorem 3 A property space (X, H) is universally consistent if and only if it is a
median space.

The proof of the sufficiency part of Theorem 3 is an easy consequence of two results
that have already been established. By Proposition 4.1, all critical families in a median
space have cardinality two. But for such critical families, the Intersection Property of
Section 3.4 reduces to the requirements CS1 and CS2. Hence, by Proposition 3.5, any
committee structure satisfying these two requirements is consistent.

Theorem 3 has the following corollary which shows that median spaces admit a
maximal class of strategy-proof social choice functions.'*

Corollary 4.1 Let (X, H) be a median space. A social choice function F : S* — X
is strategy-proof and onto if and only if F is voting by committees with an arbitrary
well-defined committee structure.

To assess the extent to which the above results can be viewed as possibility results,
it is crucial to determine how large the class of median spaces is. Since y is the
median of z,y, z whenever y is between z and z, lines (Ex. 1 above) are median spaces
with the middle point as the median of any triple. More generally, all trees (Ex. 5)
are median spaces.!® Furthermore, all hypercubes (Ex. 2) are median spaces; typical
configurations are the triple z, z, w with the median y in Fig. 1b above, or the triple
y,y',w with median z in Fig. 2b. More generally, any distributive lattice is a median
space (see van de Vel (1993)). In addition, products (Ex. 4) are median spaces if and
only if every factor is a median space; indeed, the median on a product is simply given
by taking the median in any coordinate.

On the other hand, Examples 3, 6 and 7 are not median spaces whenever #X > 3
(with the exception of the 4-cycle which is isomorphic to the two-dimensional hyper-
cube). For instance, if a space is endowed with the vacuous betweenness (Ex. 3), no
triple of pairwise distinct alternatives admits a median. The fact that neither cycles
(Ex. 6) nor permutahedra (Ex. 7) are median spaces is exemplified by the triple z, z, w
in Fig. 1h above.

Further examples of median spaces are appropiate subdomains of median spaces.

14We assume voter sovereignty from now on without always mentioning that condition in the text.
In our formal statements, we refer to the condition of voter sovereignty by requiring the relevant social
choice functions to be onto.

15To see this, consider for any triple of points the (unique) shortest paths connecting any pair.
By the acyclicity of the underlying graph, these three shortest paths must have exactly one point in
common, namely the median of the triple.
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Definition (Median Stability) A subset Y C X of a median space (X, #) is called
median stable if m(z,y,z) € Y for all {z,y,2z} CY.

For instance, any subset of the form {z,y,z,m} where m is the median of z,y,z
is median stable. Given a property space (X, #H) and a subset Y C X, denote by
Hly :={HNY : H € H} the relativization of H to Y. As is easily verified, (Y, H|y)
is a median space if and only if Y is a median stable subset of X. The class of
all median stable subsets admits the following simple characterization (cf. van de Vel
(1993, p.130)).

Proposition 4.2 Let (X,H) be a median space, and let H,H' € H. Then, the set
Y = X\ (HnN H') is median stable. Moreover, all median stable subsets of X are
obtained by sequentially deleting intersections of two basic properties.

The following figure depicts a typical median stable subset of the product of two lines;
its median stability is easily verified using Proposition 4.2 (for another example, see
Fig. 1c above).
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Figure 5: A median stable subset of the product of two lines

4.2 Neutrality and Strategy-Proofness Require a Median Space

We have seen that issue-by-issue majority voting is consistent only on median spaces.
In view of Proposition 3.4b, this means that only on median spaces there can exist
strategy-proof social choice functions that are anonymous and neutral. In this sub-
section, we strengthen this result by showing that neutrality alone requires a median
space, unless the social choice is dictatorial.

A social choice function F' : D™ — X is called dictatorial if there exists a voter
i € N such that for all profiles (>1, ..., =p), F(>1, ..., =n) = 2} where z} is the peak of
=;. It is immediate that voting by committees Fyy is dictatorial on S™ with dictator
i if and only if {i} € Wy for all H € H. To see this, choose, for any H € H, a
single-peaked preference »; with peak in H, and let all peaks of the other voters be in
He¢. Since ¢ can enforce her most preferred alternative, ¢ alone must be winning for H.

Theorem 4 Suppose that the social choice function F : [Six 3)]" — X is strategy-
proof, neutral, non-dictatorial and onto. Then (X, H) is a median space and n is odd.
Conversely, for any median space (X,H) and any family Wy C 2V \ {0} that is closed
under taking supersets and satisfies W € Wy & W€ & Wy, voting by committees Fyy
with Wy = W) for all H € H is consistent.
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The idea of the proof of the first statement in Theorem 4 is as follows. Since F
is strategy-proof and onto, it must have the structure of voting by committees; by
neutrality, the committees assigned to all basic properties are identical, say Wg = W)y
for all H. Assume, by way of contradiction, that (X, ) is not a median space. Then,
by Proposition 4.1, there exists a critical family with at least three elements. By the
Intersection Property, this implies that any three winning coalitions in YW, must have a
non-empty intersection. Using CS1, we show in the appendix that this implies {i} € Wy
for some ¢ € N, hence voter i is a dictator.

Note that Theorem 4 as well as other possibility results below assert the existence of
a strategy-proof social choice function satisfying specified properties for some number
n of voters; here for n odd, elsewhere for n sufficiently large.

4.3 The Nature of Median Spaces

Our results suggest that the notion of a critical family of basic properties plays a
key role for the understanding of voting by committees and thus of strategy-proof
social choice on single-peaked domains. We have already noted that a critical family
describes certain entailments among basic properties. Since a property space is uniquely
identified through its critical families, this means that the critical families describe a
property space in terms of its “entailment logic.” To illustrate, consider the line, labelled
by the natural numbers 1, ...,m. The basic properties are “being greater than or equal
to” and “being smaller than or equal to” any number between 1 and m. All critical
families have the following form: for some k < j, “being greater than or equal to j
and smaller than or equal to k.” The interpretation is that “> j” logically entails “not
< k” whenever k < j. Thus, the critical family corresponds to the statement “for all
x, © > j implies (not z < k).” In this case, the entailment is “simple” in that the
antecedent of the implication consists of one basic property.

By contrast, consider the permutahedron X 4, i.e. the set of all linear orderings over
a set A of ultimate states and recall that the basic properties have the form “ranks
a above b” for some a,b € A (cf. Example 7 above). For simplicity assume #A = 3.
In that case, the non-trivial critical families are triples of basic properties of the form
“ranks a above b,” “ranks b above ¢” and “ranks ¢ above a.” A critical family thus
describes the implication “if a is ranked above b, and b is ranked above ¢, then ¢ cannot
be ranked above a.” The entailment logic underlying the permutahedron thus simply
reflects the transitivity of linear orderings. Note that the antecedent of the relevant
implication consists of the conjunction of two basic properties in that case.

As another example, consider the set X = {1, ..., 2, } endowed with the vacuous
betweenness. For each z;, the set Hf = X \ {z;} corresponds to the basic property
“being different from 2;.” The critical family {Hf, ..., H:,} thus describes the following
entailment: “if an alternative is different from m — 1 distinct elements of X, it cannot
be different from the remaining m-th element.” The antecedent of this implication is
still more complex as it consists of m — 1 conjunctions of basic properties.

The characterization of median spaces as those property spaces for which all critical
families have cardinality two (cf. Proposition 4.1) thus says that median spaces are those
property spaces with a simple entailment logic. This singles out median spaces as a
fundamental class of property spaces.

As a more concrete illustration, consider the following problem of constitutional
choice. Suppose that a set of countries, say the EU member states, have to decide
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on the procedures for their collective choices, i.e. they have to decide on their joint
constitution. Specifically, consider the problem of determining on which of the issues
K = {1,...,k} future decisions are to be made on the basis of majority voting.!®
Individual preferences are thus taken to be over subsets of K with the interpretation
that L »=; L' if country i prefers majority voting over exactly the issues in L C K
to majority voting over exactly the issues in L' C K. The assumption of single-
peakedness does not seem implausible in that context; it requires that, for each single
issue k, majority voting over issue k is preferred/not preferred independently of the
corresponding preference over other issues. Observe, however, that this excludes a
preference for the overall extent of majority voting (regardless on which issues), since
in that case majority voting for one issue would be a substitute for majority voting
over another issue.

In general, one cannot assume that the issues are independent from each other. In
other words, one has to account for the “entailment logic” of the underlying problem.
For instance, suppose that the issue k represents the joint defense policy of the coun-
tries, whereas k' represents their joint foreign policy. It is in general not possible to
decide on defense policy by majority voting without also deciding at least on some for-
eign policy issues by majority voting. In particular, the set of all feasible constitutions
will, in general, not be the entire power set 2%. The entailment “majority voting over
k = majority voting over k' thus corresponds to a critical family. As long as all such
entailments are simple in the sense that their antecedent consists of only one basic
property, the resulting space is a median space. By Theorem 3 above, any well-defined
voting by committees procedure is applicable in that case.

5 Impossibility on Totally Blocked Spaces

5.1 Generalizing the Gibbard-Satterthwaite Theorem

The strong possibility results on median spaces established in the previous section
contrast with the well-known Gibbard-Satterthwaite Impossibility Theorem for an un-
restricted preference domain. In this subsection, we generalize that result by charac-
terizing the class of property spaces for which all strategy-proof social choice functions
on the associated single-peaked domain are dictatorial.

The following binary relation on H turns out to play a fundamental role in all what
follows.

