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Abstract

The pricing kernel puzzle is the observation that the pricing kernel

might be increasing in some range of the market returns. This paper

analyzes the pricing kernel in a �nancial market equilibrium. If mar-

kets are complete and investors are risk-averse and have common and

true beliefs, the pricing kernel is a decreasing function of aggregate

resources. If at least one of these assumptions is violated, the pricing

kernel is not necessarily decreasing. Thus, incomplete markets, risk-

seeking behaviour and incorrect beliefs can induce increasing parts in

the pricing kernel and can be seen as potential solutions for the pricing

kernel puzzle. We construct examples to illustrate the three explana-

tions. We verify the robustness of the explanations under aggregation

and compare the phenomena with the �ndings in the empirical liter-

ature. The results are used to reveal strengths and weaknesses of the

three solutions. Risk-seeking behaviour is a fragile explanation that

can only work in a model with atomic state space. Biased beliefs are

robust under aggregation and consistent with the empirical �ndings.

In incomplete markets, it is easy to �nd a pricing kernel with increasing

parts. In order to get situations where all pricing kernels have increas-

ing parts, we need extreme assumptions on the wealth distribution.
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1 Introduction

A puzzle is a robust empirical observation that seems to contradict standard
theory. In particular, the �eld of Finance is famous for its many puzzles
(see, e.g., Kritzman (2002)). Most famous examples of puzzles in Finance
include the �equity premium puzzle�, �the excess volatility puzzle� and the
�pricing kernel puzzle�. The equity premium puzzle is the observation that
the risk aversion estimated from market data is very high relative to the risk
aversion observed on individual data, e.g., that obtained from laboratory ex-
periments. The excess volatility puzzle is the observation that the volatility
observed in stock market data is very high as compared to the volatility that
results in standard asset pricing models. The pricing kernel is the quotient
of the Arrow security prices and the objective probability measure. It is the
�characteristic function� of an asset pricing model, also called the likelihood
ratio process, that summarizes all relevant asset pricing information. In an
economy with complete markets and risk-averse investors having common
and correct expectations (i.e. all subjective expectations coincide with the
objective probability measure) the pricing kernel is a decreasing function
of aggregate resources, which in Finance are usually proxied by the returns
of the market portfolio. The pricing kernel puzzle is the observation that
however the pricing kernel might be increasing in some range of the market
returns.
From a �nancial equilibrium point of view, most puzzles in Finance result
from a too simplistic choice of the so-called �standard model�. Aggregate util-
ity functions are chosen to be of the same type as individual utility functions.
This is usually justi�ed by Pareto-e�ciency according to which the hetero-
geneity of agents can be aggregated into one representative agent (Negishi,
1960; Constantinides, 1982). Without restricting the degree of heterogene-
ity it is well known that a �nancial equilibrium can generate any arbitrage
free price paths (Mas-Colell, 1977), which holds true for complete and also
incomplete markets. Hence allowing for any degree of heterogeneity neither
the equity premium nor the excess volatility puzzle are really puzzling, inde-
pendent of whether the market is complete or incomplete. This is however
di�erent for the pricing kernel puzzle since with complete markets for no
degree of heterogeneity this puzzle can be explained with risk-averse agents
having correct beliefs. Hence the well-known �anything goes� result of Son-
nenschein, Debreu and Mantel as it was called by Mas-Colell et al. (1995)
has no bite for the pricing kernel puzzle!

In this paper, we explain the pricing kernel puzzle in �nancial markets with
non-concave utilities, incorrect beliefs and incomplete markets. Any of these
reasons can induce increasing parts in the pricing kernel. The paper also
shows that a combination of these independent reasons leads to very simple
and realistic economies explaining the pricing kernel puzzle. Simple exam-
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ples for the three reasons are constructed to illustrate the three phenomena.
We verify the robustness of the explanations under aggregation and compare
the phenomena with the �ndings in the empirical literature. The results are
used to deduce strengths and weaknesses of the explanations.
Risk-seeking behaviour is a model-dependent and fragile explanation and
there is no theoretical justi�cation for risk-seeking behaviour on the aggre-
gate level. In order to be able to analyze the e�ect of incorrect beliefs, we
need to separate di�erent sources for incorrect beliefs as heterogeneity of
beliefs, misestimation and distorted beliefs. While heterogeneous beliefs and
misestimation lead to conceptual problems in measurement, distorted beliefs
refer to a bias in the decision problem of the agents. Heterogeneous beliefs
aggregate in some way and the pricing kernel with respect to the aggregate
belief is decreasing. Distorted beliefs are robust under aggregation and con-
sistent with the empirical �ndings. In incomplete markets, it is easy to �nd
a pricing kernel with increasing parts. In order to get situations where all
pricing kernels have increasing parts, we need extreme assumptions on the
wealth distribution.

