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1 Introduction

Many decisions on public spending involve the aggregation of individual opinions either
directly in various kinds of committees, or indirectly through representatives (Mueller,
2003). An important example is the allocation of expenditure on different public goods:
at the state level the cabinet has to decide on the funding of national public goods and
services such as health care, social security, defense and national infra structure; at the
municipal level, decisions involve local public goods such as the funding of recreational
facilities and regional services. The standard economic formulation of such problems is as
a budget allocation problem: a group of individuals with generally divergent preferences
has to come to an agreement about how to spend a fixed budget (e.g. tax revenue) on a
number of alternative uses (‘public projects’) at fixed prices. The fundamental question
is then which collective choice rule to use. The aim of the present paper is to shed light
on this question using the results of a laboratory experiment.

The budget allocation problem is often addressed under additional assumptions on
agents’ preferences. One particularly attractive solution is provided by the well-known
median voter theorem in the case when there are two rival projects and individuals have
single-peaked preferences over the expenditure levels of them. Indeed, if preferences are
single-peaked the expenditure level most preferred by the median voter wins a pairwise
majority vote against all other feasible allocations; moreover, if the use of the median
rule is common knowledge among the agents in a private information setting, then it is
the unique (weakly) dominant strategy to sincerely report one’s true preference (Black,
1948; Moulin, 1980).

However, there are two major problems with the median rule in the context of budget
allocation problems. First, while sincere voting is the unique weakly dominant strategy
under single-peakedness, there are also other Nash equilibria and even inefficient ones;
for instance, if all agents vote (for whatever reason) for an allocation outside the convex
hull of their preference peaks, the outcome is inefficient but nevertheless a Nash equi-
librium since no single voter can change the outcome. Secondly, and more importantly,
the median rule cannot be readily generalized to multi-dimensional budget allocation
problems with more than two public projects; the reason is that the coordinate-wise
median, i.e. the vector of the median expenditure proposals for each public project, does
in general not satisfy the budget restriction if there are three or more projects (see below
for examples). But applications of collective budget allocation problems will typically
involve more than two projects.

Both of these problems can be addressed by using a simple alternative to the median
rule, the mean rule which implements the average of the expenditure proposals for each
public project. First, it has been shown that in the one-dimensional case of two public
projects the mean rule has a unique Nash equilibrium if preferences are single-peaked
(Renault and Trannoy, 2005). Secondly, there is no difficulty in generalizing the mean to
the multi-dimensional setting since the average of the individual expenditure proposals
always satisfies the budget constraint. More generally, in comparison to the median rule
the mean rule has the advantage of being simple and easily understandable even to people
without any training in basic statistics. But clearly, sincere voting does not constitute an

2



equilibrium under the mean rule. For instance, if the average of the proposed expenditure
levels for a project is below an agent’s most preferred level it will in general be optimal
to exaggerate that preference in order to ‘pull’ the outcome in the preferred direction.
Thus, using the mean rule as the collective allocation mechanism comes at the price of
loosing the robustness of the median with respect to strategic manipulation.

In order to test the empirical implications of the fundamentally different properties of
the two allocation mechanisms, the mean and the median rule, we conducted a laboratory
experiment. We were particularly interested in the following questions: Do subjects
recognize the possibility of manipulation by voting for the extremes under the mean
rule? Do they vote sincerely under median based rules when this constitutes a best
response, or when optimal manipulations are hard to detect? And finally, what are the
welfare implications of the different behavior under the two rules? Subjects voted in
groups of five individuals on the allocation of a fixed budget on three different public
projects. We had three treatment variables: rule, peak distribution and info; the
first two varied between subjects, the third within subjects. The variable rule took
on the values ‘mean’ or ‘median’ while the variable peak distribution determined
four different distributions of preferences. As ‘median’ rule we used the normalized
median rule suggested by Nehring (2009) and studied in Lindner (2011), according to
which the coordinate-wise median expenditure shares are proportionally adjusted so
that the budget restriction is satisfied. We induced symmetric preferences that depend
only on the distance to the most preferred allocation (the ‘peak’); specifically, we used
the natural resource metric as distance function, i.e. the distance of an allocation is
measured by the sum of the expenditure differences to the peak for each public project.
The individual loss of an allocation is then given by a (convex) transform of the distance
to the peak. Finally, the within-subject variable info determined the state of knowledge
that subjects had about the preferences of the other participants: in the ‘full info’
treatment preferences were common knowledge, in the ‘no info’ treatment subjects only
knew their own preferences. The ‘full info’ treatment was played for three periods (fixing
the values of the other two treatment variables); the ‘no info’ treatment was played for
five periods in order to examine learning effects.

Our experimental results on the mean rule largely confirm the theoretical prediction
of extreme voting behavior (‘polarization’), at least in those cases in which the opti-
mal strategy is easily identifiable. This is in line with the empirical literature on the
one-dimensional case in which the optimal strategy is in fact often easy to determine
(Marchese and Montefiori, 2011; Louis et al., 2019). Not surprisingly, however, we find
less Nash equilibrium play if optimal behavior is more difficult to identify. This can be
the case in the multi-dimensional setting because one’s own peak can differ from the
expected average proposal of the other players in different directions. This also implies
that one has to be even more careful in using the mean rule in multi-dimensional set-
tings; mistakes in computing the optimal strategy (even under complete information)
may result in inferior, possibly even inefficient outcomes.

The results on the normalized median rule are remarkable in several ways. In two
of the four preference distributions sincere reporting was the ‘focal’ Nash equilibrium.
In these two cases one of the voters occupied the median position in all coordinates.
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By consequence, the coordinate-wise median happened to be feasible for these distribu-
tions. While the median voter indeed mostly reported sincerely, the non-pivotal voters
did not always report truthfully. Non-pivotal voters frequently played a best response
to sincere voting of the others but did not always turn to the focal truthful strategy
themselves.1 In the other two of our four preference distributions, due to the necessity
for normalizing the coordinate-wise median, one voter could receive her most preferred
allocation by strategic misrepresentation, respectively (provided that all others vote sin-
cerely). However, identifying the optimal strategy is difficult in these cases and in fact
none of our subjects was able to exploit the manipulation possibility. Although sincere
voting occurred less often than one could expect from theoretical considerations under
the normalized median rule, we still observed a higher share of truthful votes under the
median rule than under the mean rule.

Importantly, we find that the normalized median rule fares significantly better than
the mean rule in terms of welfare. Specifically, we find that the normalized median rule
yields significantly higher expected utilitarian social welfare either under the full info and
the no info treatment. Moreover, under the full info treatment the number of Pareto
efficient outcomes is significantly higher under the normalized median rule.2 This is all
the more remarkable since we chose our peak distributions in such a way that the ‘focal’
Nash equilibria under both rules result in exactly the same allocations, respectively.
Thus, at least under full information, the differences in the welfare properties can be
traced back solely to the rules themselves.

Relation to the Literature

In the standard one-dimensional case with single-peaked preferences, the median rule
has been studied extensively in the literature, see e.g. the recent contribution of Núñez
et al. (2020) and the references therein. The mean rule and its equilibria in the one-
dimensional case have been characterized by Renault and Trannoy (2005) and further
studied in Renault and Trannoy (2011). Rosar (2015) compares the median and mean
mechanisms in a model with incomplete information and interdependent preferences. An
experimental study on voting behavior under the mean rule in the one-dimensional case
has been conducted by Marchese and Montefiori (2011). An explicit experimental com-
parison between the mean and the median rule in the one-dimensional case is provided in
Block (2014). Since the median rule is a strategy-proof mechanism if voters’ preferences
are single-peaked the results of the latter study also inform the experimental literature
on dominant strategy implementation (Cason et al., 2006). More recently, Louis et al.
(2019) have theoretically and empirically studied general trimmed means, of which both
the mean and the median rule are special cases.

1Our results therefore do not lend empirical support to the hypothesis of ‘partial honesty’ which has
been put forward as a theoretical equilibrium refinement in the implementation literature by Dutta
and Sen (2012); partial honesty requires that (some) agents report their true type whenever doing so
is among the best responses.

2Under the no info treatment, the difference of the number of Pareto efficient outcomes resulting from
the two rules is not significant.
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To the best of our knowledge, the present paper offers the first experimental analysis
of the mean rule and a natural generalization of the median rule in a multi-dimensional
setting. As noted above, one of the advantages of the mean rule is that it readily gen-
eralizes to an arbitrary number of dimensions. The question of how to generalize the
median rule to multi-dimensional allocation problems under a budget constraint has
received considerable attention recently, among others in the growing literature on par-
ticipatory budgeting (Aziz and Shah, 2020). While much of this literature addresses the
difficulties that arise from the potential indivisibility of projects, important benchmark
models assume that projects can also be partly funded, as done here (Goel et al., 2019;
Freeman et al., 2021).

The particular ‘normalized’ version of a multi-dimensional median rule considered here
lends itself naturally to experimental work because of its simplicity and intuitive appeal,
but there are other possibilities. For instance, Lindner (2011) considered, among others,
the orthogonal projection to the budget hyperplane of the coordinate-wise median, and a
sequential rule that implements the coordinate-wise median project by project according
to a fixed sequence, allocating the residual budget to the last project. Other approaches
seek to directly maximize welfare under specific assumptions about individual preferences
and with respect to various social welfare functions, see e.g. Laruelle (2021). The special
case in which individual preferences are represented by the negative L1–distance to the
most preferred outcome is considered in Goel et al. (2019) and Freeman et al. (2021).
Nehring and Puppe (2019) argue for the minimization of the sum of the L1–distances
to the individual peaks from the more general perspective of a ‘frugal’ approach to
majoritarian preference aggregation. These approaches generally result in set-valued
solutions and therefore face a selection problem that the normalized median rule avoids
(for an odd number of voters).

