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Abstract

Ordinally effi cient choice correspondences are characterized as maximing a
weighted average over comparison alternatives of the number of agents prefer-
rring an alternative over any comparison alternative. The Borda rule is the
classical example, assign equal weight to all comparison alternatives. However,
the Borda rule suffers from severe problems of unreliability, as it is highly and
implausibly sensitive to the inclusion of Pareto inferior and of minor variants
(“clones”) in the feasible set.
Reliability can be ensured, however, by an appropriate choice of weights that

depends on the profile of preferences. This is achieved, for example, by weighting
alternatives in proportion their "plurality’, i.e. frequency as top choices, and
induces the "Plurality-weighted Borda rule", or “Pluri-Borda rule” for short.
While this weighting rule is not claimed to the ideal one, it has many attractive
properties and comes with a transparent axiomatic characterization.
We summarize the analysis of the paper with an Arrowian possibility result,

according to which the Pluri-Borda rule is able to jointly satisfy ordinal effi ciency
and reliability axioms on social choice, unlike any (familiar) rule in the literature.

∗University of California, Davis

1



1 Introduction

We will adress the following version of the Arrowian social choice question.
Given a set of feasible alternatives (agenda) and a profile of ordinal preference
rankings over the agenda, which choices are socially best if all individuals count
equally? Preferences are assumed to be known here, the agenda given. The
Arrowian question asks about what the social optimum is, not about how it
can be achieved. In particular, issues of strategic behavior are set aside as a
question of mechanism design. The Arrowian question aims to determine what
maximizes “aggregate ordinal welfare", or, in slightly different words, “aggregate
preference satisfaction”. Ex hypothesis, ordinal welfare must be determined
from the preference relations of the individuals themselves, without recourse to
any kind of additional information about the pyschological state of individuals
that would permit interpersonal welfare comparisons of some kind.
We submit that a satisfactory answer to the Arrowian question has to ad-

dress two issues in paricular. The proper content of “ordinalism’, and a proper
acknowlegment and treatment of the concerns with the potential unreliability
of the output of a welfare criterion. Broadly speaking , reliability issues arise
since full choice consistency is not achievable to the existence of majority cycles
and related phenomena. In particular, a choice correspondence may specify the
choice of one alternative, say a, at a particular profile, but, upon removal of the
unchosen alternative c , may flip its choice to b. In principle, there is nothing
particularly mysterious or questionable about such flips, since the inclusion of c
changes the information available for the evaluation of the non−c elements, and
so may reasonably change that evaluation. But it need not: the information
obtainable via c may have no, or only little, or only tenous bearing on that
evaluation. The most prominent example is that of c being a “clone”(intuively:
‘minor variant’) of some other alternative c′ alreadly included in the agenda.
Following Tideman (1987), a significant literature requires that the inclusion of
additional clones should not be allowed to change the social choice. Another
example, which will play a more central role in this paper, is the inclusion of
alternatives that are Pareto dominated by alternatives in the original agenda.
Positional scoring rules, and the Borda rule in particular, are highly susceptible
to the inclusion of such apparently irrelevant alternatives, and would thus count
as highly unreliable.

Outline of Argument While one would ultimately want to resolve the
Arrowian question by selecting a unique alternative (up to non-generic ties), it
is helpful to initially aim lower and asking whether, on the basis of a particular
profile at a given agenda, one can identify pairs of alternatives that can be
compared on ‘straightforward’ordinalist grounds (beyond the Pareto criterion)
and thereby at least identify some alternatives that are “clearly inadmissible”.
We follow Dutta-Laslier (1999) in adopting ordinal dominance as such a

baseline comparison: Alternative a ordinally dominates alternative b if a is
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preferred to b by a majority, and if, in the comparison to any third alternative,
a is preferred to c by strictly more individuals than b is to c. Alternatives
not ordinally dominated by some other feasible alternative are called “ordinally
admissible”. It is easy to see that Condorcet winners (if they exist) and Borda
winners are ordinally admissible, while plurality winners need not be.1

Additional mileage is gained by extending this requirement to the absence of
domination by randomized acts, refining the notion of ordinal admissibility to
that of “ordinal effi ciency” of alternatives and correspondences. A basic char-
acterization result shows that a choice correspondence is ordinally effi cient if, for
every aggregation problem (A,µ), there exists a weight vector over alternatives
such that the chosen alternatives maximize the weighted average of majority
margins.
In view of this result, one can turn the problem of determining the best

ordinally effi cient alternative(s) into a problem of determining the appropriate
weights as a function of the aggregation problem (A,µ). We will refer to such
weighting functions as “indices” ρ, and the induced choice correspondence as
“generalized Borda rules”Bρ. The simplest example of such a rule is, evidently,
the classical Borda rule whose index assigns equal weight to all alternatives.
Notwithstanding its impressive axiomatic credentials, the Borda rule faces seri-
ous issues concerning the reliability of its out. As we illustrate by example, any
Pareto effi cient alternativ can become a Borda winner by enriching the agenda
with a suffi cient number of appropriately chosen Pareto dominated alternatives.
It seems extremely implausible that, in the enriched agenda, the Borda rule
determines the correct ordinal welfare optimum. Indeed, it is hard to see that
anything material has changed at all with respect to the evaluation of the Pareto
effi cient alternatives. We thus conclude that the Borda rule is prone to serious
error, especially if the number of alternatives is moderate or large.
But within the framework of GBRs introduced here, it is quite straight-

forwar do address such issues of reliability by imposing appropriate reliability
conditions on the index itself. For example, the potentially distortionary role of
Pareto dominated alternatives can be neutralized simply by giving such alterna-
tives an index weight zero. Likewise, potential distortions that might arise from
the doublecounting of “clones” might be neutralized by distributing weights
appropriately over entire clusters of clones.

