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Abstract

We develop a model of rational bubbles, based on the assumptions of an unknown
market liquidity and limited liability of traders. In a bubble, the price of an asset rises
dynamically above its steady-state value, which must be justified by rational expecta-
tions about possible future price developments. The higher the expected future price
increase, the more likely is the market potential reached, in which case the bubble
will burst. Depending on the interaction of uncertainty about the market potential,
fundamental riskiness of the asset, the compensation scheme of the fonds manager,
and the risk-free interest rate, we give a condition for whether rational bubbles are
possible. Based on this analysis, several widely-discussed policy measures are in-
vestigated with respect to their effectiveness to prevent bubbles. A modified Taylor
rule, long-term compensation, and capital requirements can have the desired effect.
Caps on bonuses and a Tobin tax can create or destroy the possibility of bubbles,
depending on their implementation.
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1 Introduction

What causes asset price bubbles? In the light of recent economic experience, this question
seems important and topical. The last 15 years have seen at least two important market
developments that are considered as bubbles by now. Both, the so-called dot-com bubble
in the late ’90s and the recent housing bubble in the United States and elsewhere have
produced large reallocations of wealth during their buildup, and especially after their
respective crashes. These bubbles have not only affected the parties directly participating
in the bubble markets. Also outsiders were impacted heavily, e. g., by mass layoffs that
took place as a result of the crashes. Although bubbles are a phenomenon known (at
least) since the tulip mania in 1637, economic policy has apparently not been able to
prevent their repeated occurrence. Neither does a commonly accepted theoretical model
of bubbles exist, which could be used to derive policy implications. Our paper contributes
to the development of such an understanding, which might eventually help in guiding
policymakers.

We construct a simple workhorse model of a bubble, based on an overlapping generations
model and the crucial assumption that the potential amount of liquidity in the market is
not precisely known. In the model, the number of potential investors is a random variable.
Consequently, information about the market size is noisy except for the limiting case of
a finite market of fixed size. We think that, as financial markets become more complex
and opaque, the assumption of imprecise information about the market size seems very
natural. Within a bubble, managers are only willing to invest if they believe that there
might be another investor in the next period to whom they can sell the asset at an even
higher price. As already observed by Tirole (1982), if the number of investors were
known, the highest possible price of the concerned asset could be calculated, and by
backward induction no bubble could emerge from the beginning.1

The second important feature of our model is limited liability. In particular, we consider
investors who delegate investment to fonds managers. The model applies, however, di-
rectly to more general intermediated finance such as through banks, investment banks,
insurance companies, private equity firms etc., as well as to non-intermediated, debt-
financed investments. In the absence of a bubble, we find that the risk appetite induced by
the limited liability of fonds managers pushes asset prices above their fundamental values
(as already noted by Allen and Gale, 2000). Because of the limited liability in case of a
low or zero return, the manager can increase her expected payoff by engaging in riskier
assets. This effect drives asset prices above fundamentals, but in a static way. These price
deviations are not induced by expectations, and there are no sudden corrections (bursts).

1Tirole (1985) extends the model of Tirole (1982) to an overlapping-generations model with perfect
foresight, showing that under certain conditions bubbles can occur. However, these bubbles do not grow
faster than the real interest rate. Also Santos and Woodford (1997) show that the conditions for the existence
of bubbles are very restrictive, if one is to assume a fixed number of households that participate in the asset
market and own a finite aggregate endowment.
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Adding the assumption of unknown market liquidity extends the space of possible price
paths drastically. Combined with a high-powered incentive scheme, an expectations-
induced bubble with a dynamic price path may emerge. Higher prices increase the prob-
ability that the current asset holders do not find future buyers for even higher prices.
Given this increased risk, today’s buyers demand a higher expected gain from the asset.2

This mechanism drives prices up over time, until the bubble collapses because either the
previously unknown ceiling is hit or the underlying fundamental breaks down (e .g., a
bankruptcy of the issuing firm).3 Importantly, the set up allows for bubbles only under
certain circumstances. Depending on the interaction of limited liability, uncertainty about
the market size, riskiness of the asset and the interest rate on an alternative safe asset the
prerequisites for bubbles can be fulfilled or not. This stands in contrast to previous mod-
els, in which bubbles always exist if the ceiling in the market is unknown, or are always
ruled out if this ceiling is known (Brunnermeier, 2008). In these kinds of models, no
comparative statics and policy implications can be derived.

Since the model allows us to derive conditions under which bubbles can exist, we can also
test several policies that could prevent bubbles. This is particularly important, since in
the model bubbles harm the welfare of market participants. One of the widely-discussed
possible policy measures is a cap on bonuses. We find that a system that reduces the bonus
payments but keeps their proportionality to investment success could actually backfire and
make bubbles possible. A maximum cap on bonuses, on the other hand, can effectively
prevent the emergence of bubbles. Similarly, a financial transaction (’Tobin-’) tax can
create the possibility of bubbles if levied on all forms of financial assets. On the other
hand, if it is imposed on the risky asset only, it can effectively prevent the emergence
of bubbles. Also a monetary policy rule that takes asset price inflation into account,
as discussed in Bernanke and Gertler (2001), can render bubbles impossible. Finally,
mandatory long-term compensation and/or capital requirements fulfill the same purpose.

2Note that this result does not require heterogenous traders or asymmetric expectations. This differenti-
ates the models from Allen, Morris, and Postlewaite (1993), in which private information can drive a price
above its fundamental value, and those of Scheinkman and Xiong (2003) and Bolton, Scheinkman, and
Xiong (2006), who assume that buyers of an asset hope to sell it to overoptimistic agents in the next period.
This is only possible in case of heterogenous beliefs. Note that different to our model, the latter paper is con-
cerned with executive compensation, as Calcagno and Heider (2007). Allen and Gorton (1993) show that
asymmetry of information between investors and heterogenous managers can lead to deviations of prices
from fundamentals. The model of Brunnermeier and Abreu (2003) relies on dispersed opinions. Together
with coordination failure, they can trigger bubbles. In this context, Froot, Scharfstein, and Stein (1992)
analyze which information can influence trading, potentially leading to herding equilibria. Allen, Morris,
and Shin (2006) analyze the role of higher-order expectations if traders have asymmetric information.