In the literature, the pricing kernel is mainly analyzed from the econometric
viewpoint. Researchers have taken great interest in estimating the pricing
kernel. One often-used approach relies on a model of a representative agent
in which the pricing kernel is a parametric function of the aggregate endow-
ment. Stock market data is then used to estimate the parameters. Two
of numerous examples are Brown and Gibbons (1985) and Dittmar (2002).
Hansen and Singleton (1983) additionally use consumption data for the es-
timation. Another approach is based on the no-arbitrage principle. While
the techniques of this approach have become more and more sophisticated,
the basic approach has remained the same. Along the lines of Breeden and
Litzenberger (1978), option data is used to estimate the risk-neutral distribu-
tion. Other methods are used to estimate the historical distribution. Some
examples are Jackwerth and Rubinstein (1996); Aït-Sahalia and Lo (1998);
Jackwerth (2000); Aït-Sahalia and Lo (2000); Brown and Jackwerth (2001);
Rosenberg and Engle (2002); Yatchew and Härdle (2006); Barone-Adesi et al.
(2008); Barone-Adesi and Dall'O (2009). The main observation in that part
of the literature is that the decreasing relation between aggregate resources
and the pricing kernel may be violated. There is an interval usually in the
area of zero return where the pricing kernel is increasing.
In the papers mentioned above, one �nds many hypotheses which are evoked
to solve the pricing kernel puzzle. One hypothesis is mistakes in the es-
timation, such as a faulty estimation procedure for the risk-neutral or the
historical distribution or noisy option data. Jackwerth (2000) studies such
explanations. Simulation studies in Chabi-Yo et al. (2007) suggest to explain
the puzzle by regime switches of the prices for the underlying of the �nancial
markets. Behavioral explanations have also been put forward. Many em-
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pirical studies state that the increasing pricing kernel is strong evidence for
risk-seeking behaviour of the representative agent. Shefrin (2005) explains
the puzzle using a model with heterogeneous beliefs. Ziegler (2007) tests
this explanation and concludes that the degree of heterogeneity required to
explain the puzzle is implausibly large. More recently, distorted beliefs are
used in Polkovnichenko and Zhao (2009). Härdle et al. (2009) transferred
the regime switching explanation to a microeconomic perspective and sug-
gest state dependent utilities as an explanation for the puzzle. Our paper
gives a simple unifying framework of a �nancial market in which all of these
hypotheses can be analyzed and compared. The general idea of our paper
is that trade in �nancial markets leads to phenomena di�erent to those ex-
pected from individual portfolio optimization.
The paper is organized as follows. In Section 2, we introduce the model
and we de�ne our notation of a �nancial market equilibrium. Section 3 con-
siders the case of risk-averse agents having true and common beliefs in a
complete market. Section 4 is devoted to the study of the case of partially
risk-seeking agents. Section 5 provides a detailed exposition of the case that
risk-averse agents have incorrect beliefs. In Section 6, we look more closely
at the problem in incomplete markets. Section 7 presents a simple example
which combines incomplete markets and heterogeneous beliefs. Finally, Sec-
tion 8 concludes the main results. In an e�ort to keep clear the main lines of
the argument, some of the drier mathematical calculations are placed in ap-
pendices. For standard results in �nancial theory, the corresponding results
in Magill and Quinzii (1996) are cited as one possible reference.

2 Setup

We consider a two-period exchange economy. Let Ω = {1, . . . , S}, S < ∞
denote the states of nature in the second period. The set F = 2Ω is the power
algebra on Ω, i.e., the set of all possible events arising from Ω. Uncertainty is
modeled by the probability space (Ω,F , P ), where the probability measure
P on Ω satis�es ps = P [{s}] > 0 for all s = 1, . . . , S, i.e., every state of the
world has strictly positive probability to occur.
There areK+1 assets, whose payo�s at date t = 1 are described by Ak ∈ RS .
The asset 0 is the risk-free asset with payo� A0 = 1. The price of the k-th
asset at date t = 0 is denoted by qk. The risk-free asset supply is unlimited
and the price q0 is exogenously given by 1. This assumption does not restrict
the generality of the model as we always may choose the bond as numeraire.
In other words, the payo�s are already discounted. The prices of the other
assets are endogenously derived by demand and supply. The market subspace
X is the span of (Ak)k=0,1,...,K . Without loss of generality, we assume that
no asset is redundant, i.e., dim(X ) = K + 1, where obviously K + 1 ≤ S
holds. The market is called complete if K + 1 = S holds.
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We consider a �nite set I of investors. Agent i has a stochastic income
W i ∈ RS

+ at date 1. The variable θi = (θi0, . . . , θ
i
K) ∈ RK+1 denotes the i-th

agent's portfolio giving the number of units of each of the K + 1 securities
purchased (if θik > 0) or sold (if θik < 0) by agent i. Buying and selling
these K + 1 securities is the only trading opportunity available to agent i.
Thus, given the available securities, investor i can attain any payo� X =
W i +

∑K
k=0Akθ

i
k, where θ

i satis�es the budget restriction
∑K

k=0 qkθ
i
k ≤ 0.

Moreover, we assume that the resulting income must be positive in all states
of nature, i.e., X ≥ 0. The subset of payo�s in X that are positive and
budget feasible for investor i is denoted by Bi(q), i.e.,

Bi(q) :=

{
X ∈ RS

+

∣∣X = W i +
K∑
k=0

Akθ
i
k for θi ∈ RK+1 s.t.

K∑
k=0

qkθ
i
k ≤ 0

}
.

The preferences of agent i are described by an increasing functional V i : X →
R. This functional summarizes the utility function as well as the beliefs of
the agents. We will explicitly de�ne functionals in the next sections. In
order to optimize the preference functional, agents may want to buy and
sell assets. A new allocation (Xi)i∈I is called feasible if the resulting total
demand matches the overall supply. Formally, this means that the market-
clearing condition ∑

i∈I
θi = 0

has to be satis�ed. Note that the market-clearing conditions for the �nancial
contracts imply that the allocation (Xi)i∈I satis�es∑

i∈I
Xi =

∑
i∈I

W i.

In an ideal situation, prices of the assets are derived in such a way that the
requested pro�les Xi form a feasible allocation.

De�nition. A price vector q̂ = (1, q̂1, . . . , q̂K) together with a feasible allo-

cation (X̂i)i∈I is called a �nancial market equilibrium if each X̂i maximizes

the functional V i subject to Bi(q̂).

Since the preference functional is strictly increasing, the agents would exploit
arbitrage opportunities in the sense of a sure gain without any risk. This
means that if there were such an opportunity, every agent would rush to
exploit it and so competition will make it disappear very quickly. Thus, we
conclude that the condition{

X ∈ RS
+

∣∣X =
K∑
k=0

Akθ
i
k for θi ∈ RK+1 s.t.

K∑
k=0

qkθ
i
k ≤ 0

}
= {0}
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is satis�ed in equilibrium. This implies (Magill and Quinzii, 1996, Theorem
9.3) the existence of strictly positive Arrow security prices π = (π1, . . . , πS)
summing to 1 such that qk = πAk holds for all assets k. Each set of such
Arrow security prices then de�nes a pricing kernel

π

p
:=
(
π1

p1
, . . . ,

πS
pS

)
.

Note that the pricing kernel is not unique if the market is incomplete (Magill
and Quinzii, 1996, Theorem 10.6).

3 The Pricing Kernel Puzzle

In the introduction, we de�ned a puzzle as an observation that seems to
contradict the standard theory. In this section, we �rst explain what is
meant by standard theory and we will give a short overview over the main
�ndings of the empirical literature.
In the main part of the �nance literature, agents are assumed to be risk-averse
and to have common and true beliefs. Formally, the preference functional
V i of agent i is then given by

V i(X) := E
[
U i(X)

]
=

S∑
s=1

psU
i(Xs)

for a strictly increasing, strictly concave utility function U i : R+ → R satis-
fying the Inada-conditions

U i
′(0) := lim

x↘0
U i
′(x) = +∞,

U i
′(∞) := lim

x→∞
U i
′(x) = 0.

