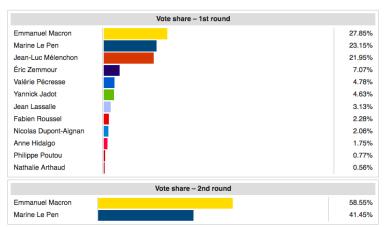
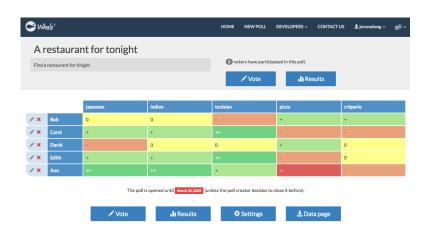
Abstract: From AI to Computational Social Choice

The interplay of computer science (and especially artificial intelligence) and social choice has not only lead to developing algorithms for collective decision making: it has helped reshaping and revitalising the field, by identifying new paradigms, new problems, new objects of study. In the talk I will give (hopefully) 10 examples of such new paradigms, problems, or objects of study.


From AI to Computational Social Choice

Jérôme Lang CNRS & Université Paris-Dauphine PSL

GDR IA, 9 February 2023


Social choice theory

Designing and analysing methods for collective decision making

Social choice theory

Designing and analysing methods for collective decision making

Social choice theory

Designing and analysing methods for collective decision making

A very rough history of social choice

- 1. around 1789: Condorcet and Borda (GDR IA first online seminar, 1789)
- 1951: birth of social choice theory (economics/mathematics); mostly axiomatic results such as impossibility theorems (most celebrated: Arrow's)
- 3. from the 1990's: computational turn.

Social Choice Rules

- ▶ input: agents express preferences over alternatives/candidates
- output: an alternative

Choose the temperature in the room? Various input formats

Ann: 17 Bob: 20 Carol: 19 David: 17

uninominal

Ann: 17 > 18 > 19 > 20Bob: 20 > 19 > 18 > 17Carol: 19 > 20 > 18 > 17

David: 17 > 18 > 19 > 20

ordinal

	17	18	19	20			
Ann	+	+	+				
Bob				+			
Carol		+	+	+			
David	+	+					
approvals							

	17	18	19	20		
Ann	50	30	20	0		
Bob	0	0	0	100		
Carol	0	40	50	10		
David	40	30	20	10		
evaluations						

Al and Computational Social Choice

Al / CS have contributed to reshape social choice:

- new techniques
- new paradigms
- new objects of study, new applications

This talk: a quick guided tour of computational social choice via a **non-exhaustive**, **biased** selection of problems.

WARNING: My slides contain no references.

Key references are on supplementary slides, and also on a text that comes with it.

- ► Representative democracy: citizens choose their delegates.
- ► Liquid/fluid democracy: citizens can choose either to vote on an issue, or to delegate to someone else.
- ▶ Direct democracy: citizens express their opinion on any issue.

Committee election

Who should be elected at the new steering board?

Do you want to vote yourself or delegate your vote to a trusted peer?

Classical social choice Aggregating *preferences* No ground truth

English idioms

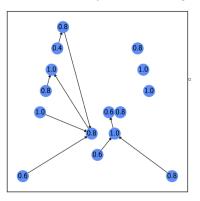
You will be given English idioms, and asked to identify their meaning.

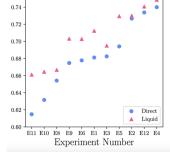
Do you want to vote yourself or delegate your vote to a trusted peer?

Landmarks

You wil be shown pictures of landmarks, and asked to say in which country they are.

Do you want to vote yourself or delegate your vote to a trusted peer?

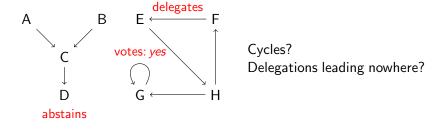

don't delegate

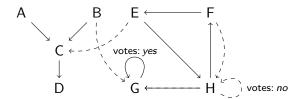

Epistemic social choice: Aggregating beliefs about a ground truth

English idioms

You will be given English idioms, and asked to identify their meaning. Do you want to vote yourself or delegate your vote to a trusted peer?