3Referring to the dot-com bubble, Brunnermeier and Nagel (2004) provide evidence that hedge funds
were riding the bubble, a result similar to a previous finding by Wermers (1999). They relate this to, among
others, a short-term horizon of the managers. This is in line with our model. Here, riskiness and herding are
no opposites, such that the argument of Dass, Massa, and Patgiri (2008)—high-powered incentive schemes
will induce managers to break out from herding—does not apply.
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The remainder of this paper is organized as follows. Section 2 introduces the model. Sec-
tion 2.2 constructs a steady-state (rational expectations) equilibrium price process. Sec-
tion 3 constructs a simple example of a non steady-state (rational expectations) equilib-
rium price process, which we call a bubble. We give a necessary and sufficient condition
for the existence of such example-bubbles. In section 4, we show that this very condi-
tion is necessary and sufficient for the existence of bubbles in general. This condition
lends itself to basic policy analysis, done in section 5 by discussing several policy mea-
sures. Some measures require a slight generalization of the model. In the same section,
we show that bubbles are welfare reducing. While all other sections take the managers’
compensation scheme as given, we consider one (of possibly many) ways to endogenize
bonus payments in section 6. Section 7 concludes. All proofs are in the appendix.

2 The Model

2.1 Setup

Consider an infinite horizon economy with overlapping generations of two types of agents,
investors and fonds managers. In each period, a continuum of measure N investors is
born, each with an endowment of 1 dollar. Investors die in the next period. They consume
only in the period they die. Investors cannot participate in the financial market. There is a
continuum of fonds managers (short: managers), and in order to invest in bonds or stocks,
each investor needs to employ one of these manager. Since the number of managers is as-
sumed to be unlimited, an investor will always find a manager to handle her wealth. Each
manager can handle the funds of one investor only. The manager is compensated by a lin-
ear scheme with limited liability. Her compensation can consist of a success-depending
bonus and a base salary S. Earning a yield y, she receives max{α(y − β); 0} + S, with
α ∈ [0; 1] and β, S ≥ 0. So if a manager invests 1 dollar into an asset at price pt and the
price rises to pt+1, she receives max{α(pt+1/pt−β); 0}+S. The contract will be treated
as exogenous within this section and will be endogenized in section 6. Note that this for-
mulation encompasses different set ups. For example, debt-financed, non-intermediated
investments would correspond to α = 1, and β corresponding the interest rate on the debt.
S might be negative due to the potential purchase of a credit-default swap.

There are two assets, safe assets (bonds) of unlimited supply and a single risky asset. The
safe bond bears a net interest of r. The risky asset can be interpreted as the shares of a
firm. This firm pays total dividends of d each period.4 However, in each period, there is a
probability 1−q that the firm will go bankrupt and cease to pay dividends forever. Hence,
the time of bankruptcy is determined by a Poisson process. The total amount of shares of

4One may also interpret the asset as real estate. If the house is let, then d is the rent per period.
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the firm is normalized to 1. The risky asset is traded in each period. Its price follows a
time-discrete stochastic process {pt}t≥0.

The number of investors N is unknown ex-ante. It follows a Pareto Distribution, with the
density f(N) = γ N γ

0 /N
1+γ and the distribution function F (N) = 1−N γ

0 /N
γ (both for

N > N0). Here, N0 is some lower bound on the number of investors, and γ is a shape
parameter. The smaller γ, the more uncertainty exists about the number of investors, the
thicker is the tail of the distribution. In fact, the mean of the distribution is μ = N0

γ
γ−1

for γ > 1, and μ = ∞ for γ ≤ 1. The standard deviation is given by σ = N0
1

γ−1

(
γ

γ−2

)1/2
for γ > 2, and σ = ∞ for γ ≤ 2. The following figure 1 shows the distributions and
density functions for N0 = 20 and shape parameters γ = 2 (dashed) and γ = 4 (solid).5

For γ → ∞, we get the limiting case of a known number of investors.

Figure 1: Pareto Density and Distribution Functions
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2.2 The Steady-State Price

Consider the following simple stochastic process. The price of the asset is a constant,
p̃t = p̄. Only if the underlying firm goes bankrupt (with probability 1 − q) and cash
ceases to flow, the price drops to p̃t = 0. Hence, the price follows a very simple binomial
process with Prt{p̃t+1 = p̄|pt = p̄} = q. The zero is an absorbing state. Let us derive the
price p̄ for which this process can be a rational expectations equilibrium.

5In fact, we would only need the assumption that the upper tail of the distribution of potential market
participants F (N) can be approximated by a Pareto distribution. The theorem of Pickands, Balkema and de
Haan states that this assumption holds for a large class of distributions (see Embrechts, Klüppelberg, and
Mikosch, 2008). For our purpose, the Pareto distribution has the important feature that the probability to
exceed a threshold N , conditional on that we exceed N −ΔN , does not approach zero as N → ∞. In fact,
(1− F (N))/(1 − F (N −ΔN)) = ((N −ΔN)/N)γ → 1 as N → ∞.
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In a market equilibrium, prices must be such that the managers’ compensation is the
same for storage and for the risky asset. If the manager stores, the compensation is
max{0; α (1 + r − β)}+ S = α (1 + r − β) + S, assuming for now that β ≤ 1 + r.6 If
the manager buys shares of the firm at a price pt = p̄, she benefits from the dividend with
probability q. She thus earns d/pt with probability q. If the firm does not pay a dividend,
the price drops to zero. Otherwise, the price remains at p̃t+1 = p̄, and the manager gets
additionally p̃t+1/pt = p̄/p̄ = 1 from selling the asset. This stochastic process is depicted
in figure 2 (with parameters γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%).

Figure 2: A Binomial Price Process
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Given this price process, a date-t-manager’s expected compensation is

Etmax
{
0; q α

( p̃t+1

pt
+
d

pt
− β

)}
+ S (1)

In the market equilibrium, managers must be indifferent between the asset and storage,
hence

α (1 + r − β) + S = Et max
{
0; q α

( p̃t+1

pt
+
d

pt
− β

)}
+ S. (2)

Since the left-hand side is positive, we get

α (1 + r − β) + S = q α
( p̄+ d

p̄
− β

)
+ S. (3)

The steady-state price p̄ is above the fundamental value of the asset that would obtain if
investment were not delegated to managers, denoted by p := d q/(1− q + r).

p̄ =
d q

(1− β) (1− q) + r
. (4)

6This assumption is confirmed for an endogenized contract in section 6.
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If β = 0 or if q = 1, the two prices are equal, p = p̄. The effect that managers with
limited liability push up prices of risky assets above their fundamental value has been
analyzed before by Allen and Gale (2000). Like Allen and Gale, we find that an increase
in uncertainty (i.e. a higher q), keeping the fundamental value constant, drives the steady-
state price p̄ up.