Markets are often assumed to be complete. Under these assumptions, it
follows that there is a decreasing relation between the pricing kernel and
aggregate resources.

Lemma 1. Consider a �nancial market satisfying dim(X ) = S and let the

preference functionals V i be given as above. If (q̂, (Xi)i∈I) is a �nancial mar-

ket equilibrium with pricing kernel πp , then there exists a strictly decreasing

function f : R+ → R+, such that

πs
ps

= f(Ws), s = 1, . . . , S.

A formal proof is given in Magill and Quinzii (1996), Theorem 16.7. In-
tuitively, every agent (or even simpler, the representative agent) forms his
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portfolio according to the �rst-order conditions, i.e., the requested pro�le
has the form

X̂i
s =

(
U i
′
)−1

(
λi
πs
ps

)
for a suitable Lagrange parameter λi. Because of the decreasing marginal
rate of substitution, this pro�le is a decreasing function of the pricing kernel.
The same holds true for the sum of all pro�les of the agents. Due to the
market-clearing condition, this sum is equal to the aggregate resources. This
implies that aggregate resources are a decreasing function of the pricing
kernel.

Remark. The assumptions of Lemma 1 can be relaxed. It is enough to as-
sume that the utility functions U i are increasing and concave (i.e., not nec-
essarily strictly concave and not necessarily satisfying the Inada-conditions).
Indeed, Theorem 1 of Dybvig (1988) and its generalisation in Appendix A of
Dybvig (1988) show that the allocation X̂i of agent i and the pricing kernel
are anti-comonotonic1. Hence, this also holds for the sum over all agents.
Using the market-clearing condition, it follows that the sum W =

∑
i∈I X̂

i

and the pricing kernel are anti-comonotonic. 3

Loss aversion is the observation that people strongly prefer avoiding losses to
acquiring gains. Loss aversion is the most robust aspect of prospect theory
and it was �rst convincingly demonstrated in Kahneman and Tversky (1979).
The utility of a loss-averse person is often modeled by a piecewise linear
function. It is linear in the loss domain and in the gain domain; but it is
steeper in the loss part than in the gain part. Such a utility is concave and
thus leads to a decreasing pricing kernel.

Example 1. If we restrict ourselves to mean-variance type preferences, we
end up in the CAPM which is the traditional example in equilibrium theory.
There, the pricing kernel is an a�ne decreasing function of the aggregate
resources (Magill and Quinzii, 1996, Theorem 17.3).

Lemma 1 and Example 1 presented a set of assumptions which implies a de-
creasing relation between the pricing kernel and aggregate resources. How-
ever, there is strong empirical evidence that this decreasing relation may
be violated. This observation was made by several authors using di�erent
methods and di�erent data sets (Jackwerth, 2000; Aït-Sahalia and Lo, 2000;
Brown and Jackwerth, 2001; Rosenberg and Engle, 2002; Yatchew and Här-
dle, 2006; Barone-Adesi and Dall'O, 2009). Furthermore, the estimated form

1Comonotonicity of two random variables intuitively means that their realizations have
the same rank order. In our setup, two random variables X1 and X2 are called comono-
tonic if

(
X1

s −X1
s′

) (
X2

s −X2
s′

)
≥ 0 for all s, s′ ∈ {1, . . . , S}. Random variables X1 and

X2 are called anti-comonotonic if X1 and −X2 are comonotonic. See Föllmer and Schied
(2004) for a general de�nition (De�nition 4.76) and equivalent formulations (Lemma 4.83).
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Figure 1: Rosenberg and Engle (2002), page 21

of the pricing kernel is stable as well. Linear functions that �t the pricing
kernel well, are decreasing. Using more �exible estimations, there is an inter-
val usually in the area of zero returns where the pricing kernel is increasing.
A typical form is presented in Figure 1. Note however, that a bumpy pricing
kernel is mainly derived using option data. Using market data, it seems to
be more di�cult to show (signi�cantly) the presence of an increasing part
of the pricing kernel (Schweri (2010)). Thus we �nd it important to really
understand the reasons for the shape of the pricing kernel. In the following
three sections, we alternately skip one of the three main assumptions com-
plete markets, risk-aversion and correct beliefs and try to understand how
the skipped assumption in�uences the pricing kernel.

4 S-shaped utility

In this section, we consider partially risk-seeking agents in a complete mar-
ket (dim(X ) = S). More precisely, the agents have common and true beliefs,
but they are not necessarily risk-averse. While risk aversion is a standard
assumption in Finance, there is considerable empirical evidence that agents
might show risk aversion for some ranges of returns and risk-seeking be-
haviour for others (typical examples can be found in Kahneman and Tversky
(1979)). Formally, the preference functional is described by

V i(X) = E[U i(X)],

where U i : R+ → R is strictly increasing. Hence, the main di�erence to the
situation of Lemma 1 is that U i is not necessarily concave. In the literature,
the most prominent examples of non-concave utilities are the concave-convex-
concave utility function suggested by Friedman and Savage (1948) and the
convex-concave utility arising in Prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992).
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In several papers on the pricing kernel puzzle, a representative agent econ-
omy is considered. In such an economy, the prices are chosen in such a way
that the aggregate resource W is an optimal allocation for the representa-
tive agent with initial endowmentW . Optimality implies that the �rst-order
condition is satis�ed, i.e., the equality U ′(W ) = λπp has to hold. Following
this line of arguments, the pricing kernel represents the shape of the util-
ity function of the representative agent. Considering Figure 1, this leads to
a concave-convex-concave utility function with the upper reference point at
2.2%. The form of the representative utility function coincides with the form
suggested by Friedman and Savage. Moreover, the reference point is in the
area between zero return and the in�ation rate. Such a reference point is
consistent with Prospect theory. The next example shows how a state in the
convex area can lead to an increasing pricing kernel.

Example 2. We consider an economy with two states, two assets and a
single (representative) agent. The underlying probabilities are de�ned by
p1 = 2

3 and p2 = 1
3 . The payo� matrix of the assets is given by

A =
(

1 2
3

1 2

)
.

The utility function of the agent is given by

U(x) =

{
(x− 1)

1
3 , x ≥ 1,

− (1− x)
2
3 , x < 1.

