Impartial Ordinalism

Klaus Nehring

UC Davis

Karlsruhe October 9, 2023

Klaus Nehring (UC Davis)

Impartial Ordinalism

Karlsruhe October 9, 2023 1 / 50

Introduction I

- Two core problems of Ordinal Preference Aggregation:
 - Context-dependence inescapable per Arrow (1951); threatens social choice with unreliability
 - Appropriate basis for choice evaluation
- Alternative basis for evalation
 - (Borda school) Positional rank as a basis for imputed preference intensity
 - severe reliability issues
 - (Condorcet school) Patterns of pairwise majorities (C2)
 - adresses reliability issues (maxmin and variants)
 - at price of informational impoverishment ?
 - (Impartial Ordinalism): Ordinal dominance
 - aims at middle way

• Varieties of Impartial Ordinalism reflecting different "reliability stances".

Reliability Stance	Context Dependence	Choice rule
Satisficing	minimal	Essential Set
Hedging	minimal	Maximal Lottery
Optimizing	informative yet reliable	Pluri-Borda (et al.)
Sang-Froid	unrestricted	Borda

э

Ordinal Preference Aggregation Problems I

We will employ a variable-agenda, fixed-population framework.

- Let A* denote a (finite) 'universe' of possible alternatives.
- A choice set or "agenda" A is a finite subset of A^{*}; their family is denoted by A = 2^{A^{*}}_{\∅}.
- Each individual *i* ∈ *I* has a preference relation described by a linear or weak order *P_i* on *A*. For any given *A* ∈ *A*, let *L*(*A*) denote the set of linear orders on *A*.

Ordinal Preference Aggregation Problems II

• A **profile** μ is a rational-valued probability distribution on $\mathcal{L}(A)$, with $\mu_{P_{\perp}}$ denoting the relative frequency of individuals with strict preference ordering P.

•
$$\mu_P = \frac{|\{i:P_i=P\}|}{|I|}$$

• An aggregation problem is a pair (A, μ) .

- A social choice correspondence C maps aggregation problems
 (A, µ) ∈ 𝔅 to non-empty subsets of A.
 - Often sufficient to focus on single-profile domains $\mathfrak{D} = \{2^{A^*}_{\setminus \varnothing}\} \times \{\mu\}.$

Ordinal Preference Aggregation Problems III

Cardinal Ignorance

- Cardinal Ignorance: choice must *exlusively* rely on information given by preference rankings
- In the second second
- On information about strength of preference available
 - by assumption: no individually elicited info, but also no appeal to background information obtained elsewhere.
 e.g. empirical knowledge of putative 'typical' strong preference for top.

Ordinal Preference Aggregation Problems IV

- "Cardinal Ignorance"
 - poses question of informational adequacy, not merely "meaningfulness"
 - top is ordinally meaningfully defined, but that does not entail/justify preference tops playing a distinct role under C.I.
- C.I. not an axiom, but serves as a background rationale for choice axioms

• Q: is C.I. common ground in conceptualizing the problem of ordinal aggregation after Arrow?

Ordinal Preference Aggregation Problems V

Decision-Problems under Ordinal Uncertainty

- Single decision-maker, uncertainty about future preferences
 - DM has only ordinal non-comparable information about future preferences *ex hypothesis*
- *I* is state space;
 μ probability distribution over *P_i*

- Possible applications include
 - Moral uncertainty
 - moral theories / value judgements may be 'intrinsically ordinal'; psychological 'strength of preference' irrelevant
 - Social choice behind veil of ignorance.

Ordinal Preference Aggregation Problems VI

- Relevance of single-person interpretation:
 - Ordinal aggregation matter of *decision-theoretic rationality*, not ethics or political philosophy per se.
 - But application in multi-person context to e.g. voting itself has substantive normative content
 - "impartiality" as choice behind veil of ignorance
 - impartiality as political equality
- Ordinal preference aggregation: non-standard model of "state-dependent preferences" for decision theory
 - non-standard: states fully described by ordinal rankings
 - standard Savage framework: implicit ex-ante cardinalization and comparison by decision maker
 - State-Dependent Expected Utility

Ordinal Preference Aggregation Problems VII

• Application of Expected Utility?

Axiom (Sure-Thing Principle) If $C(A, \mu) \cap C(A, \mu') \neq \emptyset$, then, for any $\alpha \in [0, 1]$, $C(A, \alpha\mu + (1 - \alpha)) = C(A, \mu) \cap C(A, \mu')$.