Remark 1 Keeping the fundamental value constant, the steady-state price of a riskier
asset is higher above its fundamental value.7

Let us make one important clarification. In the above numerical example, the fundamental
value is p = 6.33, but the steady-state price is p̄ = 9.05. This price deviation is due to
the limited liability of managers. However, it is a static deviation, which is driven by
fundamentals (q, d, and r) and the managers compensation package (β and α, where
α is irrelevant). The price deviations is hence driven by fonds managers’ expectations
about future risk (q) and dividends (d), but not on their expectations about future price
developments. The deviation is constant over time and cannot burst, such that its existence
is less interesting from a financial stability perspective. Nevertheless, this deviation can
magnify price movements. By contrast, the bubble described in the following is dynamic
by nature. It can be sustained only if the price is expected to keep on increasing in the
future. Price deviations will be fueled by the expectation that in the future, other managers
will buy at an even higher price (if the bubble has not burst until then).

3 An Example for a Bubble

Assume that the price pt is above p̄ at some date t. The only conceivable reason to
buy is that managers expect the price to rise even further, at least with some probability.
Otherwise, as shown above, it would be a dominant strategy for managers to store rather
than to invest in the asset. However, a price increase to some pt+1 > pt could also require
more liquidity than investor’s aggregate endowment. In this case, the price would hit a
ceiling, no more price increase will be expected, and the bubble would have to collapse
back to p̃t+1 = p̄. Alternatively, if the underlying firm goes bust, the price will drop to
p̃t+1 = 0. As a consequence, the simplest process that can exhibit a bubble is trinomial.
Let us hence look at a process with

p̃t+1 =

⎧⎨
⎩

0, with probability 1− q
p̄, with probability q −Qt

pt+1, with probability Qt

(5)

7The proofs for this remark and all propositions are in the appendix.
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with Qt ≤ q. Note the notational difference between p̃t+1 and pt+1. p̃t+1 is the stochastic
price at date t+1 that can assume three different values. pt+1 is the largest of these values,
pt+1 > p̄ > 0. A possible price process is depicted in figure 3 (with parameters as above).
The process starts at some price p0 > p̄, and the bubble potentially grows further and
further. However, it can hit the ceiling N at any time and burst. N cannot be pictured in
the figure, since it is unknown. The ceiling will be hit with probability 1, but the date at
which the bubble bursts is (and must be) unknown.

Figure 3: A Trinomial Price Process with a Bubble
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For a price increase from pt to pt+1, the probability of a continuation (non-collapse) of
the bubble is

Qt = q
1− F (pt+1)

1− F (pt)
= q

Nγ
0 /p

γ
t+1

Nγ
0 /p

γ
t

= q pγt /p
γ
t+1. (6)

Hence, q is the probability that a firm continues to operate, and Qt is the probability that
the firm’s asset price continues to rise. The probability that the bubble just bursts although
the firm is still solvent is thus 1−Qt − (1− q) = q −Qt.

If the share price falls because the firm is insolvent, then the price will drop to zero and
no dividends will be paid. The payment to the manager is then

α max

{
0

pt
+

0

pt
− β; 0

}
= 0. (7)

If the share price falls because a bubble bursts, the price will drop to p̄, and dividends will
still be paid. The payment to the manager is then

α max

{
d

pt
+
p̄

pt
− β; 0

}
= α max

{
d+ d q

(1−β) (1−q)+r

pt
− β; 0

}
. (8)
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This implies that, if the price is only slightly above the steady-state price p̄ (hence the bub-
ble is small), the manager will earn a bonus even when the bubble bursts. The according
condition is

pt < p̂ :=
(
1 +

d q

(1− β) (1− q) + r

)/
β. (9)

Otherwise, the manager gets nothing if the bubble bursts. Let us start with discussing the
second case. If she invests in the risky asset, she gets a bonus with probability Qt. Then
a modified version of (3) must hold,

α (1 + r − β) + S = Qt α
(
(pt+1 + d)/pt − β

)
+ S,

= q
( pt
pt+1

)γ

α
(
(pt+1 + d)/pt − β

)
+ S,

1 + r − β

q
=

( pt
pt+1

)γ
(
pt+1

pt
+
d

pt
− β

)
. (10a)

If, on the other hand, pt is below p̂ such that (9) is satisfied, another version of (3) must
hold,

α (1 + r − β) + S = Qt α
(
(pt+1 + d)/pt − β

)
+ (q −Qt)α

(
(p̄+ d)/pt − β

)
+ S,

1 + r − β

q
=

( pt
pt+1

)γ pt+1

pt
+
(
1−

( pt
pt+1

)γ) (
p̄

pt
+
d

pt
− β

)
. (10b)

Equations (10a) and (10b) respectively implicitly determine a price process in a rational
expectations equilibrium. To be precise, let f(pt+1, pt) be defined as the right-hand side
minus the left-hand side of equations (10a) and (10b), depending on whether (9) holds.

Definition 1 A rational-expectations equilibrium is a path of prices {pt}t≥0 and transi-
tion probabilities {(q, Qt)}such that for Et[f(pt+1/pt)|(q, Qt)] = 0 for all t ≥ 0.

For any given p0 > p̄, (10a) (or 10b) implicitly define p1, and (6) defines the according
Q0, so all variables for p̃1 in (5) are defined. Then starting from p1 in a next step, (10a)
(or 10b) and (6) define p2 and Q1, so p̃2 is defined. Following this procedure defines the
complete process recursively. One such process is shown in the above figure 3.

However, equations (10a) and (10b) do not necessarily have a solution for any set of
parameters. The higher the potential future price pt+1, the likelier it is that the ceiling N
is hit and the bubble will burst. The likelier a bursting of the bubble, however, the higher a
potential price increase must be in order to compensate managers for the risk they face. A
multiplier effect evolves. This feedback does not necessarily reach an equilibrium price
pt+1 for all t. As a consequence, a bubble can burst with certainty at some date t, and
Qt = 0. If the bubble cannot be sustained at date t + 1, managers will anticipate this

8



already before, and a backward induction argument shows that the bubble will not be
sustainable right from the start. An example is given in figure 4 (with r = 20%, all other
parameters as above). At date 7, the price has risen too high, i. e. above the dashed line,
and the bubble can no longer be sustained. Consequently, the according initial price p0
cannot be part of an rational expectations equilibrium process in the first place.