0.76




Delegation graph

Accuracy

Source: Manon Revel

\rightarrow Ranked delegations

Thanks: Manon Revel, Markus Brill, Théo Delemazure, Umberto Grandi

Epistemic social choice:

- there is a ground truth to be uncovered
- votes are noisy reports
- voting rules are maximum likelihood estimators.
- starts with Condorcet's jury theorem, 1785
- → Statistical machine learning

Crowdsourcing via approval voting

In which of the 20 districts of Paris was this picture taken? You may give several answers. You will get a reward if your selection contains the true answer, minus a penalty that increases with the size of your selection.

Crowdsourcing via approval voting

	12	13	14	15	16	17	18	19	20	expertise?
Ann							+			
Bob			+		+			+	+	
Carol		+		+		+		+		
David							+		+	
Eva			+	+	+	+	+	+	+	
Fred	+									
Gloria					+		+	+	+	
#	2	2	2	2	3	2	4	4	4	

Crowdsourcing via approval voting

	12	13	14	15	16	17	18	19	20	expertise?
Ann							+			high
Bob			+		+			+	+	med-
Carol		+		+		+		+		med-
David							+		+	med+
Eva			+	+	+	+	+	+	+	low
Fred	+									low!
Gloria					+		+	+	+	med-
#							•			

Epistemic voting can also be applied to aggregating linguistic annotations

Plurality voting: the candidate named by the largest number of voters wins.

4 voters
$$a \succ b \succ c \succ d \succ e$$

3 voters $e \succ d \succ b \succ c \succ a$
2 voters $c \succ e \succ b \succ a \succ d$
2 voters $b \succ c \succ d \succ a \succ e$

Plurality voting: the candidate named by the largest number of voters wins.

4 voters
$$a \succ b \succ c \succ d \succ e$$

3 voters $e \succ d \succ b \succ c \succ a$
2 voters $c \succ e \succ b \succ a \succ d$
2 voters $b \succ c \succ d \succ a \succ e$
winner: a

Plurality voting: the candidate named by the largest number of voters wins.

```
4 voters a \succ b \succ c \succ d \succ e

3 voters e \succ d \succ b \succ c \succ a

2 voters c \succ e \succ b \succ a \succ d

2 voters b \succ c \succ d \succ a \succ e

previous winner: a

winner: e
```

Plurality voting: the candidate named by the largest number of voters wins.

4 voters
$$a \succ b \succ c \succ d \succ e$$

3 voters $e \succ d \succ b \succ c \succ a$
2 voters $c \succ e \succ b \succ a \succ d$
2 voters $b \succ c \succ d \succ a \succ e$
previous winner: e
winner: e

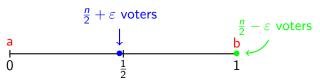
Chances are that we have reached convergence.

```
4 voters a \succ b \succ c \succ d \succ e a \succ b \succ c \succ d \succ e

3 voters e \succ d \succ b \succ c \succ a e \succ d \succ b \succ c \succ a

2 voters c \succ e \succ b \succ a \succ d c \succ e \succ b \succ a \succ d

2 voters b \succ c \succ d \succ a \succ e b \succ c \succ d \succ a \succ e


winner a \succ b
```

- voting rule + voter behaviour model → equilibrium reached?
- equilibria sometimes of better quality than sincere outcomes

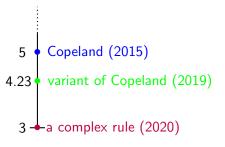
Thanks: Reshef Meir

4. Distortion and low-communication voting Metric setting

- ▶ alternatives and voters are in a metric space with distance d
- ightharpoonup cost (or disutility) of alternative x to voter i: $c_i(x) = d(i,x)$
- ▶ f voting rule with ordinal input?
- ▶ *distortion* of *f*: worst-case ratio between the cost of the winner according to *f*, and the optimal cost.