2 The Model

A group N = {1, ..., n} of individuals has to collectively decide how to allocate an amount
Q to L public projects. We assume that the public projects are divisible, i.e. can be
partly funded to any (non-negative) extent. Moreover, preferences are monotone and
prices are fixed so that the set of feasible allocations is given by the budget hyperplane

X = {x ∈ RL
≥0 |

L∑
`=1

x` = Q},

where x` ≥ 0 is the expenditure share for project ` ∈ {1, ..., L}.
Individuals have different preferences over the extent to which projects should be

funded and have to find a compromise. In our specific context, not all kinds of preferences
seem reasonable, and one standard assumption is convexity. In fact, to simplify the
analysis we will make the even stronger assumption that each voter has a unique most
preferred allocation, the peak, and that the utility of an allocation only depends on its
distance to the peak. The relevant distance is given here by the total expenditure that
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has to be re-allocated. Specifically, we will assume that agent i’s ordinal utility function
ui(·) satisfies

ui(x) = f(d(x, pi)), (2.1)

where pi is i’s peak, f : [0,∞) → R is a strictly decreasing function and d(·, ·) is the
distance function defined by d(x, y) :=

∑L
`=1 |x` − y`|. Mathematically, the distance

function d is the L1–distance; it is the natural metric in our present context since it
compares allocations in terms of their total expenditure difference. Therefore, one may
refer to it in our context also as resource metric (Nehring and Puppe, 2019). Preferences
satisfying (2.1) are referred to as metrically single-peaked (Nehring et al., 2008); evidently,
such preferences are convex and single-peaked in each direction. Note that in the case
L = 2, i.e. if there are only two projects, the set X is a one-dimensional budget line.
In this case, the amount of expenditure for one project automatically determines the
amount for the other project via the budget restriction. The assumption of metric
single-peakedness means that preferences are single-peaked and the two allocations with
the same distance to the peak from the left and the right are indifferent.

The case relevant for our experimental analysis is the case L = 3 in which the indif-
ference curves on X are symmetric hexagons, see Fig. 1.

Figure 1: Indifference curves

2.1 The Mean Rule

We turn to the description of the aggregation rules. We assume that all voters simul-
taneously submit a proposal of how to distribute the money amount Q among the L
public projects; in other words, we are considering the normal form game in which the
strategy space for each individual is simply given by the set X of feasible allocations.

The mean rule takes the outcome to be the coordinate-wise average of the proposals.
Let qi ∈ X be the proposal of voter i and q = (q1, ..., qn) the vector of individual
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proposals. The outcome according to the mean rule is given by

Mean (q) :=
1

n

n∑
i=1

qi =

(
1

n

n∑
i=1

q1i , ...,
1

n

n∑
i=1

qLi

)
.

In the one-dimensional case L = 2, the Nash equilibrium under the mean rule has been
completely characterized by Renault and Trannoy (2005): For all peak distributions
p = (p1, ..., pn) such that pi 6= pj for all voters i 6= j there is a unique equilibrium. If
the outcome of this equilibrium is x∗, then all voters with p`i > x∗` propose q`i = Q
and all voters with pi < x∗` propose q`i = 0 for ` = 1, 2; there is at most one voter i0
who does not propose one of the extreme values, (0, Q) or (Q, 0), and for such voter one
necessarily has pi0 = x∗.3 From this characterization it is immediate that the unique
Nash equilibrium is also Pareto efficient.

While the mean rule is just as simple to formulate and to use in the multi-dimensional
case, Nash equilibrium is no longer unique if L > 2; indeed, even for L = 3 there
exist peak distributions for which there are several equilibria some of which even Pareto
inefficient, see Rollmann (2020). Moreover, best responses are in general no longer
unique. However, one still has the result that in any equilibrium at most one voter
makes a proposal in the interior of the feasible set. The reason is that under the mean
rule every voter is always pivotal. Specifically, the following result has been observed in
Franken (2015). Let int(X) be the set of all feasible allocations such that x` > 0 for all
` = 1, ..., L.

Proposition 1. Suppose that the peak distribution p = (p1, ..., pn) satisfies pi 6= pj for
i 6= j. Let q∗ = (q∗1, ..., q

∗
n) be a Nash equilibrium of proposals and x∗ = Mean (q∗). Then,

q∗i ∈ int(X) for at most one voter i = 1, ..., n. Moreover, if q∗i0 ∈ int(X) for voter i0,
then x∗ = pi0.

Proof. Suppose that in a Nash equilibrium q∗ = (q∗1, ..., q
∗
n) with x∗ = Mean (q∗), one has

q∗j 6= x∗. Then q∗j 6∈ int(X), because otherwise voter j could move the outcome closer to
her own peak, hence q∗j would not be a best response.

2.2 The Normalized Median Rule

The mean rule is simple and easily understandable also by people who do not have had
any training in basic statistics. However, from an economic point of view a major draw-
back of the mean rule is that it does not induce sincere voting behavior with rational and
strategic individuals. To overcome this, a well-studied alternative in the one-dimensional
case is the median rule. In this case, the median rule chooses the median of the reported
peaks if the number of individuals is odd and some allocation between the two middle
peaks if the number of voters is even. For simplicity we will assume in the following that
n is odd (in our experiments, we have n = 5).

3See Block (2014) for a simple algorithm to decide if such a voter i0 exists, and if yes, how to identify
that voter.
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It is well-known that sincere voting is the unique weakly dominant strategy under the
median rule (Moulin, 1980). However, the median rule has also disadvantages. First, it
has been observed that there are many, and even inefficient, Nash equilibria in which
voters do not follow their dominant strategy; for instance, it constitutes an equilibrium
if (for whatever reason) all voters announce some fixed feasible allocation x0 ∈ X (Saijo
et al., 2007). More importantly, it is not evident how to apply the median rule in
multi-dimensional settings when L > 2. The reason is that the coordinate-wise median
of feasible proposals does not necessarily satisfy the budget constraint. For example,
suppose that L = 3 and three voters propose to split the money Q equally among two
projects, respectively, in the following way: q1 = (Q/2, Q/2, 0), q2 = (Q/2, 0, Q/2), q3 =
(0, Q/2, Q/2). Then, the coordinate-wise median yields the allocation (Q/2, Q/2, Q/2)
which is clearly not feasible. There are several ways of how one can respond to this
problem but there does not seem to exist a simple ‘canonical’ solution, see among others
Nehring et al. (2008); Lindner (2011); Goel et al. (2019); Nehring and Puppe (2019);
Freeman et al. (2021). In our present study we use the normalized median rule suggested
by Nehring (2009) and analyzed in Lindner (2011) because of its particularly simple
formulation.

For each vector q = (q1, ..., qn) of proposals and each project ` = 1, ..., L, denote by
Med `(q) the median of the values {q`1, ..., q`n} (recall that we are henceforth assuming
n to be odd). The normalized median allocates to each project the median level of
expenditure proposed for the project adjusted by the potential excess expenditure factor
Q/
∑L

`=1 Med `(q). Specifically, for all ` = 1, ..., L,

NMed (q) := Med (q) · Q∑L
`=1 Med `(q)

=
(
Med 1(q), ...,Med L(q)

)
· Q∑L

`=1 Med `(q)
.

Observe that this definition requires that
∑L

`=1 Med `(q) > 0; if
∑L

`=1 Med `(q) = 0, we
set NMed `(q) = Q/L by convention.

Due to the normalization, sincere voting is no longer a weakly dominant strategy, as
shown by the following example.

Example 1. Let Q = 100, L = 3, and consider five voters with peaks p1 = (20, 20, 60),
p2 = (10, 65, 25), p3 = (10, 8, 82), p4 = (70, 10, 20) and p5 = (5, 10, 85), respectively. The
outcome of sincere voting under the normalized median rule is

(12.5, 12.5, 75) = (10, 10, 60) · 10080 ,

because the coordinate-wise median of the above distribution is (10, 10, 60) with a total
expenditure of 80 < 100 = Q. But if agents 2 – 5 vote sincerely, agent 1 can get her
peak as the outcome by reporting, e.g., q1 = (35, 35, 30). Indeed, the coordinate-wise
median is then (10, 10, 30), hence the outcome after normalization is (20, 20, 60) which
is exactly agent 1’s peak. In the appendix we show that this in fact constitutes a Nash
equilibrium, i.e. sincere voting is optimal for agents 2 – 5 provided that agent 1 reports
q1 = (35, 35, 30).
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Although sincere voting is thus no longer a dominant strategy (nor in general a best
response even if all others vote sincerely), we can show that sincere voting constitutes a
Nash equilibrium if there is one agent i0 whose true peak happens to occupy the median
expenditure level for every project.4

Proposition 2. Consider the peak distribution p = (p1, ..., pn) with n odd, and assume
that there exists i0 = 1, .., n such that Med `(p) = p`i0 for all ` = 1, ..., L. If all voters have
metrically single-peaked preferences then sincere voting, i.e. q∗i = pi for all i = 1, ..., n,
constitutes a Nash equilibrium under the normalized median rule with outcome pi0.