Definition (Conditional Entailment) For all H,G € H,
H >° G ¢ [H # G° and there exists a critical family G with G D {H,G*}]

Intuitively, H >° G means that, given some combination of other basic properties, the
basic property H “entails” the basic property G. More precisely, let H >0 G, i.e. let
{H,G*,G, ...,G;} be a critical family; then with S = N_, G one has both SNH #
(“property H is compatible with the combination S of properties”) and SN G° # ()
(“property G° is compatible with S as well”) but SN HNG® = § (“properties H and
G¢ are jointly incompatible with S”).

16The difficult negotiations among the EU countries during the 2000 summit meeting in Nice demon-
strated the importance of this problem; they also made clear the relevance of strategic considerations.
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Note that the relation >° is reflexive (since any pair {H, H¢} is critical) and
complementation-adapted in the sense that H >° G & G°¢ >° H¢. Furthermore,
H CG = H>°@, since H C G implies that {H, G} is a critical family.

In median spaces, the conditional entailment relation coincides with the subsethood-
relation, i.e. H > G & H C G, by Proposition 4.1(iv). In particular, in median spaces
conditional entailment is a transitive relation. This does not hold in general, and it
will be useful to consider the transitive closure of >°, which we denote by >. Clearly,
> is transitive, reflexive and complementation-adapted. The symmetric part of > is
denoted by H = G :& [H > G and G > H].

As an illustration, consider again the 6-cycle (cf. Fig. 1h and Fig. 3b above) and the
seven-point graph in Fig. 1d above. For the present purpose, it is convenient to picture
these graphs as embedded in a hypercube. The following figure shows the embedded
graphs.

2 2
T4 T4 T7
I3 T I3 To
3 3
Ts Tg s Tg

o 1 o 1

T1 I
6a: The 6-cycle 6b: The seven-point graph

Figure 6: Two graphs embedded in the three-dimensional hypercube

As in Example 2 above, denote by H¥ the basic property corresponding to a zero in
coordinate k, and by Hf the basic property corresponding to a one in coordinate k
(in Figure 6, the origin (0,0,0) is the left-bottom-front point). Thus, for instance in
Figure 6a, the set H{ (the right face of the cube) consists of the three points x1, 72 and
x6; similarly, for the set HZ (the bottom face) one has HZ = {z1,75,76}. In Figure
6b, on the other hand, one has H{ = {z1,z2, 76,77} and again HZ = {z1,z5,7¢}.

Viewed as a subspace of the three-dimensional hypercube, the seven-point subset
in Figure 6b is characterized by the following, single non-trivial critical family:'7 G, :=
{H},HZ, H3}. Indeed, one has NGy = ) corresponding to the fact that no element is
simultaneously in the left, bottom and front faces of the cube. On the other hand, any
two basic properties in Go have a non-empty intersection, e.g. Hy N H3 = {z5}. In
terms of conditional entailment, criticality of Gy implies that HE >0 Hfl for k # k'
Since there are no other non-trivial critical families, these are the only instances of
conditional entailment in Figure 6b (besides those implied by reflexivity).

By contrast, consider the 6-cycle in Figure 6a, which is characterized by the two
critical families Go = {HJ, H3, H3} (no element is simultaneously in the left, bottom
and front faces) and Gy := {H{, H?, H}} (no element is simultaneously in the right,
top and back faces). Here, one has HY >0 Hfl for all k # k', and symmetrically,

"More precisely, a set X C {0,1}¥ viewed as a subspace of the hypercube is the pair (X, H|x),
where ({0,1}%,#H) is the hypercube property space and H|x = {H N X : H € H}. In the following,
we will keep this implicit whenever we consider subsets as subspaces.
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HF >0 HY for all k # k'. This implies at once that for the 6-cycle, one has H = G
for all basic properties H and G. Spaces with that property will be called “totally
blocked.”

Definition (Total Blockedness) Say that a property space (X,H) is totally blocked
if for the induced conditional entailment relation, H = G for all H,G € H.

The central role of conditional entailment derives from the following observation which
is a straightforward consequence of the Intersection Property.

Fact 5.1 Consider voting by committees Fyy : 8™ — X with a consistent committee
structure W. Then, for any pair of basic properties, H > G = Wg C Wg.

To verify this, it suffices to show that H >° G = Wg C Wg. Thus, suppose that
{H,G} C G for some critical family G. By the Intersection Property, W N W’ # { for
any W € Wy and any W’ € Wge. By (3.1), this implies Wi C We. Note that in the
anonymous case, the restriction Wy C Wg amounts to qg > qg-

By Fact 5.1, conditional entailment forces a strong relationship between the cor-
responding committees: if H > G, then any coalition that is winning for H (over its
complement) must also be winning for G (over its complement).

Theorem 5 (General Impossibility Result) Let (X, H) be a property space. Any
onto strategy-proof social choice function F : 8™ — X is dictatorial if and only if
(X, H) is totally blocked.

That any strategy-proof social choice function F' : S — X on a totally blocked space
must be dictatorial is an easy consequence of Theorem 4. Indeed, suppose that (X, #) is
totally blocked. Then, by Fact 5.1, any consistent committee structure on (X, H) must
be neutral, i.e. Wg = W, for some W, and all H € H. But by Theorem 4, neutral
and non-dictatorial social choice on single-peaked domains requires a median space.
But clearly, a totally blocked space cannot be a median space; hence all strategy-proof
social choice functions F' : 8" — X must be dictatorial. The proof of the converse
statement is provided in the appendix.

Corollary (The Gibbard-Satterthwaite Theorem) If X contains three or more
elements, then all onto strategy-proof social choice functions defined on an unrestricted
domain of preferences are dictatorial.

To see how the Gibbard-Satterthwaite Theorem follows from Theorem 5, consider the
set X = {x1,..., 2, } with the vacuous betweenness. Recall that this corresponds to
taking H; = {z;} (“being equal to z;”) and Hf = X\ {z;} (“being different from z;”),
for all j = 1,...,m, as the basic properties. Given H := {Hy, ..., H,,,} U{HY, ..., HS},
any preference on (X, H) with a unique best element is single-peaked, i.e. S™ is the
unrestricted domain. The (non-trivial) critical families are {Hf, ..., HS,} and, for any
Jj # k, {Hj,H}. If m > 3, this implies at once that (X, #) is totally blocked, hence
the conclusion by Theorem 5.

The Gibbard-Satterthwaite Theorem itself has been derived before from the charac-
terization of strategy-proof social choice in terms of voting by committees by Barbera,
Masso and Neme (1997); however, these authors do not provide a general impossibil-
ity result in the manner of Theorem 5. There are now many different proofs of the
Gibbard-Satterthwaite Theorem available in the literature; see, among others, Benoit
(2000), Reny (2001) and Sen (2001).

24



Recently, Aswal, Chatterji and Sen (2002) have generalized the Gibbard-Satterth-
waite Theorem in a different direction. Specifically, they identify a class of (not nec-
essarily single-peaked) domains, the so-called “linked” domains, and show that any
strategy-proof social choice function on a linked domain must be dictatorial. However,
this only yields a coarse sufficient condition for dictatorship, since many dictatorial do-
mains are not linked. For instance, it is easily shown that if a single-peaked domain on
a graphic space is linked, then the space must contain a convex 3-cycle. This implies,
e.g., that the domain of all single-peaked linear orderings on an l-cycle is linked if and
only if I = 3; but these domains are dictatorial also for all > 4, by Proposition 5.1a)
below. By contrast, Theorem 5 above provides a characterization of the class of all
dictatorial domains under the additional “regularity” condition of single-peakedness.

We conclude this section by providing examples of dictatorial domains besides the
unrestricted domain.

Example 8 Consider the hypercube {0,1}¥ and the subset X of all binary sequences
with at least k£ and at most k' coordinates having the entry 1, where k& < k’. For
instance, for K = 3, k = 1 and k' = 2 this corresponds to the 6-cycle in Figure 6a. The
critical families of the resulting space are all subsets of {H{, HZ,..., HE} with k' + 1
elements and all subsets of {H}, HZ, ..., HE} with K — k + 1 elements. It is easily
verified that these spaces are totally blocked whenever K > 3,1 < k and k' < K. By
Theorem 5, any strategy-proof social choice function F' : S® — X is dictatorial.'®

The following result yields two further types of dictatorial domains.

Proposition 5.1 a) An l-cycle is totally blocked if and only if | # 4.
b) The permutahedron X 4 is totally blocked whenever #X 4 > 2.

5.2 Local Dictators

Non-dictatorial social choice functions on spaces that are not totally blocked can still
be rather degenerate since they may possess “local” dictators in the following sense.

Definition (Local Dictator) A voter i is called a local dictator if there exists a sub-
domain D C § containing at least two preferences with different peaks such that for
all (>1,...,>n) € D", F(>1,...,>n) = xF, where x} is the peak of ;.

As is easily verified, voting by committees possesses a local dictator if and only if there
exists at least one property H and one voter ¢ such that {i} forms a winning coalition
both in Wg and Weye; in this case, ¢ is in fact a dictator over the issue (H, H¢). An
example of a non-dictatorial domain on which all strategy-proof social choice func-
tions necessarily involve local dictators is the single-peaked domain associated with the
following graph (cf. Fig. 1f above).

v

x w

Figure 7: A domain implying local dictators

18 Aswal, Chatterji and Sen (2002) prove a related impossibility result on subsets of this form (which
they call “interval subsets”) for a larger preference domain.
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Using the Intersection Property, one can show that any onto strategy-proof social
choice rule is of the following type. Fix any ¢ € N and M C N such that ¢ € M.
The final outcome is v whenever all voters in M agree on v as the best alternative.
Otherwise, the final outcome is i’s most preferred alternative among {z, z,w}. Clearly,
i is a local dictator. To see that any such rule is strategy-proof, note first that at any
profile in which 4’s peak is different from v, i evidently does not want to misreport,
and other voters cannot influence the outcome. Assume thus that i’s peak is equal
to v. By single-peakedness, i’s most preferred alternative among {x, z,w} is z in this
case. Hence, by construction, if any voter can influence the outcome by misreporting,
she can change the outcome only from v to z or from z to v, neither of which is ever
beneficial, again due to the single-peakedness.