- ▶ a has a global cost $\sim 3n/4$... and is the majority winner
- b has a global cost $\sim n/4$
- when n = 2, all reasonable voting rules with ordinal input degenerate to majority
- ▶ no voting rule with can have distortion smaller than 3!
- can we find a rule that achieves 3?

Metric setting



Metric setting

References: supplementary slides + paper!

Metric setting

References: supplementary slides + paper!

Metric setting

References: supplementary slides + paper!

5. Complex alternatives \rightarrow Combinatorial domains

- there are several possible topics I can speak during my talk
- I have time to talk only about two topics
- ▶ Ann: would like to hear about t_1 or t_3 , and about t_2 or t_4 .
- ▶ Bob: likes t_1 and t_4 , and in case t_1 is not selected then t_2 .
- Carol: likes t₃ and that's all.
- focus on preferential dependencies
- ▶ use compact preference representation languages, *e.g.* CP-nets

We can now select three topics. The votes of the attendees:

	t_1	t_2	t_3	t_4	t_5
8 voters	+	+	+		
3 voters				+	
1 voter					+

Three possible criteria \rightarrow three families of rules

```
\begin{array}{ll} \text{excellence} & t_1, t_2, t_3 \\ \text{diversity} & t_1, t_3, t_4 \\ \text{proportionality} & t_1, t_2, t_5 \end{array}
```

We can now select three topics. The votes of the attendees:

	t_1	t_2	t_3	t_4	t_5
8 voters	+	+	+		
3 voters				+	
1 voter					+

Three possible criteria \rightarrow three families of rules

```
excellence t_1, t_2, t_3
diversity t_1, t_3, t_4
proportionality t_1, t_2, t_5
```

We can now select three topics. The votes of the attendees:

	t_1	t_2	t_3	<i>t</i> ₄	<i>t</i> ₅
8 voters	+	+	+		
3 voters				+	
1 voter					+

Three possible criteria \rightarrow three families of rules

```
excellence t_1, t_2, t_3
diversity t_1, t_3, t_4
proportionality t_1, t_2, t_5
```

We can now select three topics. The votes of the attendees:

	<i>t</i> ₁	t_2	<i>t</i> ₃	t_4	t_5
8 voters	+	+	+		
3 voters				+	
1 voter					+

Three possible criteria \rightarrow three families of rules

excellence
$$t_1, t_2, t_3$$
 diversity t_1, t_3, t_4 proportionality t_1, t_2, t_5

focus on properties, especially proportionality

5. Complex alternatives \rightarrow Participatory budgeting

- topics now have durations
- ▶ total budget: 30 minutes

	t_1	t_2	<i>t</i> ₃	t_4	t_5	t_6
100×	+	+				
$90 \times$			+			
$30 \times$				+	+	+
$30 \times$				+	+	
$10 \times$	+			+		
cost	9	9	9	4	4	4

5. Complex alternatives → Participatory budgeting

- topics now have durations
- total budget: 30 minutes

	t_1	t_2	t_3	t_4	t_5	t_6
100× 90×	+	+				
			+			
$30 \times$				+	+	+
30×				+	+	
$10 \times$	+			+		
cost	9	9	9	4	4	4

A more common interpretation:

- $ightharpoonup t_1, \ldots, t_6$ are projects with costs
- ▶ total budget: 30 M€

5. Complex alternatives \rightarrow Participatory budgeting

	t_1	t_2	t_3	t_4	t_5	t_6
100× 90×	+	+				
			+			
$30 \times$				+	+	+
$30 \times$				+	+	
$10 \times$	+			+		
cost	9	9	9	4	4	4

available budget: 30

The greedy method

topic	#votes	cost	
$\overline{t_1}$	110	9	•
t_2	100	9	•
t_3	90	9	•
t_4	70	4	
t_5	60	4	
t_6	30	4	

Good?