Proof. To simplify notation, let m = (m1, ...,mL) denote the peak of the median voter
i0 in every project and hence the outcome of the normalized median rule under sincere
voting. Clearly, if all other agents vote sincerely, truthful reporting is also optimal for
i0 since she receives her peak by doing so. Consider any voter j 6= i0 and suppose that
all other agents vote sincerely. By misreporting, voter j can bring the median in no
coordinate closer than m` is to her most preferred level in that coordinate; in other
words, if x = (x1, ..., xL) is the coordinate-wise median resulting from an arbitrary vote
of agent j, we have

x` ≤ m` whenever m` < p`j and x` ≥ m` whenever m` > p`j . (2.2)

In particular, voter j cannot benefit from a non-truthful vote if the resulting coordinate-
wise median x is feasible. Thus, consider the case in which R :=

∑L
`=1 x

` 6= Q, i.e. the
case in which a normalization is necessary. Without loss of generality, assume that R < Q
(the argument in the case R > Q is completely symmetric). Denote by x̂ the normalized
coordinate-wise median, i.e. x̂ := x·(Q/R), and observe that the normalization increases
the value in each coordinate, i.e. x̂` ≥ x` for all `.

Denote by K+ := {` : x̂` > m`} and K− := L \ K+, and by L+ the set of those
coordinates in which x̂ is closer to pj than m, i.e.,

L+ := {` : |x̂` − p`j | < |m` − p`j |};

finally, let L− := L \ L+.
First, we show that K− ⊆ L−. Indeed, x̂` = m` directly implies ` ∈ L−, and if

x̂` < m` we obtain x` ≤ x̂` < m`, hence m` ≤ p`j by (2.2), and therefore ` ∈ L−. Since
K− ⊆ L− we also have L+ ⊆ K+ by contraposition. By feasibility of x̂ and m, we obtain

0 =
∑
`∈L

(x̂` −m`) =
∑
`∈L+

(x̂` −m`) +
∑

`∈K+\L+

(x̂` −m`) +
∑
`∈K−

(x̂` −m`).

Since
∑

`∈K+\L+(x̂` −m`) ≥ 0, this implies∑
`∈L+

(x̂` −m`) ≤
∑
`∈K−

(m` − x̂`). (2.3)

4We are grateful to a referee who suggested a generalization of our original argument. The current
formulation of the proof of Proposition 2 also greatly benefitted from conversations with Claudio
Kretz.
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By the (reverse) triangle inequality, we have | |m`− p`j |− |x̂`− p`j | | ≤ |m`− x̂`|, hence
from (2.3) and the fact that L+ ⊆ K+,∑

`∈L+

| |m` − p`j | − |x̂` − p`j | | ≤
∑
`∈L+

(x̂` −m`) ≤
∑
`∈K−

(m` − x̂`). (2.4)

Finally, using again the fact that x̂` < m` and x` ≤ x̂` jointly imply m` ≤ p`j by (2.2),
we have∑

`∈K−
(m` − x̂`) =

∑
`∈K−

| |m` − p`j | − |x̂` − p`j | | ≤
∑
`∈L−

| |m` − p`j | − |x̂` − p`j | | .

Together with (2.4) we thus obtain∑
`∈L+

|m` − p`j | − |x̂` − p`j | =
∑
`∈L+

| |m` − p`j | − |x̂` − p`j | |

≤
∑
`∈L−

| |m` − p`j | − |x̂` − p`j | |

=
∑
`∈L−

|x̂` − p`j | − |m` − p`j |,

that is, ∑
`∈L
|m` − p`j | ≤

∑
`∈L
|x̂` − p`j |.

In other words, agent j cannot benefit from misreporting. Note that the argument
only depends on the assumption that some agent occupies the median position in every
coordinate given the true peak of agent j and the reports of all other agents.

3 The Experiment: Design and Hypotheses

3.1 Design

To analyze voting behavior of real subjects under the mean and the normalized median
rule, and to assess their respective merits, we conducted a laboratory experiment. We
ran eight sessions at the KD2Lab of Karlsruhe Institute of Technology in October 2015.
Each session involved of three fixed groups with five participants, respectively. For each
of the eight sessions, 15 participants (120 in total) were recruited via ORSEE (Greiner,
2015). A session lasted on average about 1 hour and 15 minutes, the software we used
was z-Tree (Fischbacher, 2007). The average payoff of the participants in the experiment
was 13.98 Euros, including a show-up fee of 5 Euros.

Subjects were informed that they would participate in the collective determination
of the allocation of 100 monetary units to three public projects in a group with four
other anonymous subjects. Subjects’ per period payoff function in the unit ECU was
the following:5

ui(x) = 10 +
760

4 + d(x, pi)
, (3.1)

5Experimental Currency Unit; 100 ECU corresponded to 1.00 Euro.
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where pi denotes the peak of individual i and x the social outcome.6 With this specifi-
cation, the maximal payoff per period (when the outcome coincides with one’s peak) is
200 ECU and the minimum payoff is about 13.73 ECU (the highest possible distance
of the outcome to one’s own peak is 200). Fig. 2 depicts the payoff function which was
also shown to subjects during the experiment; we chose the sharp decline close to the
maximum to incentivize optimal behavior.

20 40 60 80 100 120 140 160 180 200

20
40
60
80

100
120
140
160
180
200

Distance

ECU

Figure 2: The payoff function

Subjects were informed about their own peaks (and hence the entire payoff function)
under the ‘no info’ treatment and also about the peaks of the four other participants
of their group under the ‘full info’ treatment. Once all group members had cast their
vote, the outcome was made public and subjects were informed about their respective
payoffs. Information on the individual votes of previous rounds was not disclosed. The
aggregation of the votes was either done by the mean (the first four sessions) or the
normalized median rule (the last four sessions). Under the ‘no info’ treatment each peak
distribution was played for five periods and under the ‘full info’ treatment for three
periods.7 The ‘no info’ treatment was played first followed by the ‘full info’ treatment.
The peak distributions, information and number of periods were identical for the two
voting rules so that we can directly compare them.

6This function arises by taking the function f(t) = 10 + 760/(4 + t) in (2.1).
7We chose the larger number of periods for the ‘no info’ treatment to give subjects the possibility to

learn relevant qualitative aspects of the peak distribution.
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3.2 Peak Distributions and their Focal Nash Equilibria

We used the following four peak distributions as between-subject variables.8 Peak distri-
bution I is the same as in Example 1. The numbers in the top block in Table 1 describe
the peaks of the five participants, for instance participant 1 has the peak p1 = (20, 20, 60),
participant 2 has the peak p2 = (10, 65, 25), etc. The second block describes the ‘fo-
cal’ Nash equilibrium under the mean rule in which every agent reports the vertex that
is closest to her own peak. In the appendix we prove that this is indeed the unique
Nash equilibrium in which all agents report one of the three extreme points in which all
the money is allocated to one project; moreover, in this equilibrium best responses are
unique (i.e. the strategy combination constitutes a strict Nash equilibrium). Observe
that participant 1 receives her peak in this equilibrium. The third block describes the
‘focal’ Nash equilibrium under the normalized median rule. As already noted in Exam-
ple 1 above, participant 1 receives her peak in this equilibrium by misrepresenting her
peak. In the appendix, we show that this is the only Nash equilibrium in which at least
four participants report truthfully.

Participant

I 1 2 3 4 5 x(q∗)

20 10 10 70 5

pi 20 65 8 10 10

60 25 82 20 85

0 0 0 100 0 20

q
∗(Mean)
i 0 100 0 0 0 20

100 0 100 0 100 60

≥10 10 10 70 5 20

q
∗(NMed)
i ≥10 65 8 10 10 20

30 25 82 20 85 60

Table 1: Peak distribution I with focal Nash equilibria

The second peak distribution with ‘focal’ equilibria is as follows.

8Each group of 5 subjects was assigned three out of four distributions. The peak distribution was kept
fixed within each session, but the individual peaks were re-assigned after the ‘no info’ treatment.
E.g. in session 1, all groups played with peak distributions I,II, and III, whereas in session 2, groups
played peak distributions I,II, and IV and so on. Sessions 1-4 differed from sessions 5-8 only by the
treatment variable rule.
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Participant

II 1 2 3 4 5

40 75 70 20 12

pi 30 10 15 15 78

30 15 15 65 10

0 100 100 0 0 40

q
∗(Mean)
i 50 0 0 0 100 30

50 0 0 100 0 30

20 75 70 20 12 40

q
∗(NMed)
i ≥15 10 15 15 78 30

≥15 15 15 65 10 30

Table 2: Peak distribution II with focal Nash equilibria

The ‘focal’ Nash equilibrium for the peak distribution II under the mean rule is given
in the second block in Table 2. The appendix shows that this is the only (strict) Nash
equilibrium in which at least four participants vote for one of the three extreme alloca-
tions under the mean rule. Participant 1 receives her peak splitting the budget evenly
between projects 2 and 3. Also under the normalized median rule, participant 1 can
receive her peak by misrepresentation – provided that all other report truthfully. Again,
from the point of view of strategic simplicity, this is the ‘focal’ Nash equilibrium since
it is the unique equilibrium in which at least four participants report truthfully (see
appendix).