The unavoidability of local dictators in this example follows from the fact that it
contains a convex totally blocked subset (the 3-cycle {z,z,w}) due to the following
result.

Proposition 5.2 Any onto and strategy-proof F' : 8™ — X on a property space with
a convex, totally blocked subset possesses a local dictator.

In view of Proposition 5.1a) above, this result yields a powerful local criterion for
dictatorship in graphic property spaces, namely the existence of a convex I-cycle with
l # 4 in the corresponding graph (cf. Fig. 1f, 1g, 1h and 1i). Note that also the graph
in Fig. 1d contains a 6-cycle, the six “outer” points, but these do not form a convex
set.

6 The Possibility-Impossibility Frontier: Anonymity

In this section, we characterize the class of all single-peaked domains that admit anony-
mous strategy-proof social choice. We begin our analysis in 6.1 with a characterization
of the class of all single-peaked domains that admit strategy-proof “unanimity rules.”
Their study motivates the central new geometric concepts needed in the remainder of
the paper (those of a “median point” and a “quasi-median space”), and leads to an
“almost”-characterization of the domains that give rise to anonymous strategy-proof
social choice functions. The desired exact characterization of these domains is provided
in Subsection 6.2.

6.1 TUnanimity Rules

A natural and simple way to try to define anonymous social choice functions on property
spaces is by means of “unanimity rules.” These are defined as follows.

Definition (Unanimity Rule) Say that a social choice function F : D™ — X is a
unanimity rule if there exists £ € X such that

F(>1,...,>n) = & whenever & € {z],...,2)}, (6.1)
where z} denotes the peak of >;. Clearly, a state Z satisfying (6.1) is uniquely deter-
mined and is referred to as the status quo.

Thus, a unanimity rule prescribes the choice of the status quo as soon as at least one
voter endorses that outcome. In general, a unanimity rule is not fully determined by
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(6.1) since it does not specify a social choice if none of the peaks coincides with the
status quo. However, among all unanimity rules with a given status quo & there is
only one that has the structure of voting by committees. Denote by F; voting by
committees with Wy = 2V \ {0} for all H 3 # and Wy = {N} for all H ¥ .

Fact 6.1 Voting by committees is a unanimity rule if and only if it is of the form F;
for some & € X.

When is F; consistent? A simple necessary condition is that any triple of alternatives
containing the status quo £ must admit a median. To see this, consider two alternatives
1y, z and two voters with peaks at y and z, respectively. By Lemma A.2 in the appendix,
the outcome under F; must lie between the two peaks, i.e. F;(>1,>2) € [y, 2]. More-
over Fz(>=1,>2) € [%,y] since no property H with {Z,y} N H = @ gets unanimous
support, and by the same argument, F;(>1,>2) € [Z,2]. In other words, the triple
{#,y, 2z} must admit a median, namely Fj(>1, >2).

Definition (Median Point) An element = € X is called a median point in (X, H) if,
for any v, z, there exists a (unique) element m(x,y,z) € X that is between any pair of
{z,y,z}. The set of median points is denoted by M (X).

Definition (Quasi-Median Space) A property space (X, H) is called a quasi-median
space if M(X) #0

Obviously, a quasi-median space is a median space if and only if every element is a
median point. It can be shown that M (X) is always median stable (see Nehring and
Puppe (2002D)).

Proposition 6.1 F; is consistent if and only if £ € M(X). If F; is consistent,
Fi(>1,...,=n) is the unique element in the conver hull Co{z?,...,x%} that is between
Z and any x;, where x} denotes the peak of ;.

To illustrate, consider again the two subsets of the hypercube in Figure 6 above. As is
easily verified, the 6-cycle in Fig. 6a has no median points. By comparison, the seven-
point subset in Fig. 6b has the four median points x4, 24, ¢ and z7. By Proposition 6.1,
it therefore admits four different strategy-proof unanimity rules, each corresponding to
one of the four median points as the status quo. Note that, while the space is a quasi-
median space, it is not a median space since the triple z1,x3, x5 does not admit a
median.

The following proposition summarizes and adds a characterization in terms of the
conditional entailment relation > introduced in Section 5 above.

Proposition 6.2 The following conditions are equivalent.

(1) (X,H) admits a strategy-proof and onto unanimity rule F : S — X.
(i) (X,H) is a quasi-median space.
(iii) For no H € H, H = H® (all H € H are “unblocked”).

The intuition behind the equivalence “(i) < (ii)” is particularly transparent in the case
of two voters, in which case the unanimity rules exhaust the class of all anonymous
strategy-proof social choice functions F': S? — X. All such rules can be described as
follows: choose any median point & € M (X) and set F(>1, =2) = m(&,z}, x3), where

* is the peak of ;. Thus, the final outcome is the median of & and the two voters’

T
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peaks; following Moulin (1980), the “status quo” # can also be interpreted as the peak
of a “phantom voter.”!?

6.2 Anonymous Strategy-Proof Social Choice

Unanimity rules seem to be the natural way to establish the existence of anonymous
choice rules on property spaces. One might therefore conjecture that the domains that
admit anonymous strategy-proof social choice are exactly those that admit strategy-
proof unanimity rules. However, the absence of a median point does not force violations
of anonymity, as shown by the following example.

Example 9 (Voting by Quota without Median Points) Consider the subspace
X C {0,1}° shown in the following figure.

Figure 8: Anonymity and strategy-proofness without median points

This space is characterized by the following critical families: G, = {H{, H3, H{},
Gy = {Hllv H13v H15}7 Gs = {H(%v Hgv Hf}v Gs = {H(%’ H12’ H15}7 G5 = {Hg’ Hg’ Hf}v
Ge = {H?,H? H}} and G; = {H}, HP}.2° As is easily verified, one has HY = HF for
k=1,2,3. Since H* = (Hk), this implies by Proposition 6.2(iii) that the underlying
space is not a quasi-median space. However, despite the fact that M (X) = ), there ex-
ists an anonymous social choice rule. Indeed, for an odd number n of voters, define the

following quotas, where ¢f denotes the quota corresponding to H¥: ¢f =¢f = ¢} = 3

19A related result in the two voter case has already been obtained by Bogomolnaia (1999).

201n Fig. 8, the first three coordinates of an element of X are determined within the four small cubes.
The two cubes to the left correspond to the basic property Hg (have a “0” in the fourth coordinate),
whereas the two cubes to the right correspond to Hf (have a “1” in the fourth coordinate). Similary,
the two bottom cubes correspond to Hg, and the two top cubes to Hf Missing elements are indicated
by blank circles. Thus, for instance, the criticality of {Hf, Hf} = Gy reflects the fact that the top-right
cube contains no elements of X.
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and ¢} = ¢ = 1. By (3.4), this quota rule is consistent.
Given a property space (X, H), denote for each G € H, H=¢ :={H € H: H = G}.

Definition (Quasi-Unblockedness) Say that a basic property G € H is quasi-
unblocked if for any critical family G, #(H=¢ N G) < 2, whenever G = G°.

Definition (Quasi-Quasi-Median Space) Say that a property space (X,H) is a
quasi-quasi-median space if every H € H is quasi-unblocked.

Theorem 6 The following conditions are equivalent.

(1) (X, H) admits an anonymous, strategy-proof and onto scf F: 8™ — X.
(i1) (X, H) admits a strategy-proof and onto scf F' : S™ — X with no local dictator.
(iii) (X, H) is a quasi-quasi-median space.

Moreover, if G € H is not quasi-unblocked, then any strategy-proof and onto social
choice function F : S™ — X is fully dictatorial on H=¢.

The proof of Theorem 6 provided in the appendix shows that all anonymous and
strategy-proof social choice functions F' : 8" — X outside the class of quasi-median
spaces have the following very special structure. There exists a proper non-empty
subfamily Ho C H, closed under taking complements, such that F' takes the form of
majority voting on Ho and the form of a unanimity rule on a non-empty subfamily of
H \ Ho. Thus, all anonymous rules that are not defined on quasi-median spaces must
be similar to the one described in Example 9, which represents the simplest example
that one can construct. This shows that outside the class of quasi-median spaces there
is very limited room for non-dictatorial and non-manipulable social choice.

7 The Possibility-Impossibility Frontier: No Veto
Power

We have shown that quasi-median spaces enable non-degenerate strategy-proof social
choice via unanimity rules. However, unanimity rules represent an extreme departure
from neutrality: some alternatives (resp. properties) are chosen on the basis of a single
supporting voter, while others require the support of all voters. A domain that forces
any anonymous and strategy-proof social choice function to exhibit such extreme form
of non-neutrality must clearly be viewed as very restrictive. Thus, in this section
we shall determine those domains that admit “qualified majority voting by properties”
where the majority-quota for some properties may exceed one half but is always strictly
less than one.?!

In more general terms that do not presuppose anonymity, we shall characterize those
domains that admit strategy-proof social choice satisfying the following condition of
“no veto power.”

Definition (No Veto Power) Say that F satisfies no veto power if F(>1,...,>p) =«
whenever at least n — 1 voters have their peak at .