- a.k.a. Population Consistency, Reinforcement
- By classical result of Young (1974), this characterizes *EU with* positional cardinal utilities.
 - ${\scriptstyle \bullet}$ Young's result as representation theorem a la vNM and Savage

A B F A B F

Ordinal Preference Aggregation Problems VIII

- Borda rule as expression of Cardinal Ignorance
 - direct argument via equal utility-differences
 - axiomatic argument
 - Cancellation axiom of Young
 - Modified IIA axiom of Maskin (2020)

- But is this sufficient to handle Cardinal Ignorance ?
 - analogy of problem of 'ignorance utilities' to 'ignorance probabilities'; arguably, in both settings, ignorance precludes EU

The Borda Rule's Unreliability I

- The Borda rule is unreliable, i.e.
 - <u>differences in choice</u> not <u>adequately justified</u> by <u>differences in information</u>.

	alphas	betas
	99%	1%
Тор	а	Ь
	b	<i>c</i> ₁
•	<i>c</i> ₁	
	•	c _m
Bottom	C _m	а

- If $m \ge 100$, the Borda rule selects $\{b\}$
 - Is this plausible at all, on ordinal information alone??

Counterexample is

- general: applies to all (non-augmented) problems
- **severe**: can induce all Pareto optimal alternatives at initial profile by adding Pareto dominated alternatives
- significant: generalizes to positional scoring rules
- **robust:** presumably extends to inclusion of nearly dominated / near clones
- elusive: just how far does it reach ?
- Upshot: under Cardinal Ignorance, 'positional rank' is not reliably useable,

hence no adequate basis to impute preference intensities

Context-Independence Axioms I

Independence of Pareto Dominated Alternatives

- Independence of Clones
 - Ind of Exchangeable Clones
 - Ind of Pareto-Dominated Clones
- Independence of Ordinally Dominated Alternatives
- Independence of Unchosen Alternatives
- Arguably, Independence of Pareto Dominated Alternatives and Independence of Exchangeable Clones as normative minimum
- Independence of Pareto-Dominated Clones (2c) as 'absolute Arrowian minimum'
- Independence of Unchosen Alternatives as 'Arrowian maximum'

 Comparisons to Pareto-dominated alternatives: dubious 'signal' but potentially much 'noise'; hence ignore in determining best choice:

Axiom

C satisfies Independence of Pareto-Dominated Alternatives *if*, for any $(A, \mu) \in \mathfrak{D}$ and any $b \in A$ such that *b* is Pareto-dominated in *A*, $C(A \setminus b, \mu) = C(A, \mu) \setminus \{b\}.$

Independence of Clones

 A set B ⊆ A is a cluster of clones at µ if, for all b, b' ∈ B and a ∈ A\B : aRb iff aRb'.

Axiom

C satisfies **Independence of Clones** if, for any $(A, \mu) \in \mathfrak{D}$ and any $\emptyset \neq B' \subseteq B \subseteq A$ such that *B* is a cluster of clones at μ , $C(B' \cup A \setminus B, \mu) = C(A, \mu) \cap (B' \cup A \setminus B)$.

Context-Independence Axioms IV

- Arguably too restrictive, especially for GBR, and especially from expansive reliability stance (N2018)
 - hence restriction to exchangeable clusters of clones.
- *B* is **exchangeable** at μ if μ is invariant on arbitrary permutations of *B*.

Axiom

C satisfies Independence of Exchangeable Clones if for any $(A, \mu) \in \mathfrak{D}$ and any $\emptyset \neq B' \subseteq B \subseteq A$ such that *B* is a cluster of exchangeable clones at μ ,

$$C(B'\cup A\backslash B,\mu)=C(A,\mu)\cap (B'\cup A\backslash B).$$

The Basis for Choice Value I

Imputed Preferences Intensities (Borda school)

- Key axiom: Reinforcement
- severe reliability issues
- Pairwise Majorities (C2, Condorcet school)
 - Key axiom: Top cycle selection ('Smith dominance')
 - reliability issues can be addressed
 - is informational restriction necessary price to pay?

Impartial Ordinalism

- Key axiom: Ordinal Admissibility
- flexible treatement of reliability;

possible tradeoff between context-independence and informativeness.