5. Complex alternatives \rightarrow Participatory budgeting

	t_1	t_2	t_3	t_4	t_5	t_6
100×	+	+				
$90 \times$			+			
$30 \times$				+	+	+
$30 \times$				+	+	
$10 \times$	+			+		
cost	9	9	9	4	4	4

available budget: 30

topic	#votes	cost		
t_1	110	9	•	•
t_2	100	9	•	
t_3	90	9	•	•
t_4	70	4		•
t_5	60	4		•
t_6	30			•

Need to ensure fairness to groups of voters through proportionality

5. Complex alternatives \rightarrow Judgment aggregation

We can select three topics. The votes of the attendees:

	t_1	t_2	<i>t</i> ₃	t_4	t_5
5 voters	+	+	+		
3 voters	+	+			+
1 voter				+	+
1 voter			+		+
2 voters				+	

Admissible committees are those that satisfy the constraint

$$(t_1 \vee t_3) \wedge (t_2 \vee t_5) \wedge \neg (t_1 \wedge t_4 \wedge t_5) \wedge \neg (t_2 \wedge t_4 \wedge t_5) \wedge (t_3 \rightarrow t_4)$$

focus on complex feasibility constraints

5. Complex alternatives

focus on	proportionality	complex	complex
rocus on	guarantees	preferences	constraints
combinatorial			
domains		+	
multiwinner			
elections	+		
participatory			, ,
budgeting	+		(+)
judgment			
aggregation			

Thanks: Dominik Peters

- select 4 members for a committee
- ideal representation objectives
 - ▶ 50% male, 50% female
 - ▶ 25% area 1, 50 % area 2, 25 % area 3.
 - ▶ 25% junior, 75 % senior.

	Gender	Area	Seniority	
c_1	F	1	J	
<i>c</i> ₂	М	3	S	
<i>c</i> ₃	F	1	S	
C4	М	2	J	
<i>C</i> ₅	М	2	J	
<i>c</i> ₆	М	2	J	
C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₇ C ₈	F	2	J	
<i>C</i> ₈	М	3	5	

- select 4 members for a committee
- ideal representation objectives
 - ► 50% male, 50% female
 - \blacktriangleright 25% area 1, 50 % area 2, 25 % area 3. \checkmark
 - ► 25% junior, 75 % senior. × (50 / 50)

	Gender	Area	Seniority	
c_1	F	1	J	
<i>c</i> ₂	M	3	5	
<i>C</i> ₃	F	1	5	
C4	М	2	J	
<i>C</i> ₅	М	2	J	
<i>c</i> ₆	M	2	J	
C ₆	F	2	J	
<i>c</i> ₈	М	3	5	

- select 4 members for a committee
- constraints:
 - ▶ 50% male, 50% female
 - ▶ 25%-50 % area 1, 40%-60 % area 2, 10%-25 % area 3.
 - ▶ \geq 25% junior, \geq 50 % senior.

	Gender	Area	Seniority	
c_1	F	1	J	
<i>c</i> ₂	М	2	J	
<i>c</i> ₃	М	2	S	
C4	F	3	5	
C ₃ C ₄ C ₅ C ₆ C ₇	М	2	J	
<i>c</i> ₆	М	2	J	
	М	2	J	
<i>c</i> ₈	F	1	J	

Which committee should be elected?

- select 4 members for a committee
- votes
- hard constraints:
 - ▶ 50% male, 50% female
 - ▶ 25%-50 % area 1, 40%-60 % area 2, 10%-25 % area 3.
 - \triangleright \geq 25% junior, \geq 50 % senior.

	Gender	Area	Seniority	$ v_1 $	<i>V</i> ₂	<i>V</i> 3	<i>V</i> 4	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> 7
c_1	F	1	J	+				+		+
<i>c</i> ₂	М	3	S	+						+
<i>c</i> ₃	F	1	S	+	+		+			
C4	М	2	J				+			
<i>C</i> ₅	М	2	J		+		+			
<i>c</i> ₆	М	2	J						+	+
C ₇	F	2	J			+	+			
c ₈	М	3	5			+		+		

Which committee should be elected?