We can interpret 1 as his reference point. On the interval (0, 1), the agent is
risk-seeking and on the interval (1,∞), the agent is risk-averse. It is shown
in Appendix A that X̂ = (10

9 ,
2
3) is the optimal allocation of the agent for

the prices q̂ = (1, 1). Thus, endowing the agent with W = (10
9 ,

2
3), we can

interpret this as an equilibrium with a single (representative) investor. In
order to analyze the pricing kernel, we �rst determine the Arrow security
prices de�ned by the equation 1 = πA. It follows that π1 = 3

4 and π2 =
1
4 . Hence, the according unique pricing kernel is given by π

p = (9
8 ,

3
4). We

conclude that there is no decreasing relation between the pricing kernel and
portfolio of the single investor.
For the intuition of this example, it is important to note that the probabilities
of the states are not equal. State 1 has a higher probability of happening.
Thus, the risk-seeking behaviour inveigles agent 1 to invest more in state 1
even though the pricing kernel of state 1 is higher.

The idea to explain the pricing kernel puzzle with non-concave utilities is,
as Example 2 has shown in principle possible, however it is problematic
for the following reasons. If the utilities are partially convex, the �rst-order
condition is necessary for optimality, but it is not su�cient anymore. One can
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easily construct examples where several other non-optimal candidates satisfy
the �rst-order condition. Thus, it has to be checked, as we did in Example
2, whether the allocation W is actually optimal for the utility derived via
U ′(W ) = λπp . In order to verify the optimality, we use the following result,
which is proved in Appendix B.

Lemma 2. Let U be an increasing, smooth utility function with a convex

area. Let C denote the interior of the convex area of the utility U and let

X∗ be the optimal allocation for the pricing kernel πp and initial endowment

W . Then, there exists at most one state s ∈ {1, . . . , S} with X∗s ∈ C.

Let us give the intuition for this result: utilities with convex areas induce
risk-seeking behaviour because one wants to end up on the concave hull. One
branch of literature (Bailey et al., 1980; Hartley and Farrell, 2002; Levy and
Levy, 2002) uses this idea to argue that convex areas do not in�uence the
utility maximization problem (i.e., P [X∗ ∈ C] = 0). This argument uses the
assumption that one can split up every payo�. Formally, the crucial assump-
tion is that the underlying probability space is atomless. This assumption is
not satis�ed in our setup. On an atomic probability space, not all bets are
possible. Hence, it is not possible to design any payo� distribution. How-
ever, the above lemma shows that it is optimal to allocate in such a way that
at most one state lies in the convex area. In the case that there are a lot of
states, the in�uence of the single state becomes small.

Let us relate this result to Figure 1. By way of contradiction, we assume
that the allocation W is the optimal allocation of a representative agent for
the given prices. The �rst-order condition tells us that the utility of the
representative agent is concave-convex-concave. However, we see that the
interval between −3.5% and 2% lies in the convex area, i.e., P [W ∈ C] > 0
and there is de�nitely more than one state taking values in the convex area
because most of the return observations lie in this interval! This is a con-
tradiction to Lemma 2. We conclude that the allocation W cannot be the
optimal allocation for the representative agent with the utility derived via
the �rst-order condition U ′(W ) = λπp .
Even if there is a state in the convex domain, it is not clear whether the pric-
ing kernel does have increasing parts. Indeed, Theorem 1 of Dybvig (1988)
shows that the optimal allocation of agents with increasing, not necessarily
concave utility functions is a decreasing function of the Arrow security prices
if the states have equal probability.
A second problem of partially convex utility functions lies in the aggregation.
It is well known that risk-averse agents aggregate to a representative risk-
averse agent, i.e., the behaviour of a class of risk-averse agents transfer to
the same behaviour of the representative agent. The same does not hold true
for (partially) risk-seeking agents. The representative agent of two identical
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agents with a utility function according to Prospect theory does not neces-
sarily behave as an agent with such a utility function. As an illustration, we
consider two agents with initial endowment W 1 = W 2 = (1

2 ,
1
2). The utility

function of the agents is given by

U(x) =

{
(x− 1)

1
3 , x ≥ 1,

− (1− x)
2
3 , x < 1.

We illustrate this situation in a Edgeworth box.

−2 0 2 4

−
2

0
2

4

●

Agent 1's quantities are measured in the usual way, with the southwest cor-
ner as the origin. The blue lines represent some indi�erence curves of agent
1. They contain concave areas. Agent 2's quantities are measured using
the northeast corner as the origin. The green lines represent some indi�er-
ence curves of agent 2. Looking from the northeast corner, the curves have
the same form. The initial endowment is represented by the black circle.
The picture suggests that there are at least two equilibria. The aggregate
resources are (1, 1). In order to represent the situation, the aggregate re-
sources should be the optimal allocation for the given prices and the given
representative utility function. The �rst guess for the representative utility
function is the utility U , because both agents are of this type. But, consider-
ing such a utility function U , the utility maximization problem in Appendix
A shows that there are no prices such that staying at the reference point is
optimal.

We conclude that risk-seeking agents can be seen as a possible argument for
increasing areas in the pricing kernel. However, it is model-dependent and
fragile and it is dangerous to transfer the common arguments for Prospect
theory on the individual level to the aggregate utility function.
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5 Incorrect beliefs

Let us now extend the discussion to situations where agents do not necessar-
ily have common and true beliefs. In such a setting, the risky probabilities
used in the pricing kernel do not coincide with the weights used by the agents
for evaluation of the payo�s. In order to be able to analyze the shape of the
pricing kernel and the robustness under aggregation, we need to separate
di�erent sources for incorrect beliefs. In the literature on the pricing kernel
puzzle, heterogeneous beliefs and misestimation are considered as possible
explanations. These explanations amount to a conceptual problem in mea-
surement: by which p do we de�ne the pricing kernel? Considering agents
with heterogeneous beliefs, this question is of fundamental importance; one
has to carefully deal with aggregation of beliefs. On the other hand, ana-
lyzing the estimation procedure leads to practical problems arising in the
measurement of the pricing kernel. We suggest to additionally consider dis-
tortions, which amounts to a bias in decision making. We �rst consider the
utility maximization problem for general incorrect beliefs and we then ana-
lyze the three phenomena independently.