Figure 4: A Trinomial Price Process with a Non-sustainable Bubble
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We are interested in conditions under which a bubble can or cannot be sustained. In order
to be sustainable, the implicit equations (10a) and (10b) must have a solution for any date
t. Rewrite (10a) and (10b), defining the auxiliary variable φt = pt+1/pt as the relative
price increase,

φγ
t

1 + r − β

q
= φt +

d

pt
− β for pt > p̂, (11a)

φγ
t

1 + r − β

q
= φt + (φγ

t − 1)
p̄

pt
+ φγ

t

( d
pt

− β
)

otherwise. (11b)

The value of pt+1 = φt pt is implicitly defined by (11b) if pt < p̂, and otherwise by (11a).
The right-hand side of the equation is always the same, the left-hand side is depends on
the starting point pt. The following figure 5 shows the right-hand side (thick), and the
left-hand side for a couple of parameters. First, pt = p̄ < p̂. In this case, the right-hand
side of (11b) becomes φt+(φγ

t −1)+φγ
t

(
d/p̄t−β

)
. From the figure, one can see that the

only intersection with the thick curve is at φt = 1, which implies that pt+1 = φt pt = pt,
hence there is no price increase. Starting with pt = p̄, we are of course in the steady state,
and the price does not change over time. There is no bubble.

But if the initial price is slightly above p̄, the curve bends downward, implying that it
intersects with the curve at some φt > 1. In the next period, the price will be higher still,
and hence the intersection φt+1 will be even higher. A bubble emerges, and the speed
φt = pt+1/pt increases with time. When the price pt = p̂ is reached, the right-hand sides
of (11a) and (11b) are equal, and we are at the dashed line in the figure. The intersection
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Figure 5: Possibility of a Bubble
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is again at some φt > 1. This implies that the price will increase even more, resulting
in a further parallel shift downwards of the line. For an infinite price pt, the limiting line
q(φ − β) is reached. From the figure, one can see that the intersection point moves right
as pt increases. As a result, over time (with increasing pt), the bubble becomes less and
less stable, the probability of a burst increases.

Remark 2 In a bubble process, the relative price increase φt = pt+1/pt grows over time,
Qt falls over time, and the bubble becomes less stable.

As a consequence, in order to show that a bubble can be sustained in a market, it suffices
to consider large prices pt. Hence, we may concentrate on the case pt > p̂. In the limit
pt → ∞, equation (11a) simplifies to

φγ (1 + r − β) = q (φ− β). (12)

The equation does not depend on time, so we have dropped the index t. If (12) has a
solution for φ, the according market can sustain a bubble. For arbitrarily high prices pt,
there is always a price pt+1 that is high enough to make fonds managers buy at date t. If
(12) does not have a solution for φ, then there is exists a price pt that is so high that a
further increase is impossible. Nobody will buy, and the bubble will burst. Hence, using
backward induction, the bubble cannot get started at date t = 0. The only possible initial
price is then p0 = p̄.

Numerical Examples. Unfortunately, this innocent looking equation (12) has no closed-
form solution for φ. Because γ > 1, the left-hand side of (12) exceeds the right-hand side
for large φ. The above figure 5 shows the left and right side of (12) for the numerical
example γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%. There is a solution at φ = 1.21
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(and, for completeness, another at φ = 3.54).8 Let us briefly explain this number. For
these parameters, (3) yields p̄ = q/

(
(1 − β) (1 − q) + r

)
= 9.05. Hence, the minimum

asset price would be much above the fundamental value of q/(1−q+r) = 6.33. However,
a price of 9.05 would be stable. Each period, with probability 1− q = 5%, the firm would
stop to pay dividends, in which case the price would drop to zero.

Now if, as a zero probability event, the price of the asset moves above p̄ = 9.05, this new
price is the starting point of a bubble. Figure 3 shows a bubble that starts at p̄+0.8 = 9.85.
At the starting point of the bubble, the probability of a burst is 1−Q = 1−q (pt/pt+1)

γ ≈
5.7%, only slightly above 1 − q = 5%. In later periods, pt+1/pt converges towards
1.21, as calculated above. The probability of a burst then converges towards 1 − Q =
1−0.95 (1/1.24)2 ≈ 34.7%. The bubble can burst for two reasons. First, as a fundamental
reason, the underlying firm can go bankrupt. Second, as a financial reason, the resources
in the market can be exhausted. Figure 3 shows these two possible developments of
the market. The black curve starts with the steady-state price of 9.05. The price never
increases. With probability 1− q = 5%, the price drops to zero, but otherwise it remains
stable. The gray curve starts slightly above the steady state price at p = 9.25. This price
can only be rational if further price increases are expected.

In another numerical example, let us see what happens if a bubble is not sustainable.
Setting r = 20% (and letting all other parameters unchanged), we get the following
figure 6. Here, because of the higher interest rate, p̄ drops to 4.63 (the dashed and the
curved line are higher). There is no solution for equation (12), so a bubble cannot be
sustainable. One can calculate the maximum price pt for which (11a) has a solution,
namely at pmax = 9.23 (upper dashed line). If pt > 9.23 at some date, then pt+1 does not
exist. In a bubble, prices need to rise, hence the price will reach pmax at some time and
the bubble is not sustainable.

Figure 4 uses this parameter constellation. The price in the bubble rises. At date t = 7, it
rises above pmax = 9.23, so the bubble will bust no later than t = 8. Backward induction
yields that the bubble cannot get started in the first place. The only possible price path is
the steady state, with a price of p̄ = 4.63.

Existence of Trinomial Bubble Processes. The above numerical examples in figures 3
and 4 seem to suggest that lower interest rate levels support bubbles, whereas higher
interest rates can punctuate a bubble. Reassuringly, this is perfectly in line with traditional
intuitions of bubbles.

8There are at most two solutions to (12) with φ ≥ 1 (values of φ < 1 would stand for bubbles with
falling prices and, formally, negative probabilities of a burst). We do not consider the high solution in the
following since the corresponding equilibrium is unstable. Note that a situation in which the straight line is
above the curved one in figure 5, φγ (1 + r − β) < q (φ − β), implies a low probability of a burst relative
to the expected gains. Hence, the price is driven up (φ falls) and we move to the left. The same argument
holds for the opposite case, driving φ up. Thus, only the lower equilibrium is stable.
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Figure 6: Non-Existence of Bubbles
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Let us now analyze more generally under which conditions bubble processes can exist.
Looking at figure 5, one can see that the solution may cease to exist if the gray line does
no longer intersect with the black curve, like in figure 6. A general condition is given in
the following proposition.