- variant with randomized, fair selection
- variant with online selection

- variant with randomized, fair selection
- variant with online selection
- ▶ 50% male, 50% female
- ▶ 25% area 1, 50 % area 2, 25 % area 3.
- ▶ 25% junior, 75 % senior.

Gender	Area	Seniority	select?
М	3	J	yes

- variant with randomized, fair selection
- variant with online selection
- ▶ 50% male, 50% female
- ▶ 25% area 1, 50 % area 2, 25 % area 3.
- ▶ 25% junior, 75 % senior.

Gender	Area	Seniority	select?
М	3	J	yes
F	3	J	no

- variant with randomized, fair selection
- variant with online selection
- ▶ 50% male, 50% female
- ▶ 25% area 1, 50 % area 2, 25 % area 3.
- ▶ 25% junior, 75 % senior.

Gender	Area	Seniority	select?
М	3	J	yes
F	3	J	no
Μ	1	S	yes

- ▶ if the probability distribution on arrivals is known → Markov decision processes
- ▶ if not → reinforcement learning

	a	b	С	d	e
Ann	15	3	2	2	6
Bob	7	5	5	5	7
Carol	20	3	3	3	3

- $V_{Bob}(b) = 5 = \text{value of item } b \text{ for Bob}$
- Assume agents have additive valuations:

$$v_{Bob}(\{b,e\}) = 5 + 7 = 12$$

- envy-freeness (EF): every agent i weakly prefers her share to the share of any other agent j
- ▶ Ann prefers Bob's share $\{b, e\}$ to her own $\{c, d\}$: the blue allocation is not envy-free
- There in no envy-free allocation!

	a	b	С	d	e
Ann	15			2	6
Bob			5	5	7
Carol	20	3	3	3	3

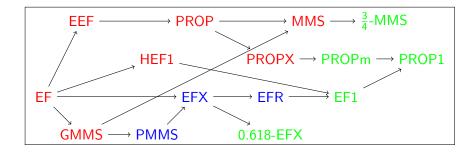
- ▶ A weakening of EF: *envy-freeness up to one good* (EF1):
- ▶ The blue allocation is EF1:
 - ▶ Ann no longer envies Bob if we remove one good from Bob's share: $v_{Ann}(\{b,e\}\setminus\{e\}) = 3 \le v_{Ann}(\{c,d\}) = 4$
 - Ann no longer envies Carol if we remove one good from Carol's share: $v_{Ann}(\{a\} \setminus \{a\}) = 0 \le v_{Ann}(\{c,d\}) = 4$
 - Bob and Carol do not envy anyone.
- An EF1 allocation is guaranteed to exist (for additive valuations) and can be computed in polynomial time.

	a	b	С	d	e
Ann	15	3	2	2	6
Bob	7	5	5	5	7
Carol	20	3	3	3	3

- ▶ Between EF1 and EF: envy-freeness up to any good (EFX)
- Ann still envies Bob if we remove b from Bob's share: $v_{Ann}(\{b,e\}\setminus\{b\})=6>v_{Ann}(\{c,d\})=4$
- ▶ the blue allocation is not EFX.

	a	b	С	d	е
Ann	15	3	2	2	6
Bob	7	5	5	5	7
Carol	20	3	3	3	3

- ▶ Between EF1 and EF: envy-freeness up to any good (EFX)
- the red allocation is EFX: Bob envies Ann but removing any good from Ann's share eliminates this envy; and similarly for Ann's envy towards Carol.


	a	b	С	d	e
Ann	15	3	2	2	6
Bob	7	5	5	5	7
Carol	20	3	3	3	3

- ▶ Between EF1 and EF: envy-freeness up to any good (EFX)
- the red allocation is EFX
- does an EFX allocation always exist?