- With |A| = 2, the ordering by majority comparison is arguably compelling.
 - e.g. May's (1952) theorem.
 - normative force relies on Argument from Ignorance
 - ignorance of/abstention from interpersonal comparions, rights, ...

• How to extend Argument from Ignorance to |A| > 2?

Ordinal Dominance II

 Will make essential use of the matrix of pairwise majority margins M(a, b) : A × A → [-1, 1] given by

$$M(a, b) := \mu(\{P : aPb\}) - \mu(\{P : bPa\}).$$

• a ordinally dominates b in (A, μ) iff, for all $e \in A$,

Impartial Ordinalism takes ordinal dominance to be *decisive* reason to reject b as inferior.

- does not rely on any attribution of preference intensities explicit or implicit
- does not assume Fishburn's C2 (only M matters to determine C).

Ordinal Dominance III

The alternative *a* is ordinally undominated in (A, μ) (" $a \in OU(A, \mu)$ ") if there does not exist any other alternative $b \in A$ ordinally dominating it. *C* is ordinally undominated if $C(A, \mu) \subseteq OU(A, \mu)$ for all $(A, \mu) \in \mathfrak{D}$.

- Ordinal Dominance seems fundamental, but rarely considered in the literature.
 - Versions of ordinal dominance introduced by Dutta-Laslier (1999).

Ordinal Dominance IV

Positive examples:

Condorcet Winner;

many Condorcet extensions

2 Borda Winner

$$\mathit{Borda}(\mathit{A},\mu) = {\sf arg\,max}_{\mathit{a}\in \mathit{A}} \sum_{e\in \mathit{A}} \mathit{M}(\mathit{a},e) rac{1}{|\mathit{A}|}.$$

Counterexamples:

- Plurality-based rules
 - Plurality rule, Plurality with runoff, IRV ("ranked choice").
 - apparent general consensensus that these can't be first-best ordo-welfarist
- Positional scoring rules other than Borda.
 - popular, but *justification for such rules requires appeal to "background information"*

One can naturally extend the ordinal dominance to randomized ("lotteries") $p \in \Delta(A)$ by considering *expected pairwise majorities*

$$M(p,q) := \sum_{a,b \in A} p_a M(a,b) q_b.$$

• The lottery p ordinally dominates q iff, for all $e \in A$,

- could explicitly introduce lotteries via stochastic social choice setting and add 'purification' axiom.
- An alternative a ∈ A is ordinally admissible if there does not exist a lottery p ∈ Δ(A) such that p ordinally dominates the degenerate lottery δ_a.

Example (Condorcet Loser)

- A Condorcet loser is never ordinally admissible.
- Here, Condorcet loser d is Maxmin winner.
- Lottery p = (¹/₃, ¹/₃, ¹/₃) ordinally dominates d; table gives expected maj. margins M(p, e), with 0 < ε < ¹/₃.

	а	b	с	d
а	0	$-\frac{1}{3}$	$\frac{1}{3}$	ε
b	$\frac{1}{3}$	0	$-\frac{1}{3}$	ε
с	$-\frac{1}{3}$	$\frac{1}{3}$	0	ε
d	- <i>E</i>	- <i>E</i>	-E	0
р	0	0	0	ε

Ordinal Admissibility III

Example ('Almost' Condorcet Loser)

- M given up to (sufficiently small) scaling factor σ
- d is unique Schulze, leximin winner;
 d is (non-unique) Ranked Pairs, Split Cycle winner
 - can be made unique by perturbation of M

• Lottery $p = (\frac{1}{3}, \frac{1}{3} + 4\varepsilon, \frac{1}{3} - 4\varepsilon)$ ordinally dominates d; $\varepsilon \le 1/12$.