Proposition 1 The market can develop a trinomial bubble process if and only if β >
(γ − 1)/γ and

γγ
( β

γ − 1

)γ−1

≤ q

1 + r − β
, (13)

that is, for large q, small r, small γ or large β.

The parameter γ captures the uncertainty in the market. The smaller γ, the larger are
mean and variance of the distribution, the more uncertain is the potential market size. For
γ ≤ 1, the mean is infinite, and for γ ≤ 2, the variance is infinite. The parameter N0 does
not appear in the analysis, which shows that for the existence of a bubble only the shape
of the upper tail matters. The smaller γ, the more likely a bubble can be sustained.

In the extreme case of γ → 1, the expected market size becomes infinite, and γγ (β/(γ −
1))γ−1 → 1. Hence, a bubble can emerge if q > 1+ r− β. On the other hand, if γ → ∞,
the market size is almost certainly N0, and a bubble can never be sustained, independent
of the sizes of other parameters. This is the traditional backward induction argument of
Tirole (1982).

The larger the interest rate r, the less likely is the possible existence of a bubble. This is
in line with the intuition that central banks can punctuate bubbles by increasing interest
rates, and that bubbles are more likely to emerge it interest rates are low.

Bubbles can exist especially if q is high, that is, if the underlying asset is rather safe. This
seems to be in line with the recent housing bubble in the U. S. and other countries. Real
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estate itself has a bankruptcy probability of almost zero, thus q ≈ 1.9 Hence, as argued
above, the difference between the fundamental value p and the steady-state price is higher
for more risky assets, but the likelihood that a bubble emerges is larger for rather safe
assets.

Finally, the parameter β describes how steep the incentive schemes of managers are. The
larger β, the later the bonus payments to the manager kick in, and the higher is the power
of the contract, and the more prominent is the effect of the limited liability of the manager.
Hence, we have the result that the emergence of bubbles becomes more likely when fonds
manager compensation is higher powered. The following figure 7 summarizes all these
observations for the case γ = 2. Condition (13) then implies that β > (γ − 1)/γ = 1/2,
hence β > 0.5 in the figure. For parameters below the surface, bubbles are feasible.

Figure 7: Feasibility of a Bubble

4 Bubbles in General

We have argued that a very special kind of a bubble process, the trinomial bubble, exists
if and only if (13) holds. We now make this result more general by showing that, if (13)
fails to hold, the only rational expectations equilibrium process is the non-bubble process
with price p̄. With other words, bubble processes in general exist if and only if (13) holds.
The argument is simple. A trinomial bubble does not exist if the curves in figure 6 do not
intersect, i.e. there is not solution for φ and hence prices in the bubble eventually increase

9If real estate is seen as a risky investment, then mainly because real estate prices can be driven away
from fundamentals, not because real estate is inherently risky.
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too fast to be sustainable. But any other bubble, not necessarily trinomial, would have to
allow for prices to increase at least as fast as in a trinomial bubble. So if, for a given set
of parameters, no trinomial bubble path exists, no bubble can exist at all.

Proposition 2 In a rational expectations equilibrium, a price process can exhibit a bub-
ble if and only if β > (γ − 1)/γ and

γγ
( β

γ − 1

)γ−1

≤ q

1 + r − β
, (14)

hence if (13) holds.

This is the main result of our paper. If the condition holds, there are multiple rational
expectations equilibria, including bubble equilibria. If the condition does not hold, there
is only one steady-state (non-bubble) equilibrium price process. There are no bubbly
equilibria, neither trinomial nor of any other shape.

5 Policy Measures

In this section, we examine whether certain policy measures that have been suggested in
the public debate can prevent the creation of bubbles in our model. Specifically, we look
at an asset-price augmented Taylor rule, caps on bonuses, mandatory long-term compen-
sation, a financial transaction (Tobin-) tax, and capital requirements.

5.1 An Augmented Taylor Rule

We have already seen that a central bank can punctuate a bubble by increasing interest
rates. Let us now analyze the impact of a preannounced interest rate increase in the case of
a bubble, following a Taylor rule that takes asset price inflation into account. Specifically,
assume a version of the rule used in Bernanke and Gertler (2001),

rt = r̄ + ψπ (πt − π̄) + ψ (pt/pt−1 − 1), (15)

where πt is gross consumer price index (CPI) inflation, and pt/pt−1 asset price inflation
of the only asset in the economy as defined above. For now we neglect the influences
of asset price inflation on CPI inflation by setting CPI inflation equal to its target rate π̄.
The target rate of asset price inflation is assumed to be one. As in the above analysis, in
a bubble, pt+1/pt converges towards a constant φ. Inserting (15) in equilibrium into (12)
yields

φγ
(
1 + r̄ + ψ (φ− 1)− β

)
= q (φ− β). (16)
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as a necessary condition for a bubble to emerge. Like for (13), we can derive a condition
for parameters r̄, ψ, β, γ and q, determining whether (16) has a solution for φ. Unfortu-
nately, the condition is algebraically complex. An equilibrium exists if and only if

q(φ−β) ≥ φγ
(
1 + r̄ + ψ (φ− 1)− β

)
with

φ =
1

2ψ γ

(
1− β − γ)(1− ψ) + r̄ + βγ − r̄γ + βγψ

+
√(

r̄+(1−β)(1−ψ))((1−γ)2(1+r̄−ψ)−β((1+γ2)(1−ψ)− 2γ(1+ψ))
))
.

The following figure 8 shows parameters r̄ and ψ for which bubbles can exist, for γ = 2,
β = 0.9 and r = 10%. The figure shows that, in order to prohibit the emergence of
bubbles, a regulator (central bank) can either raise the interest rate r, or threaten to raise
interest rates in the future if a bubble should occur by committing to a Taylor rule with
positive ψ. If the central bank opts for the Taylor rule, it never actually needs to raise
interest rates: interest rates increases occur only as a consequence of asset price move-
ments, but because of the credible announcement of this policy (with a sufficiently large
ψ), asset prices do not rise and bubbles are prevented. This argument shows that an aug-
mented Taylor rule can cause less distortions than direct interest policies. However, if the
central bank cannot differentiate between price movements due to bubbles and changes in
the underlying fundamentals (such as the probability of bankruptcy 1− q), it faces a trade
off between preventing bubbles and the risk of unnecessarily moving the interest rate in
times without bubbles. A thorough examination of this trade off would require a fully
specified DSGE model, which is beyond the scope of this paper.