21Tn Nehring and Puppe (2002a) it is shown that ex-post efficient strategy-proof social choice on
single-peaked domains requires a weak neutrality condition; heuristically, this further strengthens the
interest in domains that admit at least “minimally neutral” strategy-proof social choice functions.
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Fact 7.1 Voting by committees satisfies no veto power if and only if no single voter
ever forms a winning coalition, i.e. {i} € Wy for alli € N and all H € H.

Note that, under voting by committees, absence of veto power (over any alternative)
entails by Fact 7.1 the absence of veto power over any issue, a substantially stronger
property.

For the geometric characterization of the single-peaked domains that give rise to
strategy-proof social choice without veto power we need some additional concepts.
Given a property space (X, H), say that two elements x and y are immediate neighbours
if they differ in exactly one issue, i.e. if there exists exactly one basic property H € ‘H
such that x € H and y € H°. For instance, in Figure 6a each point has exactly
two immediate neighbours, while in Figure 6b, the points xs, x4, z¢ and x;7 have three
immediate neighbours. A subset Y C X will be called connected if, for any pair z,y € Y
with z # y, there exist z1,...,2; € Y such that z; = z, z; = y, and z;41 is an immediate
neighbour of z; for all i = 1,...,1 — 1 (for illustration, see Figure 9 below).

For any family F C ‘H with H € F = H¢ € F, define an equivalence relation on
Xbyzwmry:&[foral He F: H>z< H > y|, and denote by X/x the induced
partition of X into equivalence classes. Thus, X/z results from X by identifying
elements that differ only in “non-F issues;” in particular, note that X = X/4. The
property space (X/z,F) is referred to as the projected space induced by X and F.22

To illustrate, consider a space (X, ) embedded in a hypercube, so that each issue
(H, H) corresponds to one coordinate and the family F to a particular set of coordi-
nates. Then, (X/z,F) is simply the projection of (X, H) to the “F-coordinates.” For
instance, in Figure 9a below, the projection of X to the first two coordinates (corre-
sponding to F = {H}, HL, HZ, H?}) is isomorphic to a 2-dimensional hypercube. By
constrast, the projection to coordinates 1 and 3 (as well as the projection to coordi-
nates 2 and 3) is isomorphic to a three-point line.

Definition (Cohesive Quasi-Median Space) A property space (X,H) is called a
cohesive quasi-median space if, for any family F C H, the set of median points M (X/ )
of the induced projected space is connected and has at least two elements.

The following figure shows two quasi-median spaces neither of which is cohesive. In
Fig. 9a there is only one median point (the encircled alternative y). By contrast, in
Fig. 9b there are the two median points y and y'; however, here the set M (X) = {y,y'}
is not connected (cf. Fig. 1e above).

2 2
) W
q T ¢
3 3 ,
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y © 1 y©® A 1
9a: A non-connected space 9b: A connected space

Figure 9: Two quasi-median spaces

22With slight abuse of notation, H € F is identified with the corresponding subset of X/ .
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Cohesive quasi-median spaces have a rich geometric structure. In particular, any
cohesive quasi-median space is a graphic property space, and its graph is bipartite,
that is: all cycles have even length. In our context, the appropriateness of the notion
of cohesive quasi-median space derives from the following central result.

Theorem 7 The following conditions are equivalent.

(1) (X, H) admits an onto strategy-proof scf F : 8™ — X with no veto power.
(ii) > is antisymmetric, i.e. [H > G and G > H| = H =G.

(iii) (X, #H) is a cohesive quasi-median space.

The necessity of the antisymmetry of > for no veto power follows by arguments similar
to those used in Section 5 above. The idea underlying the proof of the converse state-
ment is as follows. By a modified application of Szpilrajn’s theorem, the conditional
entailment relation > can be extended to a complementation-adapted linear ordering
>* of H. A consistent committee structure can then be defined by choosing quotas
qu < 1 as an appropriate monotone transformation of the rank of H in the ordering
>*. By constructing a social choice function that takes the form of voting by quota, the
proof thus in effect shows that any space with an antisymmetric conditional entailment
relation admits an anonymous strategy-proof social choice function without veto power.
A nice feature of Theorem 7 is the existence of a crisp geometric characterization of
the antisymmetry property of the conditional entailment relation, and thus of no veto
power. By contrast, non-dictatorship and anonymity do not seem to have comparably
simple geometric characterizations.

Theorem 7 shows that of all examples outside the class of median spaces that we
have given so far, only the seven-point graph in Fig. 6b admits strategy-proof social
choice with no veto power under single-peakedness; indeed, the geometric condition
that defines cohesive quasi-median spaces is easily verified in that example. Are there
other instances of cohesive quasi-median spaces? The following class yields many fur-
ther examples.

Example 10 (Centered subspaces of ZK) Denote by Z the set of integers, and
consider the K-fold cartesian product Z¥ endowed with the product betweenness in-
duced by the line betweenness in each coordinate (cf. Ex. 4 above). A (finite) subspace
X C Z¥ will be called centered if there exists # € X such that for all z € X, [#,2] C X,
i.e. such that all segments between & and any other element of X are contained in X.
Figure 10 below shows a typical example. In the figure, the center Z is the origin
(0,0,0). As is easily verified, the median points are the encircled points on the axes
emanating from the center . In particular, the depicted subset is not a median space.

In centered subspaces of ZX, one can verify directly the strategy-proofness and,
using the Intersection Property, the consistency of the anonymous rule given by the
quotas gqg = + if H 3 &, and g = 1 — & if H ¥ Z. This rule exhibits no veto
power whenever n > K. In particular, by Theorem 7, any centered subspace of Z¥ is

a cohesive quasi-median space.

31



A
C
®
/3
® C, C, > 1
=(0,0,0)

Figure 10: A centered subspace of Z>

As a concrete example, consider the elements of the hypercube as sets of candidates
(“boards”) with a 1 in coordinate k standing for “candidate & is on the board.” Suppose
that there are a number of representation requirements to be satisfied, such as “at least
one women should be on the board,” or “at least two members of the board should
be social choice theorists,” etc. Furthermore, assume that the board of all candidates
(the point (1,...,1) in the hypercube) satisfies all these requirements. Then, the subset
of all feasible boards (those that satisfy the representation requirements) is a centered
subset of {0,1}% with center # = (1,...,1). As can be inferred from a comparison
with the dictatorial domains in Example 8 above, the key feature here is that all
representation requirements are lower bounds. Also note the existence of social states
that are conceivable but not feasible (e.g. a board without social choice theorists) in this
particular example. Single-peakedness of preferences over feasible boards is naturally
interpreted as separability of preferences over conceivable boards combined with the
assumption that the preferences of all voters are consistent with the representation
requirements in the sense that all peaks are feasible. The latter assumption is clearly
restrictive.?2 By contrast, in the hypercube embedding used repeatedly above, the
points outside the domain are purely mathematical constructs illustrating the structure
of the property space; they have no conceptual reality, in particular, they are not objects
of preference. Hence, the the restrictiveness issue just pointed out does not arise under
this domain interpretation. For instance, if one embeds a line in the hypercube one
obtains fictitious points having the contradictory properties of “being to the left” and
“being to the right” of some given point.

23For a study of feasibility constraints whithout that assumption, see Barberd, Massd and Neme
(2001).
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8 Conclusion

In this paper, we have defined a general notion of single-peakedness based on abstract
betweenness relations. We have shown that a social choice function is strategy-proof
on a single-peaked domain if and only if it takes the form of voting by committees
satisfying the Intersection Property. On the basis of this characterization, we have
classified all single-peaked domains in terms of the extent to which they enable well-
behaved strategy-proof social choice. Table 1 below summarizes our main results. Note
the two blank entries in the right column of the table. Indeed, we do not know whether
there exists a simple geometric characterization of non-dictatorship. For the condition
of anonymity, on the other hand, the quasi-median property (i.e. the existence of at
least one median point) yields an “almost”-characterization, as we have argued in
Section 6 above.

Property of Enabled Characterization in terms Geometric
Social Choice Function of Conditional Entailment Characterization

. . H # G for some H,G
no dictatorship (“not totally blocked”) -

anonymity “all H quasi-unblocked”  —

H # H¢ for all H

unanimity (“all H unblocked”) quasi-median space
. . cohesive
no veto power > antisymmetric . .
quasi-median space
neutrality without H>G@& HCA median space
dictatorship (coincides with subsethood) P

Table 1: Summary of the main characterization results

An important question left open by the present analysis concerns the efficiency
properties of strategy-proof social choice. This is addressed in the companion paper
Nehring and Puppe (2002a), where we characterize the class of all strategy-proof and
efficient social choice functions on single-peaked domains. In another paper, Nehring
and Puppe (2002b), we study in more detail the structure of the class of strategy-proof
social choice functions that exist on a given quasi-median space.
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Appendix: Proofs

Proof of Proposition 2.1 Let > be single-peaked on (X, H) with peak z*; define
He:={H € H:2* € H} and Hy := {H € H : 2* ¢ H}. Obviously, this partition of
H satisfies all required properties.

Conversely, let the partition H = H, U H,, satisfy (i) and (ii). It is straightforward
to verify that > is single-peaked with peak x*.

Proof of Fact 3.1 Suppose that z € fyy(§) and consider any y # z. By condition H3,
there exists H € H such that z € H and y € H¢. By definition of fw, {i: ¢ € H} €
Wg. By CS1, {i: § € H} = {i: & € H} € Wpye, hence by definition, y & fi(£).