The third distribution III is qualitatively different. As can be seen from the peaks
of the five participants in the top block of Table 3, participant 3 occupies the median
position in every coordinate. By consequence, in this example sincere voting is indeed a
Nash equilibrium under the normalized median rule by Proposition 2, and arguably the
‘focal’ one. On the other hand, the focal equilibrium under the mean rule, i.e. the unique
equilibrium in which all participants vote for an extreme allocation, is more difficult to
identify. The reason is that in this equilibrium – unlike in the two previous examples
– some participants (4 and 5) do not vote for the extreme allocation that is closest to
their own peak.
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Participant

III 1 2 3 4 5

10 20 20 30 15

pi 20 10 20 15 30

70 70 60 55 55

0 0 0 100 0 20

q
∗(Mean)
i 0 0 0 0 100 20

100 100 100 0 0 60

10 20 20 30 15 20

q
∗(NMed)
i 20 10 20 15 30 20

70 70 60 55 55 60

Table 3: Peak distribution III with focal Nash equilibria

The fourth peak distribution IV is similar to the third in that participant 3 again occu-
pies the median position in every coordinate. Again, sincere voting is a Nash equilibrium
under the normalized median rule by Proposition 2. The ‘focal’ Nash equilibrium un-
der the mean rule (i.e. the unique equilibrium in which at least four participants report
extreme allocations) is, however, different in character from the one in the previous distri-
bution III. If all participants except 3 vote for the closest extreme allocation, participant
3 can receive her peak by sincere reporting; this constitutes a strict Nash equilibrium.

Participant

IV 1 2 3 4 5

10 50 25 15 25

pi 20 30 50 60 70

70 20 25 25 5

0 100 25 0 0 25

q
∗(Mean)
i 0 0 50 100 100 50

100 0 25 0 0 25

10 50 25 15 25 25

q
∗(NMed)
i 20 30 50 60 70 50

70 20 25 25 5 25

Table 4: Peak distribution IV with focal Nash equilibria
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3.3 Social Welfare Optima

For each of the four peak distributions, there is a unique optimum in terms of utilitarian
social welfare, i.e. a unique maximizer of

∑5
i=1 ui(·) where the ui(·) are given as in

(3.1); for peak distribution I it is the allocation (10, 8, 82), for peak distribution II it is
(70, 15, 15), for peak distribution III it is (20, 20, 60), and for peak distribution IV it is
(25, 50, 25). Note that the social optimum is always a peak of a voter but it does not
always coincide with the allocation that minimizes the total raw distance to the peaks.
This is due to the particular convex shape of the transformation function f(·) in (3.1).
For peak distribution I, the minima of

∑5
i=1 d(pi, ·) are the feasible allocations in the

range of (10− 20, 10− 20, 60− 80) (including voter 1’s peak), and for peak distribution
II these are the feasible allocations in the range (40 − 55, 30, 15 − 30) (again including
voter 1’s peak); for peak distributions III and IV the distance minimizing and welfare
maximizing allocations coincide and are given by the coordinate-wise median (i.e. voter
3’s peak), respectively. In particular, the ‘focal’ Nash equilibria coincide with the social
welfare optimum only for peak distributions III and IV.

3.4 Summary of the Design

Summarizing the design of the lab experiment, we ran four sessions for each voting rule.
In each session three groups of five subjects voted on the allocation of 100 monetary
units. Every group was randomly assigned three peak distributions, each of which was
played for 5 periods under no information and for 3 periods with full information about
the other voters’ peaks. We thus observed a total of 2.880 individual decisions and 576
social outcomes. Since these observations are not independent, we clustered them in the
statistical analysis, see Footnote 10 below. We have 12 independent observations per
treatment variable rule; for the treatment variables peak distribution and info, we
have 24 observation per treatment and 12 per voting rule.

3.5 Hypotheses

With the data from our laboratory experiment, we tested the following hypotheses.

3.5.1 Mean Rule

Hypothesis (H1.1). Under the mean rule, sincere reporting occurs less fre-
quently with full information than without information about the other par-
ticipants’ peaks.

The rationale for this hypothesis is that without any information about the other
participants’ peaks the optimal strategy is ambiguous, and hence participants may be
tempted to fall back to the cognitively simplest strategy available, which is sincere re-
porting. On the other hand, under full information the computation of the optimal (in
general, non-truthful) strategy in the focal Nash equilibrium is frequently not difficult.
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Hypothesis (H1.2). Under the mean rule, the focal Nash equilibrium strategy
will be played more often with full information than with no information.

We expect that participants understand the possibility of strategic voting under the
mean rule in particular under full information. More specifically, we hypothesize that
participants will turn to the ‘focal’ Nash strategy, at least in those cases in which this
means voting for the extreme allocation closest to one’s own peak. This is true for
all participants under the distribution I, for participants 2-5 under the distribution II,
for participants 1-3 under the distribution III, and for participants 1,2,4,5 under the
distribution IV.

Hypothesis (H1.3). Nash play increases over time under the mean rule.

We hypothesize that subjects adapt voting behavior over time both under no info
and under full info and learn to play the focal Nash equilibrium strategy. We examine
learning effects in particular by testing if individuals play a best response to the result
of the previous round.

3.5.2 Normalized Median Rule

Since truth-telling is the focal Nash strategy for almost all participants independently of
the information that they receive, our first hypothesis is that the share of sincere votes
is the same in both information treatments.

Hypothesis (H2.1). Under the normalized median rule, the share of sincere
votes is the same under no information and under full information.

A possible argument against this hypothesis is that strategic voting is sometimes
possible under the normalized median rule (for participant 1 under the peak distributions
I and II). But the beneficial manipulation is difficult to detect and part of Hypothesis
H2.1 is that also subjects in the role of participant 1 under peak distributions I and II
will resort to the cognitively simplest strategy, i.e. sincere voting. One may also wonder
if a Bayesian player would respond differently under the no information as compared
to the full information condition. However, even for a Bayesian player sincere voting
would be an optimal strategy given, say, uniform beliefs about the peak distribution of
the others.

Hypothesis (H2.2). Under the normalized median rule, a best response to
truth-telling of all other participants is played more frequently under full
information than under no information.

A weaker hypothesis than focal Nash play (i.e. sincere voting in most cases) is that
subjects only play a best response to truth-telling of the other participants, without
necessarily being sincere themselves whenever they are not pivotal. On the other hand,
for a ‘pivotal’ participant (i.e. participant 1 under distributions I and II, and participant
3 under distributions III and IV, respectively) the focal Nash strategy and the best
response to truth-telling of the others coincide. The rationale for Hypothesis H2.2 is
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that only under full information each participant knows if she is pivotal or not. Thus,
under no info truth-telling is the ‘safe’ strategy while under full info also non-truthful
best responses are easily identifiable.

3.5.3 Mean versus Normalized Median Rule

Concerning the comparison between the two rules, we have the following hypotheses.

Hypothesis (H3.1). The normalized median rule leads to a higher share of
sincere votes as compared to the mean rule.

Since truth-telling is a focal strategy for most of the subjects under the normalized
median rule and non-truthful strategic voting is focal for at least four participants in
each peak distribution under the mean rule, we hypothesize that the shares of sincere
votes are higher under the normalized median rule as compared to the mean rule.

Hypothesis (H3.2). The distance of the votes from the true peak is higher
under the mean than under the normalized median rule.

This is a closely related and arguably weaker version of Hypothesis 3.1. The expecta-
tion that participants deviate more from the sincere vote under the mean rule is derived
from the fact that the focal strategy there is to vote for an extreme allocation. Even if
subjects do not vote sincerely under the normalized median rule, there is no apparent
reason why they would choose to vote for extreme allocations.

4 Experimental Results

This section presents the results from our experiments. First, we look at the aggregated
group outcomes and then at individual decisions.9

4.1 Social Outcomes

We classify the social outcomes according to the categories truth-telling, focal Nash,
peak boundedness, Pareto efficiency and welfare optimality. We call an allocation peak
bounded if it is within the range of the lowest and highest peak in each coordinate.
Clearly, the peak bounded allocations contain the Pareto efficient allocations which in
turn contain the welfare optimal allocations. In total, we observed 576 social outcomes,
288 for each rule; 360 outcomes were derived under no information and 216 under full
information.10

Whereas in this section, we only consider aggregated results we go into more detail of
the individual decisions in the subsequent sections. The difference is important since,
e.g., an outcome might be classified as Nash outcome even though no individual subject

9More details and additional analyses are provided in Rollmann (2020).
10For the statistical analysis, we cluster the data on a group level. Each of the 24 groups provides 24

outcomes, derived from 3 different peaks and a total of 8 periods. Thus, we have 12 independent
observations for each voting rule.
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played a Nash strategy; conversely, even if most of the subjects played the focal Nash
strategy, one single deviation may significantly distort the social outcome. The most
important findings are summarized in Table 5.