Remark 3 Monetary policy that systematically reacts to asset price increases can prevent
bubbles.

5.2 Caps on Bonuses

The bonus payment to a manager is B = α
(
(pt+1 + d)/pt − β

)
if the underlying asset

continues to pay off (probability q) and, if there is a bubble, it does not burst (probability
1−Q). Absent a bubble, this bonus payment is a constant. In a bubble, it equals α

(
φt +

d/pt − β
)
. Let us first ask whether a potential cap on this bonus would bind in the early

life of a bubble, hence potentially deterring a bubble from emerging in the first place, or
whether it would bind in the later stadium of a bubble. In the latter case, the bubble would
have to bust with probability 1 at some date t̄, so a backward induction argument would
show that the bubble could not have existed in the first place.

In the term for the bonus payment, φt increases over time, but d/pt decreases. In the
aggregate, due to (11a), we have

Bt = α
(
φt + d/pt − β

)
= αφγ

t (1 + r − β)/q.
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Figure 8: Effects of the Taylor Rule
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Hence, bonuses increase over time in a bubble, and caps on bonus payments would be-
come binding in later stages of a bubble. As a consequence, we can concentrate on large
prices pt, so that φt becomes a constant, and the maximum bonus is

B = α
(
φ− β

)
= αφγ (1 + r − β)/q.

Now assume that the regulator puts a cap B̄ on the bonus.

There are two ways the regulation can be implemented. First, the compensation scheme
could be adjusted such that bonuses above B̄ are less likely to occur, for example by
reducing α or increasing β. However, α does not have an effect on the existence of
bubbles, and an increase in β would forward the emergence of bubbles. Hence, this
policy would backfire and make bubbles more likely.

Second, one could adjust the compensation to min{max{α (
(pt+1 + d)/pt − β

)
0}; B̄}.

Then, the bubble will burst with certainty at some point of its life if α
(
φ−β) > B̄, hence

if φ > B̄/α + β. Consequently, for a given compensation scheme with parameters α and
β, a cap on bonus payments B̄ will punctuate a bubble if B̄/α + β < φ, with φ defined
by (12).

The implicit function theorem shows how φ depends on other exogenous parameters. For
example, dφ/dr > 0. To see this, define the term T = φγ (1 + r − β) − q (φ − β),
which is zero due to the implicit equation (12) for φ. The derivative ∂T/∂r is positive,
the derivative ∂T/∂φ must be negative if we concentrate on the most moderate price path.
Consequently, dφ/dr > 0. This proves the following remark.

Remark 4 Increasing interest rates and caps on bonus payments are substitutional reg-
ulatory instruments.
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Along the same line, ∂T/∂q < 0, hence dφ/dq < 0. A larger q can be identified with more
conservative investments. For example, if the assets were securitized mortgages, then a
high q would stand for the prime market, and a lower q would represent the subprime
market. Then a cap on bonus payments would be more likely to be effective on the
subprime segment. More generally, the following result would hold.

Remark 5 Caps on bonus payments are less effective in deterring bubbles in conserva-
tive fields of investment.

5.3 Other Measures

Long-term Compensation. In the recent political discussion, it has often been argued
that managers’ incentives should be made more sustainable, such that managers concen-
trate more on long-term goals and avoid short-termism. The same argument might be true
for the fonds managers in our model. To analyze this question, let us assume that the man-
ager receives max{0; α (y − β)} as before, but that she is liable with her compensation
for potential future losses. Hence, she will get nothing if the yield is negative in the next
period. In a steady state, the market price will then be

α (1 + r − β) = q2 α
(
(pt + d)/pt − β

)
,

pt = p̄ :=
d q2

(1− β) (1− q2) + r
,

i.e. smaller than without long-term liability. If a bubble exists, the probability that the
bubble does not burst after two periods is

Q = q2 pt/pt+2 = q2/φ2γ .

As a consequence, the one-period price increase φ is determined by

α (1 + r − β) = Qα
(
φ− β

)
= q2/φ2 γ α

(
φ− β

)
,

φ2 γ (1 + r − β) = q2
(
φ− β

)
.

The equation is similar to (12), only that γ is substituted by 2 γ, and q is substituted by q 2.
Because bubbles exist especially for small γ and large q according to proposition 1, we
find that long-term liability prevents the existence of bubbles. For an even longer liability
period, the effect would be even larger.

Remark 6 If fonds managers are liable for future developments with their bonuses, bub-
bles become less likely.
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Financial Transaction Tax. There are different possibilities how to implement a so
called Tobin tax. We concentrate on the implementations that affect the incentives of the
manager, and therefore alter the probability of the emergence of bubbles. We denote the
tax on the safe asset with t, while the potentially different tax on the risky asset is t ′.
Under such a tax regime, the no-arbitrage condition (12) changes to

φγ [(1− t)(1 + r)− β) = q [(1− t′)φ− β]. (17)

The modified condition for the existence of bubbles is then

γγ
( β

γ − 1

)γ−1

≤ q(1− t′)
(1 + r)(1− t)− β

. (18)

The derivative of the above expression with respect to t′ is positive, i. e. increasing the tax
on transactions of the risky asset can make bubbles impossible. It is important, however,
how the tax is implemented. If it is levied on all financial assets, including the safe one,
t equals t′ and the derivative of the above equation with respect to the tax turns negative.
In such a case the possibility of bubbles can be created by the Tobin tax.

Remark 7 If the financial transaction tax is levied only on the risky asset, bubbles be-
come less likely. If, however, it is placed on the safe and the risky asset alike, bubbles
become more likely.

Capital Requirements. We have already argued that our fonds managers can be many
kinds of financial intermediaries, for example banks. In this case, capital regulation would
be the most prominent policy tool. Our model suggests that capital requirements, among
other things, have the effect of preventing bubbles. The reason is straightforward. If our
fonds manager is a bank, then pure equity finance would mean β = 0 and a rather low
α, whereas pure debt finance would imply a high β and α = 1. Hence the more equity
capital a bank holds, the lower are β and α. According to proposition 1, the lower β can
foreclose the emergence of bubbles.

Remark 8 Capital requirements can also prevent bubbles.