In order to formally describe incorrect beliefs, we assume that the prefer-
ences of agent i ∈ I are described by the functional

V i(X) := EP i

[
U i(X)

]
=

S∑
s=1

pisU
i(Xs),

where P i is a set function on (Ω,F). The set function P i represents the
subjective expectations of agent i about the future. For simplicity, we con-
sider again the case of strictly concave utility functions satisfying the Inada
conditions. In equilibrium, the agents maximize their utility functional V i

over the budget set Bi(q̂). In particular, the payo�s are evaluated with re-
spect to their own belief P i. Formally, the allocation X̂i of agent i solves
the maximization problem

maximize EP i

[
U i(X)

]
subject to X ∈ Bi(q̂).

Using the relation q̂ = πA, the constraint
∑K

k=0 qkθ
i
k ≤ 0 can be rewrit-

ten (for details see Magill and Quinzii (1996), Page 83f) as
∑S

s=1 πsXs ≤∑S
s=1 πsW

i
s . The modi�cation allows the Lagrange method to be used and

we conclude that the requested pro�le of agent i has the form

X̂i
s =

(
U i
′
)−1

(
λi
πs
pis

)
for a suitable Lagrange parameter λi. Note that the �true� real-world prob-
ability does not appear in the pro�le. The agent invests proportional to the
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ratio of the price of the corresponding Arrow security and the subjective
probability P i of its success. Hence, the requested pro�le X̂i of agent i is
a decreasing function of the pricing kernel π

pi with respect to his subjective
probability measure. However, it is not necessarily a decreasing function of
the pricing kernel πp with respect to the �true� probability measure. Thus,
in a model with a single (representative) agent, a bump can be viewed as a
di�erence between his subjective probability measure and the �true� measure.

Let us now consider distortions as a special case for biased beliefs. Kah-
neman and Tversky (1979) show that agents tend to overweight extreme
events. The simplest way to incorporate such a behaviour is to distort the
given true probabilities of the states with an increasing, concave-convex func-
tion T : [0, 1] → [0, 1]. The agent then evaluates the payo� with respect to
the distorted probability T (p·), i.e., the preference functional is given by

V (X) =
S∑
s=1

U(Xs)T (ps).

Using the arguments above, we �nd that the requested pro�le is

X̂i
s = (U ′)−1

(
λ

πs
T (ps)

)
.

It is a decreasing function of π·
T (p·)

, but it is not necessarily decreasing in π·
p·
.

This holds true for every agent and we conclude that the pricing kernel with
respect to distorted probabilities is a decreasing function of the aggregate
resources. However, we plot π

p as a function of Ws. For a state with high
probability (e.g., returns around zero in the case of S&P 500), T (ps) is rela-
tively underestimated. Hence, π

T (ps) is relatively higher than π
ps
. For a state

with low probability (e.g., extreme returns in the case of S&P 500), T (ps)
is relatively overestimated and π

T (p) is relatively lower than π
p . Following

this argumentation, the pricing kernel π
p has an increasing interval in the

area that occurs with high probability. Thus, this gives a simple and robust
explanation of the pricing kernel puzzle.

In reality, di�erent agents may have di�erent views about the future, i.e.,
the beliefs P i may di�er. As argued above, the pro�le requested by agent
i is a decreasing function of π

pi . On the �rst view, it seems to be di�cult
to make precise statements about the pricing kernel. However, there are ag-
gregation results for particular situations. One example is the CAPM with
heterogeneous beliefs about the means. In such a situation, the aggregate
belief can explicitly be derived (Gerber and Hens, 2006, Proposition 2.1).
It takes into account both the relative wealth and also the risk aversion of
the agents. The wealthier and the less risk-averse agents determine the con-
sensus belief more than the poor and more risk-averse agents. The pricing
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kernel with respect to the derived aggregate belief is then a linear decreasing
function of the aggregate resources (Hens and Rieger, 2010, Section 4.4.1).
Another prominent example can be found in (Shefrin, 2005, Theorem 14.1).
It shows how agents with three sorts of heterogeneity (risk aversion, time
discount factor and belief) aggregate into a single representative investor.
The pricing kernel with respect to the belief of the representative agent is
then a decreasing function of aggregate resources. In the case of arbitrary
concave utility functions U i and arbitrary beliefs P i, it is possible (Calvet
et al. (2001), Theorem 3.2 and Jouini and Napp (2006), Proposition 2.1) to
de�ne another common `consensus' belief which, if held by all agents, would
(after a possible reallocation of the initial endowments) generate the same
equilibrium prices as in the actual heterogeneous world. The risk-neutral
probabilities in the `equivalent' equilibrium remain the same because they
just depend on the prices. Moreover, all the requested pro�les in the equiv-
alent equilibrium are decreasing functions of the pricing kernel with respect
to the common `consensus' belief. This transfers to the sum of all pro�les
which corresponds to the aggregate resources. So, even in the most general
case, there is a belief such that the pricing kernel with respect to this belief
is a decreasing function of the aggregate resources. A di�erence between the
�true� probability and this belief is necessary for a partially increasing pric-
ing kernel. Thus, heterogeneity of beliefs does not give a good explanation
of the pricing kernel puzzle.

The arguments before show that there is a belief such that the pricing kernel
with respect to this belief is decreasing. In order to estimate the pricing
kernel, the true probability has to be estimated somehow. Often, this is
done using the historical distribution. However, this �past� probability can
certainly di�er from the representative beliefs P̃ . Let us consider the case of
a regime switch. The beliefs of the agent will adopt the new situation quite
fast, but at the beginning this change is not re�ected in the historical distri-
bution. This implies a di�erence between the estimated �true� probability P̃
and the representative belief, and this di�erence destroy the decreasing re-
lation between the pricing kernel and aggregate resources. After some time,
the new beliefs are also re�ected in the historical distribution, the estimated
�true� belief P approximately represents the representative belief and the
bump disappears. The illustration before indicates that the pricing kernel
does not necessarily have a bump all the time. It may have an increasing
part at some special points in time, but not necessarily all the time. Most in-
teresting are bullish and bearish regimes. Empirically, it is well-documented
that the volatility in returns in bearish-regimes is higher than in bullish-
regimes. This so-called �Leverage e�ect� was �rst documented by Black
(1976) and Christie (1982). See Bekaert and Wu (2000) for an overview. It
follows that the probabilities of extreme/normal returns in bearish-regimes
are higher/lower than those probabilities in bullish-regimes. The according
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change in the pricing kernel leads to shapes similar to the one observed in
the empirical literature. In particular, Detlefsen et al. (2007) estimate the
pricing kernel in di�erent regimes and their results are consistent with our
model.
There are also attempts to estimate the pricing kernel with market data.
Using this method, it is implicitly assumed that the pricing kernel (in par-
ticular, the risk-neutral and the historical distribution) is constant over a
long time period. The time periods where the representative belief is not re-
�ected in the historical distribution are relatively short and thus, they may
not in�uence the average over the long run. This explains the observation
that the estimated form of the pricing kernel is usually decreasing using
market data.