	а	b	с	d
а	0	-1	1	-7ε
b	1	0	-1	5ε
С	-1	1	0	5ε
d	7ε	-5 <i>ɛ</i>	-5 <i>ɛ</i>	0
р	8 <i>E</i>	-4 <i>e</i>	-4 <i>e</i>	ε

Ordinal Admissibility IV

Proposition

The alternative $a \in A$ is ordinally admissible in A if and only if there exists a weight vector $w \in \Delta(A)$ such that, for all $b \in A$,

$$\sum_{e \in A} M(a, e) w_e \ge \sum_{e \in A} M(b, e) w_e.$$
(1)

ullet Proof by standard separation argument. \Box

Ordinal Admissibility V

- Consider sets of alternatives G as potential output of a choice correspondence at (A, μ)
 - G as recommendation.
 - *G* is '*adequately decisive*' if any probabilitic selection from *G* is ordinally admissible.
- The set G ⊆ A is jointly ordinally admissible (j.o.a.) for (A, μ) if, for no lottery p ∈ Δ(A) with support contained in G, there exist another lottery q ∈ Δ(A) such that q ordinally dominates p. A choice correspondence C is jointly ordinally admissible (JOA) if C(A, μ) is jointly ordinally admissible for all (A, μ) ∈ D.

Generalized Borda Rules

An **index** (weighting function) ρ will be any function that assigns to any aggregation problem (A, μ) a non-negative vector of weights $\rho(A, \mu) \in \Delta(A)$. Any i.w. function ρ induces a choice correspondence B_{ρ} given by

$$B_
ho(A,\mu):=rg\max_{oldsymbol{a}\in A}\sum M(oldsymbol{a},oldsymbol{e})
ho_{oldsymbol{e}}\left(A,\mu
ight).$$

A correspondence $C \subseteq B_{\rho}$ will be called a **generalized Borda rule** (GBR) based on index ρ ; if $C = B_{\rho}$ it is the *exact* GBR based on ρ .

Theorem

A choice correspondence C is jointly ordinally admissible if and only if C is a generalized Borda rule.

Normativity of Impartial Ordinalism Normative Claims:

Constructive

 JOA plausible and useful via GBR representation; in particular, enables well-structured repertoire of (new) SCRs satisfying various reliability conditions flexibly and transparently

Veridical:

• JOA as necessary implication of Cardinal Ignorance.

Criticizing Ordinal Dominance and Ordinal Admissibility?

- Single-profile, single-agenda axioms; unconditional implications
 WYSWYG
- hence: should be *easy* to criticize *directly* implications for particular aggregation problems (if worth criticizing)
 - e.g. Plurality, Instant Runoff do you have a sound argument *in some* particular problem for violating OD/OA under Cardinal Ignorance?
- conversely, should be *hard* to criticize these *indirectly* in the absence of unsuccessful direct criticism;
 - e.g. conflict with other apparent desiderata

Ordinal Admissibility IX

Doubting Ordinal Dominance ?

- Plausible that the M-vector comparison is good prima-facie reason to choose a over b, but is it a decisive reason?
 - What abou other ordinal facts about *a* vs *b*? E.g. rank comparisons, choice-pluralities in non-binary comparisons?
- Have no proof that such counterargument impossible what would such proof look like?
- Counter-counterargumenst:
 - Decisiveness as defeasible hypothesis: there don't seem to be convincing alternatives/augmentations on the horizon
 - candidate weakenings would fail to be *reliable*, so no sound candidate for *argument from insufficient reason*.

Doubting Ordinal Admissibility

- Introducing probabilities?
 - In single-person decision problem, M(a, b) are (differences of) probabilities;
 hence M(p, a) and M(p, q) are probabilities also.
 - hence comparison of lotteries creates no additional issues;
 - implied cardinality in use of *M*-margins follows from rules of probability.
 - dto. for head count in multi-person setting

- Neglected potential *risk* in lotteries?
 - If one *had* cardinal background information, there would be valid concern about risk
 - But with Cardinal Ignorance, no basis to define "aversion to risk"
 - in particular, if Ordinal Dominance is accepted, the relevance of positional rank has already been denied; hence no basis to introduce aversion to positional risk.
 - consistency with first-order stochastic dominance extension a la Brandt et al.

• Varieties of Impartial Ordinalism reflecting different "reliability stances".

Reliability Stance	Context Dependence	Choice rule
Satisficing	minimal	Essential Set
Hedging	minimal	Maximal Lottery
Optimizing	informative yet reliable	Pluri-Borda (et al.)
Sang-Froid	unrestricted	Borda

э

Satisficing II

- "Satisficing": aim at 'good enough' decisions:
 - Minimize reliability hazards by minimizing context-dependence
 - 2 Accept opportunity cost of leaving potentially useful information aside.
 - Good enough: adequate decisiveness ensured by JOA.
- Under Impartial Ordinalism, committed to choosing undominated alternative;
 - so, information about dominated ones arguably dispensable.