Proof of Proposition 3.1 Since committees are by definition closed under taking
supsersets, voting by committees is monotone in properties by (3.3). Furthermore,
voting by committees is clearly onto since it satisfies unanimity.
Conversely, let f : X™ — X be onto and monotone in properties. For any H € H,
define
Wy :={W C N :3¢such that {i : {&; € H} =W and f(¢) € H}.

Note that by monotonicity of f, the definition of Wx does not depend on the choice of €.
Since f is onto, Wy is non-empty. We verify that Wy is closed under taking supersets.
Hence, suppose that W € Wy and W' O W. Choose £ such that W = {i : & € H}
and f(€) € H. Define ¢’ as follows: & = & wheneveri € Wori€ N\W', and ; € H
if j e W \W. Then, W' = {i : £, € H} and, by monotonicity in properties, f(¢') € H.
Hence, by definition, W' € Wxy.

Next, we verify properties CS1 and CS2. It is easily seen that W¢ & Wpye implies
W € Wpg. To verify the converse implication, assume by way of contradiction that
W € Wy and W¢ € Wge. Choose € with {i : & € H} = W and f(¢) € H, and ¢
with {i : & € H°} = W¢ and f(¢') € H¢. Consider ¢" defined by &' = ¢; fori e W
and &' = & for i € W¢. By monotonicity in properties, f(¢") € H and f(¢") € HE,
a contradiction. This shows that W satisfies CS1. To verify CS2, let H C H' and
W € Wpg. Choose ¢ such that {i : & € H} = W and f(¢) € H. Consider ¢ with
& =¢ fori e W and & € H' for i ¢ W. By monotonicity in properties, f(¢') € H,
hence f(¢') € H', and thus W = {i : & € H'} € Wy.

The proof is completed by noting that f = fyy. Indeed, by definition of W, one
clearly has f(&) € fw (&), but fyy is single-valued by Fact 3.1.

Proof of Proposition 3.2 Suppose f : X™ — X is monotone in properties. Consider
an individual j with true peak &; who reports éj. Let H € H be any basic property
such that {; € H and f(éj,ffj) € H. Clearly, {i : (éj,ffj)i € HY C{i: & € H},
hence by monotonicity in properties f(§) € H. This shows that f(¢) € [¢;, f(éj,ffj)],
i.e. f(€) is between the true peak £; and the outcome f(fj, &_;). By single-peakedness,
this implies that f(&) »=; f(&;,€-;) whenever f(§) # f(&;.6-;)-

Conversely, suppose that f is not monotone in properties; then there exist &, ¢’ and
H such that W :={i : & € H} CW':={i : & € H}, f(§) € H but f(¢&') € H°.
Without loss of generality, we may assume that W' = W U {j} for some individual
Jj & W. Let >; be a single-peaked preference with top f} such that = >; y whenever
x € H and y € H¢. The existence of such a preference ordering is easily established.
Clearly, if >; is the true preference of j, this voter will benefit from reporting £;. Hence,
F is not strategy-proof.
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Proof of Proposition 3.3 The proof consists in showing how Proposition 2 of Barber4,
Masso and Neme (1997) can be translated to the present framework. Their result shows
that any strategy-proof social choice function F' defined on the domain of all single-
peaked linear orderings with unrestricted peaks in some subset Y of the hypercube
satisfies peaks only, provided that Y contains the range of F. We first consider the
case of all single-peaked linear orderings, and show then how the general case results.
For Y C {0,1}%, denote by L’S}/O’I}K the set of all linear orderings on the hypercube
{0,1}% that are single-peaked with respect to the hypercube-betweenness and that
have their peak in Y.

Now consider, for any property space (X, #), a social choice F' defined on LS x ),
the set of all single-peaked linear orderings on (X,H). By Fact 3.2, there exists an
isomorphism ¢ : X — Y C {0,1}, for appropriate K, such that (z,y,z) € T if and
only if #(y) is between ¢(x) and ¢(2) in the sense of the hypercube-betweenness.?* By
Proposition 2.1, a preference ordering > is single-peaked on (X, ) if and only if its
image under ¢ is single-peaked on Y (with respect to the hypercube betweenness on
Y). Denote by LSy the set of all single-peaked linear orderings on Y. The function
F can thus be viewed as a function F' : [LSy]" — Y. To F associate a function
F [ES%/OJ}K]” — {0,1}X with rangeF =Y as follows.

Lemma A.1 Denote by T" the hypercube betweenness. Let =€ LSy, i.e. let > be
single-peaked with respect to the induced betweenness T"|y. Then there exists an ex-
tension =Y of = such that =Y € 53%71}1(, i.e. =Y is defined on {0,1}, has its peak
in'Y and is single-peaked with respect to T".

Proof of Lemma A.1 Let z* € Y be the peak of >, furthermore, let T be the
partial order on the hypercube {0, 1}¥ defined by yT% z & (z*,y,z) € T"*. Consider
the binary relation @ :=> UT". Since = extends (T )|y on Y, Q is easily shown to
be acyclic. Hence, the transitive closure Q of ) is a partial order on X. By Szpilrajn’s
well-known extension theorem, there exists a linear extension >Y of Q Clearly, =Y
has its peak at 2* € Y and is single-peaked on {0, 1}¥ since it extends T .

Proof of Proposition 3.3 (cont.) Define F(>Y, ... >Y) = F(=Y|y,...,>Y |y),
where =) |y is the restriction of =} to V. Using Lemma A.1 it is easily verified that
(i) rangeF = rangeF =Y (since F satisfies voter sovereignty), and (ii) F is strategy-
proof if and only if F is strategy-proof. By Barberd, Massd and Neme (1997, Prop. 2),
F' satisfies peaks only, therefore F' must also satisfy peaks only.

So far, we have shown that any strategy-proof social choice function F' : £LS™ — X
that satisfies voter sovereignty satisfies peaks only. We now prove that this holds for
any domain []I_, D; with £8" C [], D; C 8". Consider for some voter j a preference
>'€ §\ D; and the domain Dy := (D; U {>'}) x [[,,; Di. We show by induction
that, if F': Dy — X is strategy-proof, then it satisfies peaks only. Suppose, by way of
contradiction, that F' does not satisfy peaks only, but that, by the induction hypothesis,
F restricted to [], D; does. Then, there exists a profile (1, ..., >5) € [[, D; such that
>; has the same peak as >’ and such that y := F(>_;,>') # F(>1,...,>n) =: 2.
By the strategy-proofness of F', we must have (not z =’ y). By Szpilrajn’s extension
theorem, there exists a linear extension =* of =’ with y =* z. By the single-peakedness
of =', the linear extension >=* is also single-peaked with the same peak. By induction

24Note that different families H correspond to different subsets Y of the hypercube even for the
same underlying set X.
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hypothesis, we have peaks only on [], D;, hence F(>_;,>*) = F(>_;,>;) = z. But
then a voter j with true preference =* can benefit from reporting =’, which contradicts
the strategy-proofness of F'.

For the proof of Proposition 3.4, we need the following lemma.
Lemma A.2 For all W and all £ € X", fyw(€) € Co{&; :i € N}.

Proof of Lemma A.2 Let Co{¢; : i € N} = NH' for an appropriate family H' C H.
For any H € H', one has {i : &, € H} = N, and hence {i : & € H} € Wy. By (3.3),
fw(&) € H, hence the conclusion.

Proof of Proposition 3.4 We only show part a); from this, part b) is immediate
in view of Fact 3.3. Thus, let Fy, be neutral, and consider H, H' € H. We show
that Wy C Wpgr. Take any W € Wpg and choose x € H and y € H such that the
segment [z, y] is inclusion minimal. Using the transitivity condition T3, it is easily seen
that [z,y] = {z,y}, i.e. there is no other element between x and y. Similarly, choose
' € H' and y' € (H')¢ such that [z',y'] = {2',y’'}. Now consider the following four
single-peaked preferences: >" having z as its top element and y as the second best,
>=Y with y as top and z as second best element, > with 2’ as top and y’ as second
best element, and =¥ with y' as top and z’ as second best element. Let 0 : X — X
be a permutation such that w >% z < o(w) =% o(z) and w =¥ z & o(w) =¥ o(z),
for all w,z. In particular, o(z) = 2’ and o(y) = y’. Denote by (=%; W, =¥; W¢) the
simple profile in which all voters in W have the preference >=* and all others have
the preference »¥. Since W € Wy, we must have Fy,(>=%; W, =Y;W¢) € H and in
fact Fyy(="; W, =¥; W°) = z, since by Lemma A.2, Fy,(=%;W,=¥;W¢) € [z,y]. By
neutrality, Fyy (=% ; W, =¥ ; W¢) = o(z) = 2, which implies W € Wy by (3.3).

The converse implication follows immediately from the from the following lemma.

Lemma A.3 Let x # y, and suppose that Wg = Wy for some Wy and all H € H.
Then Fyy(=%; W, =¥; W¢) = z if and only if W € Wj.

Proof of Lemma A.3 Clearly, if Fyy(>=%; W, =¥; W¢) = x, then W must be a winning
coalition; indeed, otherwise W¢ would be winning and could therefore enforce a basic
property H 5> y with x ¢ H.

Conversely, suppose that W € Wy. Since Wy = W, for all H € H, W is winning
for any basic property. In particular, W enforces all basic property H that contain z.
But their intersection contains the single point = by H3.