6 Incomplete markets and heterogeneous background

risk

Up to now, we restricted ourselves to the case of a complete market economy,
i.e., dim(X ) = S. In this section, we want to analyze the case dim(X ) < S.
For simplicity, we isolate this extension in the sense that agents are risk-
averse and have common and true beliefs.
Let us again consider an equilibrium, i.e., there are prices q̂ such that every
agent maximizes the preference functional subject to his budget set and the
market-clearing condition is satis�ed. More technically, each agent solves a
problem of the form

max E[U i(X)] over X ∈ Bi(q̂).

In the case of complete markets, the requested pro�le is a decreasing function
of the pricing kernel. In incomplete markets, there are in�nitely many risk-
neutral measures π satisfying the equation q̂ = πA and hence also in�nitely
many pricing kernels. The constraint

∑K
k=0 qkθ

i
k ≤ 0 can be rewritten using

the pricing kernels and writing down the �rst-order conditions of that prob-
lem, it turns out (Magill and Quinzii, 1996, Theorem 12.4) that the solution
has the same form as in the complete market case for a particular pricing
kernel. More precisely, for every agent i, there is a risk-neutral measure πi

such that the requested pro�le is of the form

X̂i =
(
U i
′
)−1

(
λi
πi

p

)
.

This shows that every pro�le is a decreasing function of a pricing kernel.
Hence, if there is a single representative agent, there exists some pricing
kernel such that its pro�le is a decreasing function of that pricing kernel.
With heterogeneous agents and incomplete markets, we can however give
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an example in which no pricing kernel is a decreasing function of aggregate
resources. So, the pricing kernel does not re�ect the value of an additional
unit of wealth as in the complete case, but it also re�ects the dependence
between the states. We illustrate this phenomenon in the next example. In
particular, we emphasize that a reduction to a single (representative) agent
already excludes some interesting phenomena.

Example 3. We consider an economy with three states, two assets and two
agents. The underlying probabilities are de�ned by p1 = p2 = p3 = 1

3 . The
payo� matrix of the assets is given by

A =

 1 13
15

1 4
3

1 13
15

 .

There are two agents. Both of them have utility U1(x) = U2(x) = ln(x) and
they have common and true beliefs, i.e., they evaluate utilities according
to the probabilities p1 = p2 = p3 = 1

3 . The initial endowment is given by
W 1 = (76

45 ,
19
6 ,

212
15 ) and W 2 = (418

15 ,
23
6 ,

382
285). It is shown in Appendix C that

q̂ = (1, 1), X̂1 = (14
9 ,

7
2 , 14) and X̂2 = (28, 7

2 ,
28
19) is a unique �nancial market

equilibrium. In order to characterize the pricing kernels, we consider the risk-
neutral probabilities. Every risk-neutral probability satis�es π1

13
15 + π2

4
3 +

π3
13
15 = 1 and it easily follows that all these probabilities can be written as

a convex combination of the two extreme points
(
0, 2

7 ,
5
7

)
and

(
5
7 ,

2
7 , 0
)
. We

infer that π2 < max(π1, π3) holds for every risk-neutral probability. Because
of p1 = p2 = p3, the same holds true for the pricing kernel, i.e., π2

p2
≤

max(π1
p1
, π3
p3

). The market portfolio W = X1 + X2 = (266
9 , 7, 294

19 ) has the
lowest value in state 2. We infer that no pricing kernel is a decreasing
function of the aggregate resources.

Let us interpret this example. According to the marginal rate of substitu-
tion, agent 1 would like to transfer wealth from state 3 to state 1 and agent
2 would like to transfer wealth from state 1 to state 3. However, there is
no asset (combination) which does this job. If one increases wealth in state
1, the wealth in state 3 automatically increases and vice versa. It is only
possible to transfer money from state 1 and state 3 to state 2 and vice versa.
Both agents have high wealth in one state and relatively low wealth in the
other two states. From a marginal-rate-of-substitution point of view, the
low-wealth states are more important. Thus, both agents try to equalize the
two states with the low value. More precisely, agent 1 would like to transfer
money from state 2 to state 1 and agent 2 would like to transfer money of
state 2 to state 3. This explains the low Arrow security price in state 2. But,
the aggregate resources in state 2 are low. According to the marginal rate
of substitution, an additional unit of wealth brings a high additional util-
ity. We conclude that this information is, contrary to the case of complete
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markets, not contained in any pricing kernel. The pricing kernel re�ects the
dependence between the di�erent states in the sense that both agents want
to reduce their holding in state 2 relatively to the other states.

In reality, measurement of aggregate endowment is di�cult. There have
been approaches to use consumption data. However, there are many prob-
lems with imprecise measurements of these data. A popular alternative is to
consider an equity index level as the projection of the aggregate endowment
on the market subspace and to estimate the projected pricing kernel. Using
this method, it is not clear whether or not increasing intervals that appear
in the projected pricing kernel also appear in the true pricing kernel. In Ex-
ample 3, we do not have this problem because we directly derived the true
pricing kernel.

7 Combination of incomplete markets and hetero-

geneous beliefs

In the previous sections, we showed that one separate extension of the stan-
dard theory is su�cient to create an increasing interval in the pricing kernel.
The next and last example considers agents with heterogeneous beliefs in in-
complete markets. We derive conditions for the initial endowments leading
to bumps in the pricing kernels.

Example 4. We consider an economy with three states, two assets and two
agents. The underlying probabilities are de�ned by p1 = p2 = p3 = 1

3 . The
payo� matrix of the assets is given by

A =

 1 0
0 1
0 1

 .