	а	b	С	d	e
	15	3	2	2	6
Bob	7	5	5	5	7
Carol	20	3	3	3	3

- Between EF1 and EF: envy-freeness up to any good (EFX)
- the red allocation is EFX
- does an EFX allocation always exist? Long-standing open problem

8. Automated Theorem Proving for Social Choice

- proving (or disproving) theorems in social choice is difficult because it involves large combinatorial structures
- SAT solvers can help!
- find new proofs for known results; discover new results; uncover mistakes in the literature

Example: two sided matching

- ▶ two groups of *n* agents each
- each agent ranks the agents of the other group
- can we guarantee stability and fair treatment of both groups?
- ▶ no as soon as $n \ge 3!$

Stability for n = 3: conjunction of 419,904 clauses

$$\bigwedge_{p \in R_3!^3 \times L_3!^3} \bigwedge_{i \in 1,2,3} \bigwedge_{j \in 1,2,3} \bigwedge_{i': l_i \succ r_i l_{i'} \in p} \bigwedge_{j': r_j \succ l_i r_{i'} \in p} \neg x_{p \rhd (i',j')} \lor \neg x_{p \rhd (i',j)}$$

9. Collective decision making datasets

Building & maintaining

Dataset for voting data: PREFLIB.ORG

Other datasets: matching, participatory budgeting

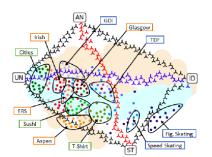
all open access

Exploiting

Gap between theory and real-world instances?

Assessing the validity of preference models

Learning/ discovering structure


9. Collective decision making datasets

Building & maintaining

Dataset for voting data: PrefLib.Org

Other datasets: matching, participatory budgeting

all open access

Exploiting

Gap between theory and real-world instances?

Assessing the validity of preference models

Learning/ discovering structure

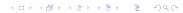
"Map of real-world elections"

Source:

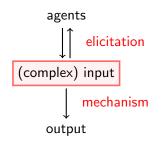
Boehmer, Bredereck, Faliszeswski, Niedermeier & Szufa, 2021

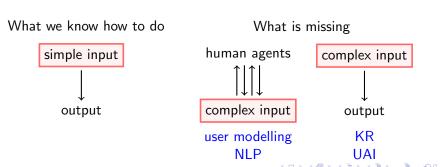
Social choice engineering at Université Paris-Dauphine

- huge construction works in the whole building 2022-2027
- one building, 600 offices, most occupied by one or two persons
- > 90% of the building will be completely rebuilt
- ▶ 5 big phases, whose duration is known with some uncertainty
- ▶ it is known which offices will be unavailable at each phase
- ▶ initial office allocation known, final state (almost) known
- people moving in average twice + possible compression at some intermediate phase


Students: this should not prevent you from coming and studying with us!

Social choice engineering at Université Paris-Dauphine


- the university asked us to help finding a fair and efficient reallocation sequence
- expertise needed in AI, OR and social choice
- ▶ a fair division problem? Yes but:
 - ▶ 6 research labs + teaching departments + central services ⇒ not clear who the agents are: individuals, groups, both?
 - heavily non-additive preferences: desire for labs/departments to remain grouped, for moves to be timewise not too close, ...
 - uncertainty


temporal fair division problem with individual and group fairness, complex nonadditive preferences and uncertainty!

- each of these complications has been studied individually
- ▶ no known framework / algorithm for our problem
- social choice engineering! (here and elsewhere)

Social Choice Engineering

Summary: Social Choice and Al

new techniques new paradigms new objects of study new applications

multiagent systems planning/MDP online learning statistical learning

SAT

KR&R

user modelling?

NLP?

Special thanks: François Durand

General

► Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang and Ariel Procaccia. *Handbook of Computational Social Choice*, 2016.

Liquid democracy: ranked delegations

- Markus Brill, Théo Delemazure, Anne-Marie George, Martin Lackner, Ulrike Schmidt-Kraepelin, Liquid Democracy with Ranked Delegations, AAAI-22
- Rachael Colley, Umberto Grandi, and Arianna Novaro. Unravelling multiagent ranked delegations. Auton. Agents Multi Agent Syst., 2022
- Paul Gölz, Anson Kahng, Simon Mackenzie, and Ariel D. Procaccia. The fluid mechanics of liquid democracy. ACM Trans. Economics and Comput., 2021

Iterated voting

Introduced in

 Reshef Meir, Maria Polukarov, Jeffrey S. Rosenschein, Nicholas R. Jennings: Convergence to Equilibria in Plurality Voting. AAAI 2010

Survey:

 Reshef Meir, Iterative Voting, Trends in Computational Social Choice, 2017.