In this subsection, the contract parameters α and β were treated as exogenous variables.
However, more realistically these variables will be set optimally by the investor, who de-
signs the contract. Therefore, we endogenize the compensation package in the following
section.
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5.4 Welfare

In order to justify any policy measure for the prevention of bubbles, it is necessary to
analyze the welfare effect of bubbles. We assume that all agents are risk neutral and have
identical utility functions, ui

t = cit−1 + ρ cit for agent i, who is born at date t − 1 and
consumes at date t. The discount factor ρ must satisfy 1/ρ ≤ 1 + r, otherwise agents
would not even have an incentive to invest into the riskfree asset. As a consequence,
cit−1 = 0. Taking ρ also as the inter-generational discount factor, we can write

E0W = E0

∞∑
t=0

∑
i

ρtuit =

∞∑
t=0

ρtE0Ct,

where Ct is aggregate expected consumption at date t. Payments between managers and
investors in the same generations are mere transfers and do not directly enter the welfare
function. Now, absent a bubble, the price of the asset is always p̄. Hence, the generation
that consumes at date 0 earns C0 = p̄ from selling the asset. Generation 1 pays p̄ for the
asset. Because there are N investors, each owning 1 dollar, the aggregate endowment of
generation 1 isN . The investment into the riskfree asset is N − p̄, since p̄ is already spent
on the risky asset. With probability q, generation 1 also gets p̄ from selling the asset, plus
the dividend d. Hence, the aggregate expected consumption of generation 1 is

E0C1 = q (d+ p̄) + (N − p̄) (1 + r).

Generation 2 buys the asset only with probability q; with probability 1 − q the firm is
bankrupt and there is nothing to buy. Hence

E0C2 = q2 (d+ p̄) + (N − q p̄) (1 + r).

The equations for the following generations are similar. Let us now look at the expected
consumption in a bubble. For concreteness, consider the trinomial “example” bubble pro-
cess of section 3. Generation 0 then getsC ′

0 = p0 > p̄ from selling the asset. Generation 1
buys the asset at price p0, but expects the price to rise to p1 with probability Q0, to fall to
p̄ with probability q −Q0, and to fall to 0 with probability 1− q. Hence,

E0C
′
1 = Q0 (d+ p1) + (q −Q0) p̄+ (N − p0) (1 + r),

and so on. Now consider welfare differences,

C ′
0 − C0 = p0 − p̄,

E0(C
′
1 − C1) = Q0 (p1 − p̄)− (1 + r) (p0 − p̄),

E0(C
′
2 − C2) = Q1Q0 (p2 − p̄)−Q0 (1 + r) (p1 − p̄),
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and so forth. Hence the aggregate welfare difference amounts to

E0ΔW = (p0 − p̄) +
∞∑
t=1

ρt
t−2∏
t′=0

Qt′
(
Qt−1

(
pt − p̄

)− (1 + r)
(
pt−1 − p̄

))

=

∞∑
t=0

ρt (pt − p̄)
(
1− ρ (1 + r)

) t−1∏
t′=0

Qt′ ,

which is non-positive if 1 + r ≥ 1/ρ. Consequently, the welfare effect of a bubble is
always negative, and zero only in the limiting case of 1 + r = 1/ρ. Besides the effect of
shifting consumption across generations, total resources are reduced in a bubble because
of the reduced investment in the safe asset—representing a foreign bond, productive cap-
ital or the like.

Alternatively, one can argue the following way. The payments of the risky asset are not
affected if there is a bubble. But in a bubble, at date t, the young generation pays a
price pt higher than p̄ to the old generation born at date t − 1. This is simply a transfer
of wealth between generations, with two consequences. Due to the higher price pt >
p̄, the young generation invests less into the the safe asset, at an opportunity cost of
(1 + r) (pt − p̄). The transfer is carried one period forward, hence it is discounted. But
because the riskfree rate 1 + r exceeds the inverse discount factor 1/ρ, the aggregate
welfare effect is negative. Since bubbles always involve prices above p̄, this argument
proves the following proposition.

Proposition 3 (Welfare) Assume (13) holds, and 1+ r > 1/ρ. Then of all equilibria, the
steady-state equilibrium is strictly welfare-optimal.

A social planner would set the price of the risky asset to zero. However, this is not a
feasible solution in a decentralized equilibrium.

6 Endogenizing the Compensation Scheme

In the above analysis, the parameters of the compensation scheme for the managers, α, β,
and S, are taken as exogenous. In this section we are going to explore which compensa-
tion scheme will emerge endogenously. We assume that the investor is risk averse, while
the manager is risk neutral. The remaining setup is as described in the previous section,
i. e. an investor delegates the investment decision to a manager, whose actions she cannot
observe. Since there are more managers than investors in the economy, the investor can
make take-it-or-leave-it offers to the managers, which maximize the expected profit of the
investor. In doing so, she has to consider the manager’s participation constraint. Letting
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y again denote the revenue generated by the manager, the expected profit of the investor
is then

EtΠ = Ety − Etmax
{
0; α (y − β)

}
− S.

We restrict the parameter α to be lower or equal to unity, since in the opposite case a
higher y can lead to a lower profit of the investor. Put differently, in the extreme a very
high realization of y could lead to bankruptcy of the investor under α > 1. The manager
will only accept the contract if it fulfills

Etmax
{
0; α (y − β)

}
+ S ≥ A, (19)

where A is the outside option of the manger (such as academia). Since there are more
managers than investors, the investor will choose α, β, and S such that the manager will
be at the limit of his participation constraint. This implies that equation (19) will hold
with equality. Inserting this result in the above profit function yields EtΠ = Ety − A.
Hence, the investor maximizes her profit by reaping the complete surplus of the manager.
The relation between S, α, and β can be seen by rewriting (19) as

S = A+Q′ αβ − αφ′ (20)

with

Q′ =
∫ ∞

β

f(y) dy and φ =

∫ ∞

β

yf(y) dy,

where the probability distribution of y is denoted by f(y). The risk-neutral manager is
indifferent between values of S, α, and β, as long as this equation is fulfilled. The risk-
averse investor, however, has an incentive to minimize the variance of her profits in the
different states of the economy. To this end, let us rewrite the expected utility of the
investor as

EtU(Π) =

∫ β

0

U(y − S)f(y)dy +

∫ ∞

β

U (y [1− α] + αβ − S) f(y)dy.

The investor maximizes this expression subject to (20), S ≥ 0, and α ≤ 1. Because of her
risk aversion, she tries to increase the profit in states with a low realization of y, relative
to states with a high y. Therefore she chooses α = 1, S = 0, and resulting from equation
(20)

β =
φ′ − A

Q′ . (21)

The right-hand side decreases, starting from a large number, for β = 0 to minus infinity
for β approaching infinity. Hence, a fixed point can be found. We cannot determine the
probability of a bubble, so let us take the extreme of treating it as a zero-probability event.
In this case, Q′ = q and φ′ = q (1 + r). Equation (21) changes to

β =
(1 + r)q − A

q
< 1 + r.