There are two agents. Both of them have utility U1(x) = U2(x) = ln(x), but
they have subjective beliefs. The belief of agent 1 is given by P 1 = (1

2 ,
1
2 , 0)

and the belief of agent 2 is given by P 2 = (1
2 , 0,

1
2); agent 1 maximizes the

consumption in state 1 and 2 and the other agent maximizes the consumption
in 1 and 3. The initial endowments are given by W 1 =

(
W 1

1 ,W
1
2 ,W

1
3

)
and

W 2 =
(
W 2

1 ,W
2
2 ,W

2
3

)
such that W 1

1 + W 2
1 ≤ W 1

2 + W 2
2 ≤ W 1

3 + W 2
3 holds.

It is shown in Appendix D that

q̂ =
(

1,
W 1

1 +W 2
1

W 2
3 +W 1

2

)
is an equilibrium price. In order to determine the prices of the Arrow secu-
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rities, we consider the relation q = πA, which simpli�es to

π1 = 1,
π2 + π3 = q1.

If the initial endowment is chosen in such a way that
W 1

1 +W 2
1

W 2
3 +W 1

2
> 2, it holds

that π1 ≤ max {π2, π3} and it follows that all pricing kernels have an in-
creasing interval.

This example has a nice economical interpretation. There are two (classes
of) agents. While agent 1 considers state 1 and 2 as possible realizations,
agent 2 considers state 1 and 3 as possible realizations. In reality, we do not
know which states are possible realizations. Hence, di�erent views about
possible realizations are very natural. And, as seen above, even in the most
simple examples that incorporate such a behaviour, the pricing kernel is not
necessarily decreasing. Moreover, due to the speci�c setting, the example
turns out to be simple and solvable for general initial endowments. In this
sense, it also gives an idea about the in�uence of the heterogeneous back-
ground risk on the pricing kernel. Thus, while each reason given above is
in isolation su�cient to explain the pricing kernel puzzle, a combination of
those reasons is most likely the case.

8 Conclusion

In an economy with complete markets and risk-averse investors having com-
mon and correct expectations the pricing kernel is a decreasing function of
aggregate resources. We have shown that the assumptions complete markets,
risk aversion of the investors and common and true beliefs are necessary as-
sumptions for the statement. As soon as we relax one assumption, one can
construct examples with a bumpy pricing kernel. In this sense, the pricing
kernel puzzle results from a too-simplistic choice of the so-called �standard
model�.
The explanation that (partially) risk-seeking agents induce a bump is model-
dependent. It only works on an atomic probability space. In a model with
biased beliefs, the pricing kernel with respect to the representative belief is a
decreasing function of aggregate resources. Bumps correspond to a di�erence
between measured �true� probability and consensus probability. Distorted
beliefs are robust under aggregation and consistent with the empirical �nd-
ings. In incomplete markets, the pricing kernel also re�ects information
about the dependence between the di�erent states.
To understand which of the three reasons we evoke to explain the puzzle is
empirically most relevant, one would need to combine empirical studies on
the pricing kernel with data on risk-seeking behaviour, probability weighting
or incompleteness of markets. On the one hand, there are ways to measure
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the monotonicity of pricing kernels (Barone-Adesi and Dall'O (2009) and
Golubev et al. (2008)); on the other hand, there are surveys on market
structure, risk abilities and heterogeneity of beliefs in di�erent countries
(Wang et al. (2009)). As one possible approach, we therefore suggest to
measure the monotonicity of the pricing kernel in di�erent countries and
compare the results with the data in the international survey. This analysis
will give an idea which of the reasons seems to be most relevant.
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A Example 2

The according risk-neutral probabilities for q̂ = (1, 1) are π1 = 3
4 and π2 = 1

4 .

In order to show that the allocation X̂1 = (10
9 ,

2
3) is optimal, we have to check

that it solves

max p1U(x1) + p2U(x2) subject to π1x1 + π2x2 ≤ π1
10
9

+ π2
2
3

= 1.

Let us consider the cases x1 = x2 = 1, x1 > 1 > x2 and x1 < 1 < x2

independently. In the case x1 > 1 > x2, plugging in the constraint, di�eren-
tiating the term with respect to x1 and setting the resulting term equal to 0
give

x̂1 = 1 +
(
p1

2p2

)3(π2

π1

)2

,

x̂2 = 1−
(
p1

2p2

)3(π2

π1

)
.

Plugging the candidate x̂1 into the second derivatives gives

−p1
1
3

2
3

(
p1

2p2

)−5(π2

π1

)− 10
3

+ p2
1
3

2
3

(
π2

π1

)− 10
3
(
p1

2p2

)−4

< 0,

which shows that (x̂1, x̂2) is indeed a local maximum. The expected utility
is

p2
1π

2
3
2

4p2π
2
3
1

.

The same procedure for the case x2 > 1 > x1 shows that

∗
x1 = 1−

(
π1

π2

)(
p2

2p1

)3

,

∗
x2 = 1 +

(
π1

π2

)2( p2

2p1

)3

is a local maximum. The expected utility is

p2
2π

2
3
1

4p1π
2
3
2

.

Finally, comparing the local maxima and (0, 0) show that the allocation
(x̂1, x̂2) = (10

9 ,
2
3) is optimal for p1 = 2

3 and π1 = 3
4 .
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B Proof of Lemma 2

Proof. By way of contradiction, we assume that there is an optimal allocation
X with two states s and s′ having values in C. We de�ne

a := πsXs + πs′Xs′

and consider the expression

f (x) := psU (x) + ps′U

(
a− πsx
πs′

)
.

Since U is convex, the same holds true for f . Maximizing a convex function
gives a corner point solution. Thus, there is x̃ ∈ C such that a−πsx̃

πs′
∈ C

holds and f(x̃) > f(Xs) is satis�ed. Let us de�ne a new candidate X̃ by

X̃s = x̃,

X̃s′ =
a− πsx̃
πs′

,

X̃s′′ = Xs′′ for s′′ ∈ {1, . . . , S} and s 6= s′, s 6= s′′.

By construction, X̃ is still a�ordable with initial endowment and gives a
higher utility. This gives a contradiction to the optimality of X.

C Example 3

In order to show that q̂ = (1, 1), X̂1 = (14
9 ,

7
2 , 14) and X̂2 = (28, 7

2 ,
28
19) is a

�nancial market equilibrium, we have to check feasibility of the allocation
(X̂i)i∈I and optimality of X̂i for the utility maximization problem of agent
i. We �rst solve the utility maximization problem of the agents for prices
q̂ = (1, 1) and we then check that the optimal allocation (X̂i)i∈I form a
feasible allocation.
In order to maximize the expected utility, agent i chooses a strategy θi =(
θi0, θ

i
1

)t
, i.e., agent i buys θij of asset j subject to his initial endowment.