Proof of Proposition 3.5 Suppose fyy is consistent, and let G = {G4,...,G;} be
a critical family. For j = 1,...,1, consider any selection W; € Wg,. We will show
ﬂlj:le # () by a contradiction argument. Thus, assume that I’Wg:le = (). Then,
for all i € N, there exists j; such that ¢ ¢ Wj,. For each 14, pick an element & €
GS, N (Njzj;Gj) = Njzj;G; (observe that the latter set is non-empty by definition of
a critical family). By construction, if ¢ € W;, then j # j;, hence ¢ € G;. This
shows that, for all j, W; C {i : & € G;}. Therefore, {i : § € G} € Wg;, hence by
(3.3), fw(&i,...,&) € G for all j = 1,...,l. However, this contradicts the fact that
{G1,...,G} is a critical family.

Conversely, suppose fjy is not consistent, i.e. for some £, fyy(€) = 0. By (3.2) and
CS1, this implies that "{H € H: {i: & € H} € Wy} = (. We show that fyy cannot
satisfy the Intersection Property by contradiction. Thus assume fyy does satisfy the
Intersection Property. Pick a critical family {G1,..,.G;} C{H e H:{i: & € H} €
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Wr}. By the Intersection Property, N{_ {i : & € G;} # 0. Let ig € {i : & € G;} for
all j =1,...,1. But then &, € G, for all j, contradicting the fact that {G1,...,G;} is a
critical family.

Proof of Fact 4.1 Suppose, by way of contradiction, that z,y, z admit two distinct
medians m; # mo. By H3, these can be separated by a basic property H such that
my1 € H and mo € H¢. Clearly, either H or H¢ must contain at least two elements
of {z,y,z}, say {z,y} C H. Since ms € [z,y], and since H is convex, it follows that
mo € H, a contradiction.

Proof of Proposition 4.1 The equivalence of (iv) and (ii) is immediate since a
critical family with more than two elements violates the pairwise intersection property;
conversely, any minimal family of basic properties violating the pairwise intersection
property must contain at least three elements and is by definition a critical family.

To prove the implication “(i) = (ii),” take any collection {Hi,..., H;} C H such
that Hy N Hy, # 0 for all k,h € {1,...,1}. We verify the pairwise intersection property
by induction. For [ = 2 it holds trivially; thus assume | > 2. Let S := Hy N...N H;_,.
Choose x € SN H;_1,y € SNH; and z € Hj_1 N Hy, the first two intersections being
non-empty by induction hypothesis, the latter by assumption. Consider the median
m = m(z,y,2); since S is convex, [z,y] C S, hence m € S. Similarly, m € H,_; and
m € H;, hence m € mﬁgle,c.

The implication “(ii) = (iii)” is straightforward; finally, “(iii) = (i)” follows at once
from the observation that {[z,y], [z, 2], [y, 2]} is a family of convex sets with pairwise
non-empty intersections.

Proof of Theorem 3 Sufficiency of the median property for universal consistency
follows from Propositions 3.5 and 4.1, as shown in the main text.

Necessity can be verified as follows. Suppose that (X, #) is not a median space.
Specifically, let z,y,z be such that [z,y] N [z,z] N [y,z] = 0. For odd n > 3, consider
issue-by-issue majority voting, i.e. Wi = {W : #W > n/2} for all H. Assume that
voter’s peaks are distributed as evenly as possible among the three points x, y and z.
Thus, for instance, if n is divisible by 3, assume that exactly one third of the peaks
are at x, y and z, respectively. Then, by definition, fy(¢) € [z,y] N [z, 2] N [y, 2]; but
the latter set is empty, hence issue-by-issue majority voting is not consistent. For even
n > 4, the same conclusion is obtained by considering majority voting among a fixed
subset of n — 1 individuals.

For the proof of Proposition 4.2, we use the following lemma; in its statement,
medA denotes the smallest median stable set that contains A (the so-called “median
stabilization” of A). Lemma A .4 is a straightforward reformulation of van de Vel (1993,
Lemma, 6.20, p.130); therefore its proof is omitted here.

Lemma A.4 Let (X,H) be a median space, and let A C X. Then x € medA if and
only if for each pair H H' € H with x € HN H' one has ANHNH' # (.

Proof of Proposition 4.2 By Lemma A.4, it is clear that, for any median stable
subset Y C X, the set Y \ (H N H') is again median stable. To show that any
median stable set has the required form, consider an arbitrary median stable subset
Y C X,ie medY =Y. Let X\Y = {z1,...,2,}. Lemma A.4 implies that for
any x; there exist Hj;, H; with x; € H; N H} such that Y N H; N H; = (). Hence,
Y = (X \ (Hy 0 HD)\ ) \ (Hy 0 HY).
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The following lemma plays a key role in the proofs of the main theorems below.

Lemma A.5 Suppose that {G1,G2,G3} C G for a critical family G. If Wge C Wa,,
then {i} € Wgs for somei € N.

Proof of Lemma A.5 Let W, be a minimal element of Wea,, and let @ € Wh. By
CS1 and minimality of W, one has (W U {i}) € Was. By assumption, Wge € Wa,,
hence (W¢ U {i}) € Wg,. Now consider any W5 € Weg,. By the Intersection Property,
N3_,W; # 0 for any selection W; € We;. In particular, Wi N (WEU{i}) N Ws # 0.
Since Wy N (W{ U {i}) = {i}, this means i € Ws for all W3 € Wg,. By (3.1), this
implies {i} € Was.
Proof of Theorem 4 As described in the main text, the proof of the first state-
ment in the theorem consists in showing that any neutral and strategy-proof social
choice function F' : 8™ — X satisfying voter sovereignty must be dictatorial unless
the underlying space (X, ) is a median space. By Theorem 2, F' must be voting by
committees satisfying the Intersection Property; by Proposition 3.4, Wy = Wy for
some Wy and all H. If (X,H) is not a median space, there exists a critical family G
with at least three elements (by Proposition 4.1), say G D {G1,G2,Gs}. By Lemma
A5, {i} € Wag = Wy; but then voter i is a dictator.

The converse statement follows from the fact that the committee structure Wy =
Wy for all H € H satisfies CS2 and, by assumption, CS1; hence it satisfies the Inter-
section Property on a median space by Proposition 4.1.

Proof of Theorem 5 That any strategy-proof F' : S™ — X on a totally blocked space
must be dictatorial has already been shown in the main text. We will now prove the
converse statement. Let (X, #) be not totally blocked. Partition # as follows.

Mo = {HeM:H=H,
Hf = {HeH:H>HY,
Hy = {HeH:H°>H},
Ho := {H € H: neither H > H nor H° > H}.

For future reference we note the following facts about this partition of .

Lemma A.6 a) For any critical family G, if G € GNHy , then G\ {G} C HT .

b) For any critical family G, if GNHo # 0, then G C Ho UH] .

c) Take any H € Hy. Then there exists a partition of Ho into Hy and Hi with
H € "y such that G € Hy & G° € HT, and for no G € Hy and H € H, G > H.

Proof of Lemma A.6 a) Suppose G € GNH;, i.e. G° > G. Consider any other
He€G. Wehave H > G > G > H, hence H > H¢, i.e. H € H.
b) Suppose G € GNHy and let H € G be different from G. We have H > G = G > H¢,
hence H > H°. But this means H € Ho UH;".
c) The desired partition into Hy = {G1,...,G;} and Hy = {GS,...,G§} will be con-
structed inductively. Set Gy = H, and suppose that {G1, ..., G, }, with r < I, is deter-
mined such that G; 2 G§ forall j,k € {1,...,r}. Takeany H € H-\{G1,GY, ...,Gr, G}
and set

G H iffornoje {1,..,r}: G; > H°

Tl { He¢ if for some j € {1,...,r}: G; > H°
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First note that G,11 2 Gt since H € Hs. Thus, the proof is completed by showing
that for no k € {1,...,7}, Gy > G%,, (and hence, by complementation adaptedness,
also not G411 > G%). To verify this, suppose first that G,,1 = H; then, the claim is
true by construction. Thus, suppose G,;1 = H€; by construction, there exists j < r
with G; > H®, hence by complementation adaptedness also H > G. Assume, by way
of contradiction, that G > G7.,. i.e. Gy > H. This would imply G}, > H > G, in
contradiction to the induction hypothesis.

Proof of Theorem 5 (cont.) If H U] is non-empty, set Wy = 2V \ {0} for
all H € H; and Wy = {N} for all H € H;; moreover, choose a voter i € N and
set Wg = {W C N :i € W} for all other G € H. Clearly, the corresponding voting
by committees is non-dictatorial. We show that it is consistent. By the Intersection
Property, the only problematic case is when a critical family G contains elements of
H; . However, by Lemma A.6a), if G € GNH|, we have G\ {G} C H;, in which case
the Intersection Property is clearly satisfied.

Next, suppose that H;" U H] is empty, and consider first the case in which both
Ho and Hs are non-empty. By Lemma A.6b), no critical family G can meet both Hg
and H,. Hence, we can specifiy two different dictators on Hg and Hs, respectively, by
setting Wy = {W :i € W} for all H € Ho and Wg = {W : j € W} for all G € H,
with ¢ # j. Clearly, the Intersection Property is satisfied in this case.

Now suppose that Hs is also empty, i.e. H = Ho. Since (X, H) is not totally blocked,
H is partitioned in at least two equivalence classes with respect to the equivalence
relation =. Since, obviously, no critical family can meet two different equivalence
classes, we can specify different dictators on different equivalence classes while satisfying
the Intersection Property.

Finally, if Ho is empty, (X, H) is a quasi-median space by Proposition 6.2, hence
the existence of non-dictatorial strategy-proof social choice functions follows as in the
proof of Proposition 6.1 below.