Hence, we get the following remark.
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Remark 9 A risk-averse investor chooses a loan contract with β < 1 + r.

Importantly, this condition does not contradict (13). Consequently, with endogenous com-
pensation contracts, proposition 2 still applies.

7 Conclusion

In this paper, there are two reasons why the price of an asset may deviate from its funda-
mental value. First, as also analyzed by Allen and Gale (2000), funds managers may drive
up the price of risky assets due to limited liability. This effect is larger for riskier assets.
Second, a funds manager may be willing to spend more than the fundamental value on an
asset because she expects to earn even more when she sells the asset. Such an increasing
bubble is more likely to emerge if the underlying asset is rather safe.

Our theory of bubbles is in line with some anecdotal evidence. During the dot-com bubble
(1998–2001), phantasies about the potential of internet firms were exuberant. Possibly,
the asset prices of these firms were even more exaggerated due to the limited liability of
traders. Hence, the traders’ limited liability let the exuberance appear as through a magni-
fying glass. When expectations became more realistic, assets prices collapsed because the
correction of expectations was again magnified. This complete argument follows the first
explanation, hence it is especially reasonable for risky assets, like the stock of dot-com
firms.

Following the “as-long-as-the-music-is-playing-you’ve-got-to-get-up-and-dance” expla-
nation for the recent U. S. housing bubble, managers bought securities because they thought
they could sell them at a higher price later, driving up prices. This argument follows the
second explanation, hence it is especially reasonable for fundamentally safe assets, like
real estate. Our model can make some proposals how to avoid such bubbles. One can
increase interest rates, implement a Taylor rule that reacts to asset-price developments,
cap bonus payments to fonds managers (if this is done the right way), or introduce capital
requirements for managers (intermediaries). Due to its relative simplicity, the model lends
itself to further discussions. For example, one could consider several assets, and discuss
whether a the collapse of a bubble in one market can be contagious for the other markets.
One could plug bubbles into macro models and look at growth effects. Especially after
the recent burst of the housing bubble, the number of possible applications seems vast.
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Appendix

Proof of remark 1. To see this, assume that d rises and q falls such that the fundamental
value p remains unchanged, hence d = p (1 + r − q)/q. The steady state price p̄ is then

p̄ = p
1 + r − q

1 + r − q − β (1− q)
,

which depends negatively on q. This implies that, for given fundamental value p, the
steady state price p̄ will be higher for more risky assets. �

Proof of proposition 1. We have already argued that the probability that a bubble bursts
increases with t, or with pt. But, because pt is an increasing function, a bubble is sustain-
able if and only if it is sustainable for pt → ∞. Hence, if (12) has a solution for φ, the
bubble is sustainable. Now consider the limiting case, in which the line q (φ− β) and the
curve φγ (1+ r−β) will only just touch. At the touching point, the slopes must be equal,
hence

(1 + r − β) γ φγ−1 = q,

which implies that the touching point is φ = β γ/(γ − 1). This φ must exceed one,
otherwise prices would have to fall in the bubble; consequently β > (γ − 1)/γ, thus the
first condition in the proposition. Substituting the above solution into (12), we find that
the limiting case is reached at( β γ

γ − 1

)γ

(1 + r − β) = q
( β γ

γ − 1
− β

)
.

Some algebra yields (13). This condition is satisfied iff

(1 + r − β) γγ
( β

γ − 1

)γ−1

− q ≤ 0.

The derivative of this term with respect to q is negative, hence the condition is more likely
to be satisfied for large q. The derivative with respect to r is positive, hence (13) holds
rather for small r. The derivative with respect to γ is

(1 + r − β) γγ
( β

γ − 1

)γ−1

log
β γ

γ − 1
.

Now remember that the touching point is φ = β γ/(γ − 1). The above logarithm is
therefore positive, and the complete derivative with respect to γ is positive. A larger γ
makes bubbles less likely. Finally, the derivative with respect to β is

γγ
( β

γ − 1

)γ−1 (1 + r) (γ − 1)− β γ

β
.
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Again, at the touching point φ must exceed 1, hence β ≥ (γ − 1)/γ. For the limiting
β = (γ − 1)/γ, the numerator of the above fraction becomes (1 + r) (γ − 1) − β γ =
−r (γ − 1) < 0. Hence for any β larger than the limiting (γ − 1)/γ, the numerator must
be negative. Thus the whole derivative is negative, and a larger β makes bubbles more
likely. �

Proof of proposition 2. Assume that a price process exhibits a bubble, and that pt > p̄ at
a date t, and p̃t+1 is distributed with distribution F (p̃t+1). Then, in a rational expectations
equilibrium,

α (1 + r − β) + S =

∫ ∞

0

Qt α max
{ p̃t+1 + d

pt
− β; 0

}
df(p̃t+1) + S,

1 + r − β

q
=

∫ ∞

0

h(p̃t+1) df(p̃t+1), where (22)

h(p̃t+1) = max
{ pγt
p̃γt+1

( p̃t+1 + d

pt
− β

)
; 0
}

is an auxiliary function. The pt+1 implicitly defined by (10a) solves this equation for a
distribution that has probability mass only at one point p t+1 (and zero and p̄). The ques-
tion is, from this three-point distribution, can we shift probability mass to other prices,
such that the above (22) still holds? The answer depends on the shape of h(p̃t+1). Some
straightforward analysis shows that h(p̃t+1) is zero up to p̃t+1 = β pt − d, then increases
and decreases again. For p̃t+1 → ∞, it again approaches zero asymptotically. The maxi-
mum of the integral is reached if all probability mass is located at

p̃∗t+1 = γ
β pt − d

γ − 1
> β pt − d.

Hence, a trinomial process with the possible events p∗t+1, p̄, and 0 maximizes the right-
hand side of (22). Shifting probability mass to other parts of h(p̃t+1) reduces the value
of the integral. Note that no bubble can emerge if the left-hand side of (22) is larger than
the right side for any price path. We can therefore conclude that, if no trinomial bubble
process exists, no other bubble process can exist either. On the other hand, if a trinomial
bubble process exists, it is an example for a general bubble process. As a consequence,
(13) is the general condition for the existence of bubble processes in rational expectations
equilibrium. �
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