Axiom

C satisfies Independence of Dominated Alternatives (IDA) if

$$\mathcal{C}\left(\mathcal{A},\mu
ight)=\mathcal{C}\left(\mathcal{A}',\mu
ight)$$
 for all \mathcal{A},\mathcal{A}' such that $\mathcal{OU}\left(\mathcal{A},\mu
ight)\subseteq\mathcal{A}'\subseteq\mathcal{A}$

Satisficing III

- a is a Condorcet winner ("a ∈ CW(A, µ)") if M(a, b) ≥ 0 for all b ∈ A;
 - a is a strict C. w. (" $a \in CW^o(A, \mu)$ ") if M(a, b) > 0 for all $b \neq a$.
- (A, μ) is strictly Condorcet ordered if the majority tournament is strictly transitive
 - i.e. iff for all $A' \subseteq A$, $CW^o(A', \mu) \neq \varnothing$.

Proposition

If (A, μ) is strictly Condorcet ordered, C satisfies Ordinal Dominance and Independence of Ordinally Dominated Alternatives iff C = CW.

Proof. The strict Condorcet winner ordinally dominates the Condorcet loser. Proceed by induction. \Box

Satisficing IV

• Push still further: apply to C itself.

Axiom

C satisfies Independence of Unchosen Alternatives (IUA) if

 $C(A, \mu) = C(A', \mu)$ for all $A, A' : C(A, \mu) \subseteq A' \subseteq A$.

• IUA standard axiom, esp. in tournament literature

- e.g. Top Cycle, Pareto, Minimal Covering Set.
- also called "Strong Superset Property"
- Within Imp. Ordinalism (JOA), IUA characterizes unique solution concept (generically), the **Essential Set** due to Dutta-Laslier (SCW 1999).

A B A A B A

The Essential Set I

• p maximal lottery if $M(p, a) \ge 0$ for all $a \in A$.

- a.k.a. randomized Condorcet winner
- axiomatization as SSCR in Brandl et al. (2016).
- $ML(A, \mu)$: their set; if unique, $\{\rho_{ML}\} := ML(A, \mu)$
- μ is regular if $|ML(B, \mu)| = 1$ for all non-empty $B \subseteq A$.
 - Generically, $|ML(A, \mu)| = 1$ by Laffond, Laslier, Le Breton (JET 1997).
- An alternative a is essential (a ∈ ES(A, µ)) if it is contained in the support of some maximal lottery.
- If $|ML(A, \mu)| = 1$, equivalently

$$ES(A, \mu) = B_{\rho_{ML}}(A, \mu)$$

The Essential Set II

Theorem

Let C be a choice correspondence on the single-profile domain $2^{A^*}_{\backslash \varnothing} \times \{\mu\}$. The Essential Set Correspondence C = ES satisfies Joint Ordinal Admissibility and Independence of Unchosen Alternatives. Conversely, if μ is regular and C satisfies Joint Ordinal Admissibility and Independence of Unchosen Alternatives, C = ES.

- Single-profile result
 - Fixed finite number of individuals
 - Fixed feasible set and its subsets
 - Do not exploit restrictions obtained from special features of profiles (e.g. Pareto-dominated alternatives, clones)
- Corollary: any refinement of ES must violate IUA.

The Essential Set III

Cf. Axiomatization by Laslier (SCW 2000)

Theorem. *ES* is the smallest choice correspondence on the universal domain satisfying IUA, Borda-Regularity, Cloning Consistency,

- IUA shared with main result.
- "Cloning Consistency" defined in terms of *M*-equivalences
 - To exploit it, need to consider hypothetical/counterfactual agendas with and hypothetical/counterfactual preferences.
- Borda regularity says that

"If $Borda(A, \mu) = A$, then $C(A, \mu) = A$ "

- ensures cardinal use of majority matrix.
- Borda regularity entailed by conjunction of JOA and IUA; just special case of main result.

Hedging: Extension to Stochastic Choice Rules I

Generalization of Main Result

- C now SSCR, ie.
 - $C(A, \mu) \subseteq \Delta^A$ rather than $C(A, \mu) \subseteq A$

Axiom

(IUA) For all
$$p \in C(A, \mu)$$
, $p_a = 0$, then $C(A, \mu) = C(A \setminus a, \mu)$

Axiom

(OA) For no $p \in C(A, \mu)$, there exists $q \in \Delta^A$ such that q is ordinally dominates p.