4.1.1 Truth-telling Outcomes

A social outcome is classified as ‘truth-telling outcome’ if it corresponds to the outcome
that would result from sincere voting. The truth-telling outcome is therefore either the
mean or the normalized median of the true peaks. Our data exhibit 39 out of 576 (6.77%)
truth-telling outcomes. Remarkably, all of these outcomes occur under the normalized
median rule, and the difference between the rules is significant (Wilcoxon rank-sum test,
Z = −4.164, p < 0.001). If we consider only the normalized median rule, we have 13.54%
truth-telling outcomes that divide into 7.22% of all outcomes under the no information
and 24.07% under the full info treatment. In line with the theoretical prediction, we
observed only two truth-telling outcomes in total under peak distributions I and II, but
37 in total under distributions III and IV.

4.1.2 Focal Nash Outcomes

By ‘focal Nash outcome’ we mean the outcomes specified in Tables 1–4 above. Recall
that the focal Nash outcomes are the same under both rules for all considered peak dis-
tributions. We observed a total of 47 focal Nash outcomes. More specifically, under the
mean rule 2.78% of all outcomes were focal Nash, and 13.54% under the normalized me-
dian. The difference is significant according to a Wilcoxon rank-sum test (Z = −3.189,
p = 0.0014). The focal Nash outcomes we observed under the mean rule were all under
peak distribution II (8 in total). Recall that the 37 truth-telling outcomes under the
normalized median rule and peak distributions III and IV coincide with the focal Nash
outcome. This means that we observed only two focal Nash outcomes under the nor-
malized median rule and peak distributions I and II. This already hints at the fact that
participant 1 was not able to exploit the possibility of receiving her most preferred out-
come by a clever strategic manipulation. The focal Nash outcomes divide into 13.89%
of all outcomes under full information and 4.72% under no information. This seems
reasonable since without information the optimal response is much harder to identify.

4.1.3 Peak Bounded and Pareto Efficient Outcomes

In our experiment, a total of 86.81% of all outcomes were peak bounded and 73.26%
were Pareto efficient. Note that under both rules the truth-telling outcome is Pareto
efficient (hence a forteriori peak bounded) given our assumptions on preferences and
given the specific peak distributions. The total percentages for the normalized median
rule are slightly higher (88.89% peak bounded and 76.74% efficient) than for the mean
rule (84.72% peak bounded and 69.79% efficient) (Wilcoxon rank-sum test, Z = −1.319,
p = 0.1872 and Z = −1.896, p = 0.058). Importantly, the share of peak bounded and
Pareto efficient outcomes is significantly higher for the normalized median rule under
full information (Wilcoxon rank-sum test, Z = −3.231, p = 0.0012 and Z = −3.262,
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p = 0.0011).11 Since the two rules have exactly the same (focal) Nash equilibrium
outcome for all four peak distributions, under the rationality assumption and complete
information, the observed differences in the welfare properties can only be traced back
to the very fact that two distinct rules have been employed.

In general, we find we find high percentages of Pareto efficient outcomes under both
voting rules. The concern of the theoretical implementation literature about the exis-
tence of inefficient Nash equilibria under median-based aggregation rules (Saijo et al.,
2007) therefore seems to be less relevant from an empirical perspective in our budget
allocation context.

4.1.4 Utilitarian Social Welfare

The total percentage of welfare optimal outcomes was 6.60% and all these were attained
by the normalized median rule under which they amount to 13.19% of all outcomes.
Given that the focal Nash outcome is only welfare optimal under peak distributions III
and IV, this appears to be a reasonable share. Due to the between-subject design, we
can compare the outcomes under the mean and the normalized median rule directly, and
we find a significantly higher share of welfare optimal outcomes under the normalized
median rule as compared to the mean rule (Wilcoxon rank-sum test, Z = −4.161,
p < 0.001). The degree of information also significantly affects the shares of welfare
optimal outcomes under the normalized rule: under full information, we observed 23.15%
welfare optimal outcomes in total, whereas under no info only 7.22% (Wilcoxon signed-
rank test Z = −2.358, p = 0.0184).12

The expected utilitarian social welfare is significantly higher under the normalized
median rule. Specifically, the expected per round payoff is 39.27 under the normalized
median rule versus 33.33 under the mean rule (Wilcoxon rank-sum test, Z = −3.349,
p < 0.001). The difference is also significant in each info treatment separately: 36.78
under the normalized median rule versus 32.80 under mean rule in the no info treatment
(Wilcoxon rank-sum test, Z = −2.598, p < 0.0094), and 43.41 under the normalized
median rule versus 34.22 under mean rule in the full info treatment (Wilcoxon rank-sum
test, Z = −2.368, p = 0.0179).13

4.1.5 Summary

Table 5 summarizes the results on outcomes by rule and information treatment. We
highlight the following findings. First, subjects understand well that sincere voting

11The difference between the two rules is not significant in the no info treatment (Wilcoxon rank-sum
test, Z = 0.447, p = 0.6546 and Z = 0.938, p = 0.3483).

12As a robustness test, we also looked at the outcomes that minimize the sum of the raw distance to the
voters’ peaks. Their total share is 21.18% of all outcomes, and again the share under the normalized
median rule (31.60%) is significantly higher than under the mean rule (10.76%) (Wilcoxon rank-sum
test, Z = −3.428, p < 0.001). The share of distance minimizing outcomes is especially high under
the normalized median rule in the full info treatment, where it amounts to 44.44% of all outcomes.

13As a robustness check, we also looked at the expected total distance of the outcome from the peaks
and find again that the normalized median rule attains a significantly smaller value than the mean
rule (Wilcoxon rank-sum test, Z = 1.965, p = 0.0494).
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is not optimal under the mean rule. On the other hand, the share of truth-telling
outcomes under the normalized median rule is quite low, in particular in the no info
treatment. Secondly, even though the social outcome did not generally coincide with
the Nash outcome, voters coordinated on Pareto efficient outcomes even under the no
info treatment. In the full info treatment, the share of both the peak bounded and
the Pareto efficient outcomes is significantly higher under the normalized median rule.
Thirdly, while the share of welfare optimal outcomes is low in total they occur only
under the normalized median rule (and are thus significantly higher under both info
treatments for the normalized median rule). More importantly, the expected utilitarian
social welfare is higher under the normalized median rule for both treatments. We
therefore state this result explicitly:

Result. The normalized median rule leads to significantly higher expected
utilitarian social welfare under either information treatment.

Total Mean Median

NI FI NI FI NI FI

Truth-telling 6.77 0 13.54

3.61 12.04 0 0 7.22 24.07

Nash 8.61 2.78 13.54

4.72 13.89 2.22 3.70 7.78 23.15

Peak bounded 86.81 84.72 88.89

85.00 89.81 86.11 82.41 83.89 97.22

Pareto efficient 73.26 69.79 76.74

71.11 76.85 72.78 64.81 69.44 88.89

Welfare optimal 6.60 0 13.19

3.61 11.57 0 0 7.22 23.15

No. of outcomes 576 288 288

360 216 180 108 180 108

Table 5: Outcome results (percentages)

4.2 Individual Decisions

We turn to the analysis of individual decisions; their total number was 2.880, split evenly
into 1.440 decisions under the mean and 1.440 under the normalized median rule.

4.2.1 Mean Rule

In the light of Hypotheses H1.1-3, we are interested in particular in the shares of truth-
telling and Nash play in the context of the mean rule. We also investigate if individuals
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played myopic best responses.

Truth-telling ‘Truth-telling’ prevails if the vote corresponds exactly to the most pre-
ferred allocation, the peak. However, in the context of the mean rule we are mainly
interested in those cases of sincere voting in which truth-telling is not the focal Nash
strategy. Thus, for the mean rule we exclude the decisions of participant 3 in peak dis-
tribution IV. We already observed above that the truth-telling outcome never occurred
under the mean rule, therefore we may also expect low shares of individual truth-telling;
moreover, according to Hypothesis H1.1 we hypothesize that the share of truth-telling
is even lower when information about the others’ peaks is disclosed.

In total only 5.70% of all votes were sincere under the mean rule and this figure stays
low for all four peak distributions. Moreover, truth-telling decreases over time, especially
under the no info treatment. While 21.05% of the votes are sincere in the first period,
this number declines to 2.34% in the fifth period. Thus, subjects indeed learn over time
that sincere voting is not optimal under the mean rule.14

We ran a Wilcoxon signed-rank test in order to test for differences in the distribution
of truth-telling among both information treatments. We are able to reject the null
hypothesis and find support for the alternative Hypothesis H1.1: under the mean rule
the share of truth-telling is significantly higher in the no info treatment as compared to
the full info treatment (Z = −2.280, p = 0.0226).

Focal Nash Play We observed a high share of 35.76% of total votes that are in ac-
cordance with the focal Nash equilibrium under the mean rule. If we allow for small
deviations and count all votes that are within a 10% distance from the precise Nash
strategy as Nash tendency, the figure even rises to 48.54% of Nash play or Nash ten-
dency.15

Hypothesis H1.2 states that we expected even more focal Nash play with full informa-
tion than with no information. Given our data, we can indeed reject the hypothesis that
the distribution of votes classified as focal Nash strategies are similar for the two infor-
mation treatments. Instead, we find that the median of focal Nash strategies is higher
with full information than with no information, supporting Hypothesis H1.2 (Wilcoxon
signed-rank test, Z = 2.866, p = 0.0042).

Moreover, we observed learning effects over periods, as expected in Hypothesis H1.3.
We find a higher share of focal Nash play in the last period (i.e. period 5) as compared
to the first period under no information (Wilcoxon signed-rank test, Z = −2.521, p =
0.0117). The share under full information in the last period 3 is also higher as compared

14In order to get a better insight on the factors that influence truth-telling, we ran a regression of the
absolute deviation of the vote from the true peak on a variety of independent variables. The results
of the regressions can be found in Table 6 in the appendix.