Formally, this can be described by the optimization problem

maximize
3∑

k=1

pk ln
(
W i
k + θi0 + θi1A1k

)
subject to θi0 + θi1q1 ≤ 0 and W i + θi0 + θi1A1 > 0

for agent i. In the optimization problems, the initial endowment W i, the
price q1 and the probabilities are �xed. Due to the monotonicity of logarithm,
we can replace the inequality in θi0 + θi1q1 ≤ 0 by equality and replace θi0
by −θi1 · q1. This simpli�es the optimization problem to a maximization
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of a function depending on θi1. The boundary condition W i + θi0 + θi1A1 =
W i+θi1(A1−q1) > 0 has to be satis�ed for every state s. The prices q̂ = (1, 1)
exclude arbitrage and it follows that A1−q1 is both positive and negative for
at least one state. We conclude that the boundary condition de�ne a bounded
interval of possible values for θi1. The property ln(0) = −∞ implies that a
candidate that satis�esW i

k+θi0+θi1A1k = 0 in at least one coordinate, can not
be optimal. Hence, a solution exists and satis�es the �rst-order conditions.
Di�erentiating the function

∑3
k=1 pk ln

(
W i
k + θi1(A1k − q1)

)
with respect to

θi1 and setting the resulting term equal to 0 give

A11 − q1

W 1
1 − q1θ1

1 + θ1
1A11

+
A12 − q1

W 1
2 − q1θ1

1 + θ1
1A12

+
A13 − q1

W 1
3 − q1θ1

1 + θ1
1A13

= 0 (3)

for agent 1 and

A11 − q1

W 2
1 − q1θ2

1 + θ2
1A11

+
A12 − q1

W 2
2 − q1θ2

1 + θ2
1A12

+
A13 − q1

W 2
3 − q1θ2

1 + θ2
1A13

= 0 (4)

for agent 2. Plugging in the explicit numbers for the price, the payo�s
and the initial endowments and solving the equations for θi1 show that 1
and 649

19 solve equation (3) and 2648
19 and −1 solve equation (4). However,

θ1
1 = 649

19 violates the boundary condition W 1 + θ1
1(A1 − q1) > 0 in state 1

and θ2
1 = 2648

19 violates the boundary condition W 2 +θ2
1(A1−q1) > 0 in state

3. We conclude that θ1
1 = 1 and θ2

1 = −1 solve the utility maximization
problems of the agents. In particular, we see that

∑
i∈I θ

i
1 = 0 holds, i.e.,

the market clearing condition is also satis�ed.
In order to show uniqueness of the equilibrium, we solve equation (3) and (4)
for a general price q1. This gives again multiple solutions θ1

1
+ and θ1

1
− for

(3) and θ2
1

+ and θ2
1
− for (4). Thus, there are four possible combinations and

every combination determines an equilibrium price q1 via the market-clearing
condition

∑
i∈I θ

i
1 = 0:

• Case +/+: The +/+-combination gives the price q1 = 1, which we
already analyzed above.

• Case −/+: The market-clearing condition gives the price q1 ≈ 1.2461.
It follows that θ1

1 ≈ 23.07, and θ1
0 = −q1θ

1
1 ≈ −28.7527. This implies

W 1 + θ1
0 + θ1

1A1 < 0 in state 1, i.e., the boundary condition is violated.
Hence, it cannot be an equilibrium.

• Case +/−: The market-clearing condition gives the price q1 ≈ 0.3412.
It follows that θ1

1 ≈ −18.99, θ2
1 = −θ1

1 and θ1
0 = −q1θ

1
1 ≈ 6.4834.

This implies W 1 + θ1
0 + θ1

0A1 in state 1, i.e., the boundary condition is
violated. Hence, it cannot be an equilibrium.

• Case −/−: The market-clearing condition has no solution.

We conclude that only the +/+-combination leads to an equilibrium, which
is the one we already analyzed above.
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D Example 4

In order to derive the explicit form of the price q1, we follow a similar path
as in Appendix C. In order to maximize the expected utility, agent i chooses
a strategy θi =

(
θi0, θ

i
1

)t
, i.e., agent i buys θij of asset j subject to his initial

endowment. Formally, this can be described by the optimization problems

maximize p1
1 ln

(
W 1

1 + θ1
0

)
+ p1

2 ln
(
W 1

2 + θ1
1

)
subject to θ1

0 + θ1
1q1 ≤ 0 and W 1

k + θ1
0A0k + θ1

1A1k > 0 for k = 1, 2

for agent 1 and

maximize p2
1 ln

(
W 2

1 + θ2
0

)
+ p2

3 ln
(
W 2

3 + θ2
1

)
subject to θ2

0 + θ2
1q1 ≤ 0 and W 2

k + θ2
0A0k + θ2

1A1k > 0 for k = 1, 3

for agent 2. Due to the monotonicity of ln, we can replace the inequality
in θi0 + θi1q1 ≤ 0 by equality and replace θi0 by −θi1 · q1. This simpli�es
the optimization problem to a maximization of a function depending on θi1.
Note that the (state-wise) boundary conditions W i + θi0 + θi1A1 > 0 give
a bounded interval of possible values for θi1. Because of ln(0) = −∞, a
candidate that satis�es W i

k + θi0 + θi1A1k = 0 in a state with strictly positive
subjective probability can not be optimal. Thus, we can reduce to allocations
satisfying the �rst-order condition. Di�erentiating the function with respect
to θi1 and setting the resulting term equal to 0 give

−q1

W 1
1 − θ1

1q1
+

1
W 1

2 + θ1
1

= 0

for agent 1 and
−q1

W 2
1 − θ2

1q1
+

1
W 2

3 + θ2
1

= 0

for agent 2. These equations can be solved for θ1
1 and θ2

1 and we end up with

θ1
1 =

W 1
1 − q1W

1
2

2q1
,

θ2
1 =

W 2
1 − q1W

2
3

2q1
.

In order to �clear away� any excess supply and excess demand, the quantity
demanded and the quantity supplied should be equal. In our setup, this
means that θ1

0 = −θ2
0 and θ1

1 = −θ2
1 have to hold. We deduce the explicit

form

q1 =
W 1

1 +W 2
1

W 2
3 +W 1

2

of the price of the risky asset.
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