Proof of Proposition 5.1 a) For [ = 4, the I-cycle is isomorphic to the 2-dimensional
hypercube which is clearly not totally blocked. Thus, assume first that [ is even and
I > 6. For all j, denote by H; := {xj,%jy1,...,Zj—141/2}, Where indices are understood
modulo [ throughout. The family {H;, H;_14/>, H;j_2} is a critical family. This implies
Hj; >% H;_y for all j, since H;_1 = (H;_14;/>)°. From this, the total blockedness is
immediate.

Now consider ! odd with I > 5 (the 3-cycle corresponds to the unrestricted domain
over three alternatives which has already been shown to be totally blocked). For all j,
denote by H; = {zj,Zj11,...,Tj_14(-1)/2} and by H;r = {25, Tjr1, 0 Tjm14(41) 2}
Criticality of of the pair {H, , H_, )/2} implies H; >0 H;“_l for all j. Furthermore,

j+(1-1
criticality of the family {H]T",H"' Hj_-|—1+(l+1)/2} implies both H]'" >0 Hj"jrl

J—14(141) /27
and H]Jr >0 g ; for all j. From this, the total blockedness is again immediate.

b) Consider now the permutahedron X 4. If #A = 3, the permutahedron is isomorphic
to the 6-cycle, the total blockedness of which has just been verified. Thus, assume
#A > 4. Total blockedness means that, for all a,b,¢,d € A with a # b and ¢ # d,

Hap) 2 H(c,a (A1)

(recall that H(, ;) corresponds to the property “ranks a above b.”). If a, b, ¢, d are pair-
wise distinct, (A.1) follows directly from the criticality of {H . ), H(a,b), H(b.a)> H(d.c) }-
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Note that by transitivity of >, this also implies Hq ) > Hp,0). If ¢ = a and d # b,
(A.1) follows from the criticality of {H(q4,4), H(a,5), Hp,a)}- If d = a and ¢ # b, (A.1)
follows from Hy, ) > H(c 4y > H(c,q), Where d' is any element not contained in {a, b, c}.
The other cases are treated analogously.

Proof of Proposition 5.2 Let F': S("X’H) — X be onto and strategy-proof. Also, let
Y C X be convex such that (Y, H|y) is totally blocked. Denote by Sy the set of all
single-peaked preferences on Y and by S&’H) the set of all single-peaked preferences
on X that have their peak in Y. Define Fy : [Sy]® = Y as follows. For all ;€ Sy,

Fy (=1, >n) = F(=1, 00 =0),

where, for each i, >} is any extension of >; to X such that >}€ 8(1;(77{), i.e. such that
>~ is single-peaked on X with the same peak as >;. Since F' satisfies peaks only,
the definition of Fy does not depend on the choice of the extension. Clearly, Fy is
strategy-proof on Sy. Furthermore, by Theorem 1 and Lemma A.2, F(>=], ..., =) € Y,
hence the range of Fy is indeed Y. By assumption, (Y, #|y) is totally blocked, hence
Fy is dictatorial, by Theorem 5. But this implies that F' possesses a local dictator,
since the restriction of F' to the subdomain S(};(,H) coincides with Fy .

Proof of Fact 6.1 It is clear that F; defines a unanimity rule. Conversely, under
voting by committees, (6.1) implies Wy = {N} for any property H with H ¥ Z; by
(3.1), this determines Wy for all H € H.

The following lemma will be used extensively in the analysis of quasi-median spaces.
For any z € X, denote by H, :={H € H:z € H}.

Lemma A.7 z € M(X) if and only if for any critical family G, #(H. N G) < 1.

Proof of Lemma A.7 Let € M(X); we verify #(H, N G) < 1 by contradiction.
Thus, assume that, for some critical family G, H, NG D {H;, Hy}. Since z € H; N Ho,
there exits a G € G different from H; and H>. By criticality, one can choose y €
NG\ {H,1}) and z € N(G \ {H2}). By construction, [z,y] C Ha, [z,z] C H; and
ly,2] C N(G \ {H1, Hs2}). But then [z,y] N [z,2] N[y, 2] C NG = O, contradicting the
fact that z € M(X).

Conversely, suppose that z ¢ M(X), i.e. [z,y] N[z, 2] N [y,2] = O for some y, z.
Define H,y := {H € H : {z,y} C H}, Ho. :={H € H : {z,2} C H} and H,. :=
{H € H : {y,z} C H}. By assumption, one has (NHzy) N (NH,.) N (NH,.) = 0,
hence Hyy U Hyy U Hy. contains a critical family G. Any such critical family must
contain H with H N {z,y,z} = {z,y}, H with H' N {z,y,2} = {z,2} and H" with
H'"Nn{z,y,z} = {y,z}. But this implies #(H, NG) > 2 sincex € HN H'.

Proof of Proposition 6.1 Let F; be consistent and consider H;, the family of all
properties possessed by Z. Since Wy = 2V \ {0} for all H € H;, the Intersection
Property implies that #(H; NG) < 1 for any critical family (otherwise, if H, H' €
Hz NG with H # H’, one could choose W € Wy and W' € Wy with W N W' = §,
contradicting the assumed consistency). By Lemma A.7, & € M (X).

Conversely, Lemma A.7 implies that for any median point & € M (X), the unanimity
rule F; satisfies the Intersection Property, hence is consistent by Proposition 3.5.

The last statement in Proposition 6.1 follows from Lemma A.2 above and the ob-
servation that {i} € Wy whenever H D {Z, z}}.
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Proof of Proposition 6.2 The equivalence of (i) and (ii) follows at once from Propo-
sition 6.1 using Theorem 1 and Fact 6.1. We now show that (i) implies (iii), and that
(iii) implies (ii).

The implication (i) = (iii) is shown by contraposition; thus, assume that H = H*¢
for some H € H. By Fact 5.1, one has Wy = Wpg. for any consistent voting by
committees. But this contradicts the definition of a unanimity rule (whenever there
are at least two voters).

To verify the implication (iii) = (ii), suppose that for all H € H, H Z H°¢. Partition
H into Hi, H, H5 and HJ as in the proof of Theorem 5 above, where H; and Hj
are determined according to Lemma A.6c). Then, any critical family G can meet
H,; UH, at most once. Indeed, by Lemma A.6a), H € GN?H, implies G\ {H} C H;.
Furthermore, if {H,H'} C G NH,, one would obtain H' > H¢ which contradicts the
construction of H; . But this implies that N(H; U A5 ) is non-empty (otherwise it
would contain a critical family), and by H3, it consists of a single element, say z. By
Lemma A.7, z € M (X).

Proof of Theorem 6 Obviously, (i) implies (ii). Thus, it suffices to show that (ii)
implies (iii), and that (iii) implies (i).

“(ii) = (iil)” We prove the claim by contraposition. Assume that G € H is not quasi-
unblocked. This means that G = G¢, and there exists a critical family G such that
(H=¢ N G) D {H,H',H"} for three distinct H, H', H"”. By Theorem 1, any strategy-
proof F': 8™ — X takes the form of voting by committees. By Fact 5.1, Wy = Wg for
all H € H=¢. By Lemma A.5, applied to the critical family G D {H,H', H"}, there
exists i, such that {i} € Wy for all H € H=¢. Hence, i is a dictator on H=¢, which
proves the claim and the last statement in Theorem 6.

“(iii) = (i)” We will construct a consistent voting by quota rule, provided that (X, H)
is a quasi-quasi-median space. Partition H as follows.

Ho = {HeH:H=H},
Hf = {HeH:H>HY,
Hy = {HeH:H°>H},
Ho = {H € H: neither H > H® nor H° > H}.

Furthermore, partition H» according to Lemma A.6c) into H, and H5 . Let n be odd,
and define a voting by quota rule by setting

Wi ={W:#W >1/2-n} if H € H,,
W = 2N\ {0} if HeH UH,,
Wr = {N} if HeHIUHS.

Thus, the quotas correspond to qg = % for H € Ho and qg = 1 for H € H] UHT.
Using the Intersection Property, we will show that this rule is consistent. Consider any
critical family G; we distinguish three cases.

Case 1: GN (Hy UH5) # 0. If G € GNHy, then by Lemma A.6a), G\ {G} C H,
and the Intersection Property is clearly satisfied. Thus, suppose that there exists
H € GNH,. By Lemma A.6b), we must have G N Ho = @, and by Lemma A.6a),
GNH; = 0. Hence, if there exists H' € G \ {H} with Wi # {N}, we must have
H' € H,. But then H > (H')® which contradicts the construction of H, and Hi
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in Lemma A.6¢). Thus, if H € G N H,, one has Wg» = {N} for any other element
H' € G, in which case the Intersection Property is satisfied.

Case 2: GNHg # 0. First, observe that G; = G2 whenever {G1,G2} C GNHo. Indeed,
G, = G5 follows at once from G; > GS, G2 > G, G1 = G{ and Gy = G5. Thus, since
all basic properties are quasi-unblocked, G can contain at most two elements of Hj.
By Lemma A.6b), for any H € G\ Ho one has Wy = {N}. Hence, the Intersection
Property is also satisfied in Case 2.

Case 3: If G does not meet Ho, H; and H, , then G C (H; UHT), in which case the
Intersection Property is trivially satisfied. This completes the proof of Theorem 6.