15This is consistent with our above finding that only very few social outcomes correspond to the focal
Nash outcome (2.78%) because a single individual deviation from the focal Nash strategy in a group
is enough to prevent the Nash outcome to occur as the social outcome. This observation suggests at
the same time that the relatively high frequency of focal Nash play prevails across all groups, and is
not due to group specific factors such as e.g. the particular peak distribution.
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to the first period (Wilcoxon signed-rank test, Z = −1.651, p = 0.0987).16 Figures 3
and 4 summarize the truth-telling, Nash play and Nash tendency shares of all votes over
the periods for each peak distribution under no and full information.

Figure 3: Results of the mean rule; no info (percentages by period)

Figure 4: Results of the mean rule; full info (percentages by period)

The data in Figures 3 and 4 also clearly reflect the suspicion that the identification
of the focal Nash strategy is more difficult under peak distribution III because here
participants 4 and 5 must not vote for the extreme allocation that is closest to their
peak.

Best Response to Previous Period A reasonable alternative hypothesis to the choice
of the focal Nash strategy is the assumption that subjects act optimally vis-à-vis the
observed behavior of the other participants in the previous period (‘best response to pre-
vious period,’ or, in short, BRPP ). Under the mean rule, this is a particularly attractive
behavioral rule because it only requires knowledge of the social outcome and the own
vote in the previous round (and that information is available for all participants both
under the no info and the full info treatment after the first period). Indeed we found
a share of 46.94% of BRPP votes (in rounds 2-5). Of course, BRPP behavior is not
possible in round 1. In the no info treatment, we considered the possibility that sub-
jects behave as Bayesian players with uniform beliefs about the peak distribution of the
others. In almost all cases, the best response to a uniform belief however coincides with

16In the appendix, we provide the regression results for the distance between the actual vote and the
focal Nash strategy. We find that the period has a significant effect on the proximity between the
Nash strategy and the actual vote, which indicates a learning effect over time towards Nash play.
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the focal Nash strategy, which may explain why the focal Nash strategy was sometimes
chosen in the no info treatment even in the first round. In those few cases in which it
does not coincide with the focal Nash strategy, we do not find much empirical evidence
of optimal behavior with respect to uniform beliefs.17

Over all peaks and degrees of information, the share of BRPP is higher in the last
period (t = 5 or t = 3) as compared to the second (t = 2). This is well in line with our
analysis of Nash play and lends further support to our general hypothesis that subjects
adapt their behavior and learn over time. As before, the share of BRPP under peak
distribution III is lower than under the other three distributions. Remarkably, it is
nevertheless considerably higher than the share of focal Nash play (27.78% BRPP play
vs. 10.83% focal Nash play). From this, we conclude that even in those cases in which the
theoretical Nash equilibrium strategy is hard to identify a considerable share of voters
behaves strategically.

4.2.2 Results under the Normalized Median Rule

Under the normalized median rule, the following behavioral rules seem particularly
worthwhile to look at: truth-telling, focal Nash play and best response to truth (BRT ).
As already noted, truth-telling is the focal Nash strategy for all participants under peak
distributions III and IV. This is not true under peak distributions I and II since in both
of these participant 1 can manipulate the outcome to her benefit by misreporting; for this
participant, the focal Nash strategies and the set of best responses to truth-telling of the
other participants coincide (note that these strategies are not unique since they prescribe
a fixed level of expenditure only in one project, respectively, leaving some flexibility of
how to allocate the rest to the other two projects, see Tables 1 and 2 above).

Under peak distributions I and II, we hypothesized that few of the subjects in the
role of participant 1 would identify the manipulation possibility and play the focal Nash
strategy. And indeed none of them did. (Under the no info treatment, it is in fact not
clear how subjects in the role of participant 1 could possibly detect this manipulation
opportunity.)

Truth-telling Even though truth-telling is part of the focal Nash strategy for 18 out
of 20 participants only 18.96% of all votes were sincere (i.e. equal to the true peak).
Moreover, we find a tendency of less truth-telling in later periods uniformly over all
peak distributions and degrees of information; specifically, the share of sincere votes is
lower in the last period than in the first period. Figure 5 displays the results under no
info and Figure 6 under full information (recall that for peak distributions III and IV
the focal Nash strategy is truth-telling, i.e. the blue and red curves coincide; only the
red curve is depicted).

Remarkably, if we look at the ‘pivotal’ participants 1 under the peak distributions I and
II, and participant 3 under distributions III and IV, we observe a higher share of sincere
votes. These participants vote more often sincerely as the other non-pivotal participants

17The share is 8.89% in these cases, and even this figure derives mainly from one peak for which playing
a best response to a uniform belief represents a tendency to Nash play.
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(29.86% vs. 16.23%) and the difference is even greater in the full info treatment (41.67%
vs. 18.98%). While this means that the pivotal participants in peak distributions I and
II did not identify the manipulation possibility, it is also an indication that the pivotal
participants understood well that their vote ‘matters.’ In the appendix, we provide
regression results of the distance of the vote to the true peak which gives further insights
to this issue and shows – among other things – that pivotal participants deviate less from
their true peak than non-pivotal participants. Moreover, the pivotal voters for whom
truth-telling is the focal Nash strategy deviate significantly less from their true peak as
compared to those pivotal voters who possess a beneficial manipulation possibility.

Figure 5: Results of the median rule; no info (percentages by period)

Figure 6: Results of the median rule; full info (percentages by period)

To test Hypothesis H2.1 we perform a Wilcoxon signed-rank test to compare sincere
voting under the two information treatments. Contrary to H2.1 we find a higher share
of truth-telling under full information over all periods and rounds (23.52% vs. 16.22%,
Z = 1.766, p = 0.0773). We note again that, if at all different, we should expect
to observe more truth-telling under no information because the optimal strategy of
participant 1 under peak distributions I and II prescribes non-truthful voting but the
precise vote can only be computed under full information. We can only speculate about
the reasons why we nevertheless observe more truthful votes in the full information
treatment. A possible clue may come from the answers of our questionnaire in which
some subjects stated that they ‘tried to irritate the others’ through misrepresentation
in the no info treatment.

We also compared the distributions of sincere voting under the peak distributions I
and II versus sincere voting under peak distributions III and IV, and find higher shares of
truth-telling under the latter two (Wilcoxon signed-rank test, Z = −3.007, p = 0.0026).
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This is what one would expect since in peak distributions III and IV truth-telling is the
focal Nash strategy for all participants.

Focal Nash Play The proportion of focal Nash votes amounts to a total of 17.01%. It is
at a level of 24% in the first period under no information, but remains stable only between
10.00% and 13.33% over periods 2 to 5. Under full information, focal Nash play decreases
unexpectedly from 27.22% in the first period to 17.78% in the third period. Comparing
the shares of focal Nash play under the different information treatments reveals 21.85%
under full information and 14.11% under no information. However, the difference is not
statistically significant according to a Wilcoxon signed-rank test (Z = 1.334, p = 0.1822).

Best Response to Truth-Telling Why did subjects not vote sincerely under the median
rule if they displayed quite rational behavior in general? The answer lies in the observa-
tion that non-sincere voting of non-pivotal participants is not by itself irrational. And
indeed a relatively high share of votes (59.72%) are best responses to the assumption of
sincere voting of the other participants (recall that for most participants truth-telling is
among the best responses). The precise figure fluctuates slightly but remains high over
all periods and peak distributions.

In Hypothesis H2.2, we conjectured a higher share of BRT under full information.
And indeed, while the shares of BRT are high under both treatments (56.00% under
no info and 65.93% under full info), we can confirm H2.2 (Wilcoxon signed-rank test,
Z = 2.275, p = 0.0229). Remarkably, a closer analysis reveals that the difference is
significant because of the higher share of truthful votes under full information. Indeed,
if we disregard the sincere votes and compare only the non-truthful BRT we get 41.89%
under no info and 44.07% under full info. Although the share of non-truthful BRT is
thus still higher under full info than under no info, the difference of the distribution is
no longer significant (Wilcoxon signed-rank test, Z = 0.667, p = 0.5047).

In view of the relatively low shares of truthful voting reported above, the overall con-
clusion of the analysis of our data under the normalized median rule is that a significant
proportion of subjects play a best response to the assumption of truth-telling by the other
participants without voting sincerely themselves. While this does not directly contradict
individual rationality, it evidently involves inconsistent beliefs about the behavior of the
group as a whole.

4.2.3 Mean versus Normalized Median Rule

We turn to the differences between the two voting rules regarding individual decisions.
First, we can reject the hypothesis of equal shares of truth-telling under the two rules
and find a significantly higher share of sincere votes under the normalized median rule
(18.96% vs. 6.18%, Wilcoxon rank-sum test, Z = −3.963, p < 0.001), which confirms
Hypothesis H3.1 and is in line with the results on truthful outcomes reported in Table
5.

Going further into detail, we consider not only truth-telling but also the ‘degree of
lying.’ According to Hypothesis H3.2 we expect a higher deviation of votes from the
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true peaks under the mean rule, which is indeed what we find in our data (Wilcoxon
rank-sum test, Z = 4.157, p < 0.001).