Epistemic voting and crowdsourcing

Survey:

► Edith Elkind, Arkadii Slinko, Rationalizations of Voting Rules, *Handbook of Computational Social Choice*, Section 8.3

Voting rules as maximum likelihood estimators:

 Vincent Conitzer, Tuomas Sandholm: Common Voting Rules as Maximum Likelihood Estimators. UAI 2005: 145-152

Approval-based crowdsourcing:

- Ariel D. Procaccia, Nisarg Shah, Is Approval Voting Optimal Given Approval Votes? NeurIPS 2015
- Nihar B. Shah, Dengyong Zhou, Approval Voting and Incentives in Crowdsourcing, ACM Trans. Economics and Comput., 2020
- ► Tahar Allouche, Jérôme Lang, Florian Yger, Truth-tracking via Approval Voting: Size Matters, AAAI-22

Aggregating linguistic annotations:

- Ciyang Qing, Ulle Endriss, Raquel Fernández, Justin Kruger, Empirical Analysis of Aggregation Methods for Collective Annotation, COLING 2014
- ► Ulle Endriss, Raquel Fernández, Collective Annotation of Linguistic Resources: Basic Principles and a Formal Model, *ACL 2013*

Distortion and low-communication voting

Introduced:

Ariel D. Procaccia, Jeffrey S. Rosenschein: The Distortion of Cardinal Preferences in Voting. CIA 2006

Survey:

Elliott Anshelevich, Aris Filos-Ratsikas, Nisarg Shah, Alexandros Voudouris, Distortion in Social Choice Problems: The First 15 Years and Beyond. IJCAI 2021 (survey track).

Rules with distortion 3:

- Vasilis Gkatzelis, Daniel Halpern, Nisarg Shah: Resolving the Optimal Metric Distortion Conjecture. FOCS 2020
- Fatih Kizilkaya, David Kempe. Plurality Veto: A Simple Voting Rule Achieving Optimal Metric Distortion. IJCAI 2022

Distortion 5: Anshelevich, Onkar Bhardwaj, John Postl, AAAI 15. Distortion 4.236: Kamesh Munagala, Kangning Wang, EC 2019.

Voting on combinatorial domains, survey:

Jérôme Lang, Lirong Xia: Voting in Combinatorial Domains. Handbook of Computational Social Choice, 2016.

Multiwinner voting, surveys:

- Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, Nimrod Talmon, Multiwinner Voting: A New Challenge for Social Choice Theory. Trends on Computational Social Choice, 2017.
- Martin Lackner, Piotr Skowron: Multi-Winner Voting with Approval Preferences. Springer, 2022.

Participatory budgeting

Survey:

 Haris Aziz, Nisarg Shah: Participatory Budgeting: Models and Approaches, 2020.

Proportionality in participatory budgeting:

 Dominik Peters, Grzegorz Pierczynski, Piotr Skowron: Proportional Participatory Budgeting with Additive Utilities. NeurIPS 2021

Judgment aggregation

Surveys:

- Davide Grossi, Gabriella Pigozzi: Judgment Aggregation: A Primer.
 Morgan & Claypool Publishers 2014
- Ulle Endriss: Judgment Aggregation. Handbook of Computational Social Choice, 2016

Judgment aggregation & participatory budgeting:

 Simon Rey, Ulle Endriss, Ronald de Haan: Designing Participatory Budgeting Mechanisms Grounded in Judgment Aggregation. KR 2020.

Fair division of indivisible goods

A revent survey on how to relax envy-freeness:

 Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros A. Voudouris. Fair Division of Indivisible Goods: A Survey. IJCAI 2022 (survey track).