We now want to verify the remark after Theorem 6, that any consistent and anony-
mous rule must have the specified quotas whenever Hg is non-empty. To see this,
consider G € Hg, i.e. G = G°. Since, by definition, G #° G¢, there must exist a
different element H € H, such that G >% H >0 ... >0 G¢. This implies at once that
{H,H®} C H=¢, and that there exists indeed a critical family that contains G and
He¢. By Fact 5.1, any anonymous rule must thus be majority voting on . Clearly, it
must also give a quota of 1 to every basic property H € H \ Hy that is contained in a
critical family which meets Ho twice. That such critical families necessarily exist can
be verified as follows. As we just have seen, any G € Hy is contained in a critical fam-
ily G that also contains another element H € H=g C Ho. Since any basic property is
quasi-unblocked, G cannot contain other elements of Hy. However, it also not possible
that all critical families that meet o have cardinality two. Hence, there must exist a
critical family that meets Hg twice but that also meets H \ Ho.

Proof of Fact 7.1 Clearly, if {i} € Wpg, then voter i has veto power. Conversely, if
no single individual ever forms a winning coalition, then any coalition of n — 1 voters
is winning in any committee, by CS1; hence no voter has veto power.

Proof of Theorem 7 We prove the equivalence of (i) and (ii) as well as the equiva-
lence of (ii) and (iii).

“(i) = (ii)” We show, by contraposition, that a violation of antisymmetry implies veto
power. To show this we can restrict ourselves to voting by committees by Theorem 1.
Hence, assume that for some H # G, H = G. Then, there exist Hy, Hs, ..., H; such
that Hy = H, H = H, H; >0 Hji, and H = G for some 1 < k < [. This means that
there exist critical families Gy, ...,G;—1 with G; D {H;, Hf,,} for j = 1,...,1 — 1. At
least one of these critical families must contain more than two elements, since otherwise
H, = Hy, i.e. H = G. Without loss of generality, suppose G; D {H, HQC,G} for some
G € H. We have Wy, C W, for all j = 1,...,1—1, and thus in fact W, = W, for
all j,j', by Fact 5.1. Applying Lemma A.5, we obtain {i} € Wg., hence veto power.

“(ii) = (i)” Suppose > is antisymmetric; by a well-known result due to Szpilrajn, there
exists a linear extension >* of > on H. Moreover, >* can clearly chosen to be comple-
mentation adapted. Set Hi. :={H € H: H >* H°}and HS. :={H € H: H® >* H}.
Furthermore, let p(H) := #{H' : H' >* H}, and define quotas as follows. For
H e HI., set gg = 1—(1/2m=PUD+1) where m is the number of issues (i.e. 2m = #H),
and for H € HS., set gg = 1 — qgug-. We will show that the thus defined committee
structure is consistent, using the Intersection Property.

First observe that a critical family G can meet 1. at most once. Indeed, as-
sume that G1,G2 € HS. N G; this would imply, G; >* G5 and Gy >* G{ (since
{G1,G2} C G), but also G§ >* Gy (since G2 € H3.), hence G >* G, contradicting
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the assumption that G1 € HS...

Now consider any critical family G; by the Intersection Property applied to voting
by quota, it suffices to verify that ) o qu > #G — 1 (cf. (3.4)). There are two cases
to consider.

Case 1: GN'HS. = (. In this case,

1 m—p(H)+1
Z qu = #G — Z <§> .

Heg Heg

But Y peq(d)m-rt+1 < ZHEH;@)m—ﬂ(H)H < 1, since p(H) < m — 1 for all

He ”H‘; due to the complementation adaptedness; hence (3.4) is satisfied.
Case 2: GNHs. = {Hg}. We have,

St-m= Y (;)m_p(m“ ¥ <1 - (%)m_p”’@“) |

Heg HeG\{Ho}

Therefore, for (3.4) to be satisfied it is sufficient that

1 m—p(H)+1 1 m—p(Hg)+1
> G =G 42

HeG\{Ho}

This can be verified as follows. Since Hy € G, we have H >* H§ for all H € G\ {Ho}.
This implies p(Hg) > maxgeg\{m,} P(H), and hence (A.2).

Observe that, since the no veto power rule just constructed is anonymous, we have
in fact proved that antisymmetry of > is equivalent to anonymous no veto power.

For the proof of the equivalence of (ii) and (iii), we need the following lemma.

Lemma A.8 Consider any family F C H; then, G is a critical family of the projected
space (X/7,F) if and only if G is critical in (X, H) and G C F.

Proof of Lemma A.8 Obviously, if G is critical in (X/z,F), then G C F and G is
critical in (X,H). Conversely, let G C F be critical in (X, ). Since no element in X
possesses all properties in G, there can also not exist an element in X/ that jointly
possesses these properties. On the other hand, if z € X possesses all properties of a
proper subset of G, then the projection of z to X/ possesses these properties as well.

Proof of Theorem 7 (cont.) “(iii) = (ii)” We show, by contraposition, that if >
is not antisymmetric, then (X, ) is not a cohesive quasi-median space. Thus, assume
that there exist Hi, ..., Hy € H and critical families G, ..., Gy such that G; D {H;, H;H}
for j < k and G, D {Hy,H{}. Let H = {Hy,...,Hy,} U{HY,...,HS}, and denote by
H :={H,..., H,} U {H, ., Hg}. As is easily verified, G; and H; can be chosen such
that G; N'H = {H;,H¢,,} and G, N1 = {Hy, Hf}.

The set G := (u?zlg,-) \ ‘H cannot be empty, since otherwise H; C Hy C ... C Hy, C
Hi, hence all H; would be identical. Moreover, if for some H € H, GD {H,H°}, one
would obtain H = H¢; in that case (X, H) would not even be a quasi-median space by
Proposition 6.2. Hence, assume G = {H{,,,...,H} for some | > k. By Lemma A.8,
we can assume without loss of generality that [ = m; indeed, otherwise consider the
projected space (X/ 7, F) induced by the family F = {H;, ..., H;} U {HY, ..., Hf}.
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Take any z € M(X). If x € H;, one must also have € H,, since otherwise

z ¢ M(X) by Lemma A.7. By induction, one thus obtains x € H; for all j € {2,...,m}.
On the other hand, if z € HY, then by the same argument using Lemma A.7, z € H7
for j € {2,...,k} and € H; for j € {k+1,...,m}. In other words, if #M(X) > 2,
then necessarily M (X) = {z,2'} where {x} = HyNHyN...NHy, and {2’} = HFNHSN
.NH;N Hpy1 N...N Hy,. But in this case, M (X) is clearly not connected, i.e. (X, #)
is not a cohesive quasi-median space.
“(ii) = (iii)” Let > be antisymmetric. By Proposition 6.2, (X, #) is a quasi-median
space, i.e. M (X) is non-empty. First, we show that #M (X) > 2. Take any z € M (X)
and let H, = {H1,..., Hn}. Then, for no j € {1,...,m}, H; > H¢; indeed, otherwise
H; >° G, >° ... >% G) >° Hf for some G4, ..., G;. Using Lemma A.7, this would imply
z € G1; by induction, one would obtain = € Gy, for all j = 1,...,1, and = € HJ, which
is obviously not possible. We show that, for some k, also not (Hf > Hy). Assume,
by way of contradiction that Hf > H; for all j, and let Hf be >-minimal among
{H{,...,HS}. Since Hf > H; but, by definition, Hf #° H;, we must have either (a)
Hf > Hf > Hy, or (b) Hf > H; > Hy, for some j # I. In case (a), Hf = Hf by
the minimality of Hf; this contradicts the antisymmetry of >. In case (b), one has
Hf > HY by the complementation adaptedness, hence again Hf = Hf by minimality
of Hf, contradicting the antisymmetry of >. This shows that, for some k, neither
Hy, > Hj nor H; > Hj,. Consider the partition of H into ’Hi", ‘H; and H» as in the
proofs of Theorem 5 and 6 above (note that Ho = () here, since M(X) # 0). We
have just shown that {Hy, Hf} C H,. Partition M, into H, and Hj according to
Lemma A.6c¢) such that Hy, € H; . Any critical family can meet H; UH5 at most once
by Lemma A.6a) and A.6¢). Thus, N(H; U #H; ) is non-empty and contains a single
element, say . By Lemma A.7, z € M (X), and by construction x € Hy. Analogously,
we can partition H, such that H; € H, and obtain a median point in Hj. Hence,
#M(X) > 2.

Next, we show that M (X) is connected. Consider two elements z and y in M (X),
where H, = {Hy,...,H;, Hi11,..., Hy} and H, = {H,...,Hf, Hyyq, ..., Hy}. We will
show that there is a sequence of immediate neighbours in M (X) that connects = and
y. If I = 1 there is nothing to prove, hence assume [ > 2. We prove that there exists
an element in M(X) that is one step closer to x than y. Let H' = (H, \ {H§}) U
{Hj,} for some j; € {1,..,l}. If "H' = {y1} with y; € M(X), we are done. If
not, H' must meet some critical family G at least twice by Lemma A.7; moreover,
since y € M(X), we must have H; € G. Since 2 € M(X), it is not possible that
G\ {H;,} € {Hit1,....,Hn}. Hence H;, > H;, for some j, € {1,...,1} \ {j1}. Now
consider H* = (H, \ {HS,}) U{Hj,}. If "H> = {y»} with yo € M(X), we are again
done. If not, we must have H;, > H;, for some j3 € {1,...,1}\ {j2} as before, and
by antisymmetry in fact, j3 € {1,...,1} \ {j1,72}. By induction, we thus can find
an immediate neighbour y; of y such that y, € M(X) N Hy for some k € {1,...,1}.
Repeating this procedure, a sequence of immediate neighbours in M (X) connecting y
and z can thus be constructed.

The proof is completed by noting that due to Lemma A.8, antisymmetry of > on
(X, H) implies antisymmetry of the corresponding entailment relation on any projected
space (X/r,F).
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