5 Conclusion

We briefly summarize our findings. First, we see a high level of rational behavior in our
subjects (mainly students from the Karlsruhe Institute of Technology). We conclude this
from the fact that (i) under the mean rule the focal Nash strategy is a good predictor of
individual behavior, and (ii) under the normalized median rule the same holds for best
response to truth-telling of the other participants. A significant proportion of subjects
understood the general logic behind the possible strategic manipulations of the mean
rule well and identified the optimal vote – at least in those cases in which this meant to
vote for the extreme allocation closest to one’s own peak. Our findings are thus well in
line with the analysis of the one-dimensional case provided in Marchese and Montefiori
(2011).

The behavior under the normalized median rule is multifaceted. On the one hand, a
remarkably large fraction of subjects played a best response to the assumption of sincere
voting by the other participants. Under full information, the pivotal participants under
peak distributions III and IV understood well that they are pivotal and a significant
fraction of them indeed voted sincerely.18 However, a significant proportion of non-
pivotal participants who choose a best response did not vote sincerely even when this
was among their best responses. In this respect, our findings confirm the results of Block
(2014) in the one-dimensional case.

Finally, we find significantly higher expected utilitarian social welfare under the nor-
malized median rule as compared to the mean rule, although in all of our examples
the two rules yield exactly the same focal Nash equilibrium outcomes. We view this as
an argument for the use of the normalized median rather than the mean rule in multi-
dimensional budget allocation problems. Naturally, however, conclusions concerning the
empirical welfare properties of the two rules have to be drawn with some care since these
depend not only on voters’ preferences but also on the specific shape of the underlying
peak distributions. What is comforting, though, is that the non-(Pareto)-efficient Nash
equilibria that theoretically exist under the (normalized) median rule seem to play no
role empirically.

18Not surprisingly, the pivotal participants under peak distributions I and II were not able to identify
their cognitively complex best response.
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Appendix

Focal Nash equilibria under the mean rule

For all four peak distributions, there exists exactly one Nash equilibrium under the mean
rule (the ‘focal’ Nash equilibrium) in which at least four agents vote for an extreme
allocation, i.e. an allocation in which the total budget is used only for one project; for
distributions I and III, in fact all five agents vote for an extreme allocation. That the
‘focal’ strategy combinations indeed constitute a Nash equilibrium is easily verified for
each of the four peak distributions; moreover, it is also easily seen that the corresponding
Nash equilibrium is strict (i.e. best responses are unique in equilibrium).

To verify the stated uniqueness property, one first shows that in any Nash equilibrium
such that at least four agents vote for an extreme allocation all three different extreme
allocations must be voted for by some agent for each of our four peak distributions. With
five participants this implies that at least one extreme allocation is the vote of exactly
one agent in equilibrium. Which one it is of course depends on the distribution. As
an example, consider peak distribution I with peaks p1 = (20, 20, 60), p2 = (10, 65, 25),
p3 = (10, 8, 82), p4 = (70, 10, 20) and p5 = (5, 10, 85). It is easily verified that the extreme
allocation for which exactly one agent votes in equilibrium cannot be the allocation
(0, 0, 100) (no matter who votes for this allocation). Hence, at least two agents vote for
(0, 0, 100) in equilibrium. If exactly two agents vote for (0, 0, 100), the outcome under the
mean rule is either (20, 40, 40) if only one agent votes for (100, 0, 0), or (40, 20, 40) if only
one agent votes for (0, 100, 0). In the first case, three agents prefer higher expenditure
on the third project and lower expenditure on the second project. In the second case,
three agents prefer higher expenditure on the third project and lower expenditure on
the first project. Thus in both cases, at least one agent would deviate from her vote as
only two agents vote for (0, 0, 100). The only remaining Nash equilibrium candidate is
thus the case in which three agents vote for (0, 0, 100), and one agent for (0, 100, 0) and
(100, 0, 0), respectively. The resulting outcome under the mean rule is (20, 20, 60), and
one easily verifies that all agents indeed choose mutual (unique) best responses. The
arguments for the other peak distributions is similar.

Fig. 7 illustrates the peak distributions and Nash equilibria under the mean rule.

Focal Nash equilibria under the normalized median rule

Proposition 2 implies that truth-telling of all agents is a Nash equilibrium for distri-
butions III and IV under the normalized median rule. On the other hand, as is easily
verified, sincere voting of all agents is not a Nash equilibrium for distributions I and II.
Indeed, in both cases participant 1 can strictly improve the truthful outcome by appro-
priate misrepresentation and get her most preferred allocation if all other participants
vote sincerely. That voting sincerely for participants 2-5 is indeed individually optimal
given the optimal misrepresentation of participant 1 can be proved by arguments similar

29



(a) I (b) II

(c) III (d) IV

Figure 7: Nash equilibria, mean rule

to that used in the proof of Proposition 2.

Regression Results Mean Rule

In order to get a better insight on the factors that influence truth-telling, we run a re-
gression of the ‘Peak-Vote-Distance,’ i.e. the absolute deviation of the vote from the true
peak, on various independent variables. The results of the regression with fixed effects
for the subjects can be found in Table 6. We include a total of 1,440 observations, where
each of the 60 subjects makes 24 decisions over time. We consider the voting behavior
over periods and expect that the distance to the peak increases over time. Three further
distance measures are given: ‘Peak-Nash-Distance’, ‘Nash-Vote-Distance’ and the dis-
tance between the peak and the result of the previous period (‘P-PR-Distance’), which
we expect to have a positive effect on the deviation from truth-telling. We construct
a dummy variable depending on the position of the Nash strategy: at the edge of the
simplex, truth-telling or neither one. We include also a dummy variable for the peak
distribution and information level.
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We find a positive and significant correlation with the variable ‘period’, indicating
a higher degree of deviation from truth-telling over time. As anticipated, truth-telling
decreases slightly with an increasing distance between the true peak and the theoretical
Nash strategy, since a greater ‘Peak-Nash-Distance’ indicates that participants have to
deviate more from their true peak to play their Nash strategy.

Contrary to our expectations, the deviation from the peak is positively affected by
the distance between the theoretical Nash strategy and the actual vote, i.e. ‘Nash-Vote-
Distance’. This implies that the higher the deviation of the actual vote from the predicted
Nash strategy, the more extreme participants tend to ‘lie.’ Given Nash play of the other
four voters, this strategy results in a lower payoff as the outcome moves further away
from the peak. After the experiment, we asked the participants about their approach to
the voting. Some argued that they tried to deceive the others in one period by votes that
lead to a lower payoff in order to receive a higher payoff in the next period. This behavior
might explain the results that may seem non-strategic at first sight. Participants also
tend to significantly less truth-telling with an increasing distance between own peak and
the result of the previous round (‘P-PR-Distance’); this hints at a learning effect over
periods of increasing strategic voting. Although in absolute numbers the difference of
truth-telling across the peak distributions is low, we find a significant and high difference
in the extent of truth-telling depending on the theoretical Nash strategy.

We find that deviation from the true peak (the extent of lying) is significantly lower
if the theoretical Nash strategy is to vote zero for only one project or truth-telling
(as captured by the dummy variable ‘edgetruth d’), compared to voting zero for two
projects. We conclude that the degree of lying is lower if the theoretical Nash strategy
is not to choose a vertex. Since the Nash strategy is not straightforward in these cases,
it seems reasonable to vote for an allocation close to the peak. The dummy variable
‘peak d’ takes the value 1 if the votes belong to peak distribution III and 0 else. For
two peaks in this distribution, the Nash strategy is to vote zero for the project with the
highest peak value and therefore not easy to detect. We find a negative and significant
coefficient for the peak dummy, indicating that for this distribution the deviation from
the peak is lower. Subjects may face more difficulties in finding the Nash strategy and
may therefore find it natural to vote for an allocation closer to the peak as compared to
the other peak distributions. We also find a significant effect of the degree of information
on the distance from the peak. The positive coefficient of the dummy variable ‘info d’
implies that full information increases the extent to which voters deviate from their peak.
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Dependent variable:

Peak-Vote-Distance

period 3.935∗∗∗

(0.722)

Peak-Nash-Distance 0.168∗∗

(0.069)

Nash-Vote-Distance 0.253∗∗∗

(0.050)

P-PR-Distance 0.030∗∗

(0.013)

edgetruth d −14.012∗∗∗

(4.012)

peak d −23.498∗∗∗

(2.516)

info d 16.230∗∗∗

(1.634)

Observations 1,440
R2 0.261
Adjusted R2 0.226
F Statistic 69.439∗∗∗ (df = 7; 1373)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Standard errors are clustered by group

Table 6: Regression results mean rule: peak-vote-distance

We further run a fixed effects regression of the ‘Nash-Vote-Distance’ to get a better
insight on the deviation from votes to the Nash strategy. Table 7 shows the regression
results, again including a total of 1,440 observations for 60 subjects over 24 rounds. The
explanatory variables are the same as in the previous analysis for truth-telling.

The coefficient of ‘period’ has the anticipated negative sign and is significant. The
negative sign supports the assumption of a learning effect in playing the Nash strategy
over time: the more advanced the voting game, the closer the votes are to the Nash
strategy. We can thus confirm Hypothesis H1.3: Nash play increases over time under
the mean rule. Another indicator for the adapting of voting behavior is the negative and
significant coefficient of the distance between the peak and the result of the previous
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period (‘P-PR-Distance’), which reflects the higher gain in utility by Nash play if the
peak is distant from the social outcome of the last round.