Older surveys:

- Sylvain Bouveret, Yann Chevaleyre, Nicolas Maudet: Fair Allocation of Indivisible Goods. Handbook of Computational Social Choice, 2016.
- ▶ Jérôme Lang, Jörg Rothe: Fair Division of Indivisible Goods. *Economics* and *Computation*, 2016.

Diversity

Multiwinner elections with diversity:

- Jérôme Lang, Piotr Skowron: Multi-Attribute Proportional Representation. AAAI 2016.
- Robert Bredereck, Piotr Faliszewski, Ayumi Igarashi, Martin Lackner,
 Piotr Skowron: Multiwinner Elections with Diversity Constraints. AAAI 18
- L. Elisa Celis, Lingxiao Huang, Nisheeth K. Vishnoi: Multiwinner Voting with Fairness Constraints. IJCAI 2018
- Xiaohui Bei, Shengxin Liu, Chung K. Poon, Hongao Wang: Candidate selections with proportional fairness constraints. J. AAMAS, 2022

Diversity in two-sided matching:

 Haris Aziz: Two-sided matching with diversity concerns: an annotated reading list. SIGecom Exch, 2021

Selecting citizens' assemblies:

- Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, Ariel Procaccia. Fair Algorithms for Selecting Citizens' Assemblies. *Nature*, 2021.
- Virginie Do, Jamal Atif, Jérôme Lang, Nicolas Usunier: Online Selection of Diverse Committees. IJCAI 2021.

Automated theorem proving for social choice

Started:

Pingzhong Tang, Fangzhen Lin, Computer-aided proofs of Arrow's and other impossibility theorems. Artif. Intell., 2009.

Survey:

 Christian Geist, Dominik Peters, Computer-aided Methods for Social Choice Theory, Trends in Computational Social Choice, 2017.

Impossibility of stability and left/right fairness:

 Ulle Endriss: Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms. AAAI 2020

Collective decision making datasets

Survey:

Nicholas Mattei, Toby Walsh, A PREFLIB.ORG Retrospective: Lessons Learned and New Directions, Trends in Computational Social Choice, 2017.

Maps of real-world elections:

Niclas Boehmer, Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Stanislaw Szufa: Putting a Compass on the Map of Elections. *IJCAI* 2021.

Thanks to my frequent and/or recent coauthors

Pierre Marquis - Didier Dubois - Ulle Endriss - Yann Chevaleyre - Henri Prade - Lirong Xia - Sylvain Bouveret - Andreas Herzig - Nicolas Maudet - Jérôme Monnot - Hélène Fargier - Haris Aziz - Vincent Conitzer - Marija Slavkovik - Bruno Zanuttini - Elise Bonzon - Abdallah Saffidine - Marie-Christine Lagasquie - Jérôme Mengin - Jörg Rothe - Leon van der Torre - Nathanaël Barrot - James Delgrande - Edith Elkind - Julien Lesca - Manel Ayadi - Nahla Ben Amor - Hans van Ditmarsch - Florence Dupin de Saint-Cyr - Piotr Faliszewski - Judy Goldsmith - Piotr Skowron - Nic Wilson - Mike Wooldridge - Dorothea Baumeister - Andreas Darmann - Paul Harrenstein - Sarit Kraus - Srdjan Vesic - Peter Biró - Markus Brill - Iannis Caragiannis - Laurent Gourvès - Ronald de Haan - Nick Mattei - Dominik Peters - Gabriella Pigozzi - Anja Rey - Hilmar Schadrack - Lena Schend - Stéphane Airiau - Tahar Allouche - Jamal Atif - Felix Brandt - Katarina Cechlarova - Théo Delemazure - Virginie Do - François Durand - Umberto Grandi - Hugo Gilbert - Jatin Jindal - Justin Kruger - Anna Maria Kerkmann - Jean-François Laslier - Reshef Meir - Maria Polukarov - François Schwarzentruber - Arkadii Slinko - Nicolas Usunier - Florian Yger - Bill Zwicker

Vote on your preferred topics on Whale!

https://whale5.noiraudes.net/polls/ 9a374697-ce40-411d-929f-7bfeb07b0539