• OA no less appealing for lotteries

Hedging: Extension to Stochastic Choice Rules II

Essential Reduction
$$C(A, \mu) = C(ES(A, \mu), \mu)$$

Essential Support $\cup_{p \in C(A,\mu)} \operatorname{supp} p = ES(A,\mu).$

Theorem

Let C be a **convex-valued** SSCR on the single-profile domain $2^{A^*}_{\backslash \varnothing} \times \{\mu\}$ and μ regular. C satisfies IUA and OA if and only if it satisfies Essential Support and Essential Reduction.

Corollary

If the SSCR C is convex-valued and anti-convex-valued and μ regular, C satisfies IUA and OA iff C = co(ES).

Hedging: Extension to Stochastic Choice Rules III

- An Impartially Ordinalist Rationale for Max Lotteries
 - Brandl-Brandt-Seedig (EMA 2016) provide two closely related characterizations of *ML*.
 - C has universal domain if A = {A ⊂ A*, A finite} for some infininite A, and D = ∪_{A∈A} {A} × L (A).
 - *C* defined for arbitrarily large finite agendas and arbitrary profiles of linear orders.

Theorem (BBS 2016)

Let C be an SSCR satisfying convex-valuedness, generic single-valuedness, continuity (uhc) on the universal domain.

C satisfies Condorcet Consistency, Cloning-Invariance and Population Consistency if and only if C = ML.

43

Hedging: Extension to Stochastic Choice Rules IV

• Since OA&IUA implies Condorcet Consistency, this yields:

Theorem

Let C be an SSCR satisfying convex-valuedness, generic single-valuedness, continuity (uhc) on the universal domain. C satisfies Ordinal Admissibility, IUA, Cloning-Invariance and Population Consistency if and only if C = ML.

• Shorter proof possible? All assumptions needed?

Issues?

• Why lotteries better than their constituents?

- violation of Anti-Convexvaluedness
- GBR rationale: robust ('ambiguity-averse') choice under *complete* agnosticism about 'correct' GBR index weights
 - $ML(A, \mu) = \max_{p} \min_{\rho} M(p, \rho)$
 - So ML constitutes agnostic baseline within Impartial Ordinalism
- Is such agnosticism the last word?

- $A = \{1, ..., m\}$
- μ concentrated on single-peaked preferences
- μ is (upward) lopsided if, for any ranking \succ in supp μ with top θ ,

if $x < \theta < y$, then $y \succ x$.

- thus: top determines entire preference ordering.
- single-peaked and single-crossing domain.

 Story: "Necessary Evil" – do as much as necessary, as little as possible;

divergent perceptions on what is necessary.

A Glimpse Beyond Satisficing: Lopsided Preferences II

- If **know only tops** plus single-peakedness known (partial order), choice of median top is compelling.
 - Frugal aggregation
- If additionally learn that subtop preferences are upward lopsided, this should shift social choice upward.
 - Condorcet criterion ignores this information
 - But GBRs can incorporate this info reliably.
- E.g. **Pluri-Borda Rule**: GBR B_{ρ} with ρ given by $\rho(\mu) = \pi(\mu)$, where π is distribution of tops ("plurality index").
 - The Pluri-Borda rule satisfies Independence of Pareto Dominated Alternatives and Independence of Exchangeable Clones.

A Glimpse Beyond Satisficing: Lopsided Preferences III

• For simplicity, A = [0, 1]; preferences upward lopsided.

Proposition

With μ uniform, Pluri-Borda(A, μ) = Borda(A, μ) = 2/3.

Proposition

With μ continuous, Pluri-Borda(A, μ) selects 2/3-quantile; while Borda(A, μ) may select any quantile in (0, 1) Remark on associated social orderings:

- The Condorcet ordering is given by the ranking of the median voter (by single crossing)
 - Hence a = 1 is ranked above all a below the median $\frac{1}{2}$; discontinuity at $\frac{1}{2}$.
- By contrast, the Borda=Pluri-Borda scores are quadratic (with μ uniform).
 - Hence if alternatives are ranked accordingly, a = 1 is indifferent to $\frac{1}{3}$, and the median is indifferent to $\frac{5}{6}$.

A Glimpse Beyond Satisficing: Lopsided Preferences V

Thank you for your attention !