Dependent variable:

Nash-Vote-Distance

period −3.350∗∗∗

(1.069)

Peak-Nash-Distance 0.359∗∗∗

(0.083)

Peak-Vote-Distance 0.583∗∗∗

(0.107)

P-PR-Distance −0.063∗∗∗

(0.020)

edgetruth d 20.431∗∗∗

(6.691)

peak d 21.872∗∗∗

(6.345)

info d −24.673∗∗∗

(2.410)

Observations 1,440
R2 0.294
Adjusted R2 0.260
F Statistic 81.736∗∗∗ (df = 7; 1373)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Standard errors are clustered by group

Table 7: Regression results mean rule: Nash-vote-distance

The positive and significant correlation of the deviation of the vote to the theoretical
Nash strategy and the ‘Peak-Nash-Distance’ highlights the growing difficulties of finding
the corresponding Nash equilibrium the more remote the Nash strategy is from the
peak. The distance between Nash play and vote increases with a higher ‘Peak-Vote-
Distance’, indicating that manipulation occurs for subjects with a Nash strategy that is
more ‘difficult’ to predict but not towards the Nash equilibrium. We also find a higher
deviation from the Nash strategy if the focal strategy is to vote zero only for one project
(edge) or to vote for the actual peak (truth). The positive coefficient indicates that
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strategies in the vertex are easier to identify, and we could see in the last section that
subjects with non-vertex Nash strategies tend to truth-telling. Subjects also vote more
often for allocations that deviate more from the Nash strategy at peak distribution III
as compared to the other peak distributions, see the coefficient of the dummy-variable
‘peak d’ in Table 7.

We also find an effect of the degree of information on the distance to the Nash strategy
since the coefficient of the dummy variable ‘info d’ is negative and significant. This
result implies that with full information, the votes go further into the direction of the
Nash strategy as compared to the no information treatment and thus further supports
Hypothesis H1.2.

Regression Results Normalized Median Rule

To get further insight on the variables that impact the deviation from truth-telling, we
regress on the distance between the peak and the vote for the normalized median rule.
The results of the fixed effects regression can be found in Table 8, again with 1,440
observations derived from 60 subjects over 24 rounds.

Dependent variable:

Peak-Vote-Distance

period 1.933∗∗

(0.828)

info d -0.034
(1.606)

PivotalVoter −8.096∗∗∗

(1.646)

PivotalTruth −13.856∗∗∗

(2.824)

Observations 1,440
R2 0.056
Adjusted R2 0.012
F Statistic 20.256∗∗∗ (df = 4; 1376)

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
Standard errors are clustered by group

Table 8: Regression results normalized median rule: peak-vote-distance

We find that subjects deviate more from their true peak the higher the period. While
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we find that the shares of true votes are higher under full information, we are not able
to find a significant effect of the information on the extent of ‘lying.’ We include two
dummy variables to control for pivotal voters (participant 1 under peak distributions
I and II and participant 3 under distributions III and IV) and pivotal voters whose
focal Nash strategy is truth-telling (participant 3 under distributions III and IV). The
results are as one would expect: pivotal voters deviate from truth-telling significantly
less compared to non-pivotal voters, see the negative coefficient of the dummy variable
‘PivotalVoter’. Moreover, the pivotal voters for whom truth-telling is a Nash strategy
deviate significantly less from their true peak as compared to those pivotal voters who
possess a manipulation possibility, as indicated by the negative coefficient of ‘Pivotal-
Truth’.
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Experimental Instructions

In the following we reproduce the experimental instructions; the original instructions
were in German.

1 Preliminary Remarks

Welcome to the experiment and thank you for your participation. At the beginning we
would like to ask you to switch off your mobile phones and stop all communication. If
you have any questions, please direct them as quietly as possible to the experiment leader
and do not speak to the other participants. In this experiment you earn cash depending
on your decisions and the decisions of the other participants. During the experiment
your account balance will be displayed in the unit ECU . 100 ECU equals e 1.00. At
the end of the experiment you will be paid your last account balance. For your punctual
appearance at the experiment you will receive an additional e 5.00.

2 Mathematical Basics

First we would like to familiarize you with some mathematical basics that will be im-
portant for the experiment.

Treatment Mean Rule:

2.1 Average (arithmetic mean)

The average is a mean value defined as the quotient of the sum of all values and the
number of values. The formula for calculation is

x =
1

n

n∑
i=1

yi =
y1 + · · ·+ yn

n

Example: Given are the five numbers 3, 19, 58, 25, 80. The average is x = 37, because
1
5 · (3 + 19 + 58 + 25 + 80) = 185

5 = 37.

Treatment Median Rule:

2.1 Median

The median of an odd number of values is the number that is in the middle position
after sorting the values in ascending order.

Example: Given are the five numbers 3, 19, 58, 25, 80. The median is x =25, namely
the middle number 3, 19,25, 58, 80.

If several median values are determined, which in total should reach a certain value,
an adjustment of the medians may be necessary. This can be achieved by normalization.
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Normalization When adjusting the determined medians by normalization, the ratio of
the median values to each other is maintained and the individual values are increased
or decreased together until their sum reaches the targeted value.

Example: The amount of 100 is to be divided into three components A, B and C.
The underlying values are as follows:

1. A1 = 80, B1 = 0, C1 = 20

2. A2 = 20, B2 = 70, C2 = 10

3. A3 = 10, B3 = 50, C3 = 40

This results in the medians MA = 20, MB = 50 and MC = 20 after separate consid-
eration of A, B and C. Since 20 + 50 + 20 < 100, an adjustment is necessary. The
ratio between MA, MB and MC is 2 : 5 : 2, accordingly after normalization M∗A = 222

9 ,
M∗B = 555

9 and M∗C = 222
9 , so that M∗A + M∗B + M∗C = 222

9 + 555
9 + 222

9 = 100.

2.2 Absolute Value Function

|x| is the absolute value of x. This is also known as abs(x).

Example: | − 15 + 12| = | − 3| = 3.

3 Structure of the Experiment

You will take part in an election to determine the respective level of funding for three
projects. Four more people take part in the election. Each participant is assigned an
individual most preferred allocation, which is labeled p1, p2, and p3. p1 describes the
desired value for project 1, p2, and p3 for projects 2 and 3. A total of 100 monetary
units is available and must always be used entirely. Thus your assigned values are
always between 0 and 100 and add up to 100. Your most preferred allocation remains
the same for several rounds, as do those of the other participants. As soon as your
assigned allocation changes, the other participants’ allocations change as well. Your
payout depends on the difference between your most preferred allocation and the outcome
of all five votes. You will find the exact payout function in section 3.3.

3.1 Submissions of Votes

Each of the five participants submits a vote which is included in the election. That
means all five participants name three natural numbers between 0 and 100, which add
up to 100 again. If the sum of your three values does not equal 100, or if your individual
values are not natural numbers, you will receive an error message and will have to adjust
your vote.
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3.2 Election

On the basis of all five votes, the amount of funding for the three projects will be
determined. To do this, the votes, i.e. five values for each of the three projects, are
added together and divided by five (which is the average of all proposals). This results
in the outcome x1, x2 and x3.
(Median Treatment: To do this, the votes, . . . , are sorted by size and the third largest
proposal is chosen (this corresponds to the median procedure). . . . If the values x1, x2,
and x3 obtained by the median procedure do not add up to 100, the result is normalized
as explained in Section 2.1 above.)

Sometimes, before the election, you may also find out the assigned most preferred
allocations of the other participants.

3.3 Payment

The smaller the difference between the x1, x2, x3 values obtained from the elections and
the p1, p2, p3 values assigned to you, the higher your payoff. Your individual payout fi
in the unit ECU is calculated as follows

fi(p
i, x) = 10 +

760

4 +
∑3

j=1 |pij − xj |

The following figure shows the payout function graphically. The distance is the sum of
the absolute values of the differences of x1, x2, x3 and p1, p2, p3.

20 40 60 80 100 120 140 160 180 200

20
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120
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180
200

Distance

ECU

Example: If the election results in x1 = 15, x2 = 50 and x3 = 35 and if your
assigned most preferred allocation is p1 = 30, p2 = 50, p3 = 20, then your distance from
the outcome is |15 − 30| + |50 − 50| + |35 − 20| = 30. This would mean a payout of
f = 10 + 760

4+30 = 32.35 ECU , so e 0.3235.

4 Procedure of the experiment

The election will take place in several rounds. The procedure for each round is as follows:
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1. You will get your values p1, p2 and p3 and sometimes additionally the values of
the other participants. These values remain the same for several periods.

2. You submit a vote.

3. You will be told the values x1, x2 and x3 calculated from the votes of all participants
and your payout.

5 Concluding remarks

Before the experiment starts, you will be asked some comprehension questions on the
screen. At your place you will find paper and pen. We ask you to leave them in place
when you leave the room. You can also use the calculator during the entire study.
The payout will take place at your seat. Please remain seated after the end of the
experiment and wait until we open the door of your cabin. If you have any questions
during the experiment, please open your door and wait until we come to you. Please
close the cabin door now and start with the comprehension questions. Thank you very
much!
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