In the third part of the paper, we propose one particular GBR associated
with a particular simple and natural weighting function, the plurality index.
The plurality index assigns weights to alternatives in proportion to the number
of individuals for whom this alternative is the top choice. We provide a simple
axiomatization. The GBR derived from the plurality index will be referred as
the "Plurality-Based Borda" rule, or “Pluri-Borda” rule for short. While we
do not claim the Pluri-Borda rule to the “ideal” (normatively correct) ordinal
welfare criterion point out to some potential shortcomings, the Pluri-Borda rule
does seem to do a very credible job in most aggregation problems. Its simplicity

1Dutta-Laslier (1996) consider and discuss stronger versions of this relation.
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and tractability are an additional, non-minor bonus.

Plan of the Paper Framework and Notation are introduced in section
2. Section 3 defines the central notions defining our approach to “ordinal wel-
farism”. Its main result is a characterization of ordinally effi cient correspon-
dences as subcorrespondes of generalized Borda rules. Generalized Borda rules
are defined in terms of the matrix of majority margins. In section 3.3, we
show how this translates into a representation that is additively separable in
individual generalized Borda scores. Section 4 illustrates the severe reliability
deficit of the classical Borda rule by means of an example. Section 5 introduces
a couple of regularity and reliability requirements on the problem-dependent
weighting function (index), and derives some general choice implications. Sec-
tion 6 then takes a look at the special but important domain of single-peaked
preferences on a line, demonstrating that any “regular”Generalized Borda rule
will at some profiles not choose the Condorcet winner. Section 7 defines the
Plurality index and the associated Pluri-Borda rule, and provides a simple yet
illuminating axiomatization. The argument is summarized in Section 8 which
presents an “Arrowian possibility result”which shows that the Pluri-Borda is
the first rule in the literature to jointly satisfy a number of choice axioms that,
we submit, are to be satisfied by any choice correspondence that purports to
reliably pin down a properly ordinal welfare criterion. In section 9, we round
off the argument by asking whether Generalized Borda rules are consistent with
the Condorcetian premise that Condorcet winners are to be chosen whenever
they exist. Indeed, we show that the Essential Set introduced by Dutta-Laslier
(1999) and axiomatized by Laslier (2000) is such an example.2 It has excellent
reliability properties. However, in contrast to the Pluri-Borda rule, it fails to be
“resolute” as it selects at least three alternatives in the absence of Condorcet
winner.

2The Essential Set is in fact the only GBR (other than the Borda rule) that has been
defined in the prior literature. The weights supporting the essential set are the “maximal
lotteries” introduced by Kreweras (1963) and Fishburn (1984) and axiomatized by Brandl et
al. (2016).
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2 Framework and Notation

We will employ a variable-agenda, variable-population framework.

• Let A be an abstract (finite or infinite) set interpreted as the ‘universe’of
possible alternatives.

• A choice set or “agenda”is a finite subset of A; the family of all possible
agendas —all finite subsets of A —is denoted by F (A) .

• Each individual i ∈ I has a preference relation described by a linear order
Pi on A. For any given A ∈ F (A) , let L (A) denote the set of linear orders
on A.

• A profile µ is a rational-valued probability distribution on L (A) , with µP.
denoting the relative frequency of individuals with preference ordering P .
(That is, if one starts from a profile in the usual manner as an I−tuple
of preferences, µP = |{i:Pi=P |

|I| .) Thus our description of a profile builds
in anonymity. By considering relative rather than absolute frequencies,
we have slightly restricted the generality by imposing an additional ho-
mogenity restriction. This has been done for expositional purposes. (All
concepts and results could be rephrased on the basis of profiles described
by absolute frequencies).

• The set of profiles is given by the rational-valued probability simplex on
L (A) denoted by ∆Q (L (A)). The support of a profile will be denoted by
P (µ); i.e. P (µ) := {P ∈ L (A) : µP > 0}.

• An aggregation problem is a pair (A,µ) ∈ (F (A) ,∆Q (L (A))); the collec-
tion of aggregation problems is denoted by D. It is sometimes convenient
to describe aggregation problems by reference to distributions ν over rank-
ings on a larger agenda B. Then the pair (A, ν) denotes the aggregation
problem (A,µ) ∈ D, where µP =

∑
P ′:Rest|A(P ′)=P νP ′

• A social choice correspondence C maps voting problems (A,µ) ∈ D to
non-empty subsets of A.

• For any P, top(P ) denotes its maximal element. For any (A,µ) ∈ D,
tops (A,µ) := {top(P ) : µP > 0}. Likewise, π (A,µ) (a) :=

∑
P∈L(A){µP :

top(P ) = a}. So, the “plurality measure”or “plurality index”is the image
measure of µ under top, π (A,µ) = µ ◦ top−1.
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3 Generalized Borda Rules

3.1 Ordinal Dominance

The following discussion make essential use of the (common) notion of majority
margin M(a, b) between two alternatives.

M(a, b) := µ({P : aPb})− µ({P : bPa}).
Note that, by construction, the “matrix”M is skew-symmetric, i.e. M(a, b) =

−M(b, a) for all a, b ∈ A.
Without change in substance, we could have developed the material on the

basis of the (gross) majorities M (a, b) of individuals favoring a over b, with
indifference (identity) splitting fifty-fifty.

M(a, b) := µ({P : aPb}) if a 6= b, and M(a, b) =
1

2
if a = b.

It is easily checked that M = 1
2 (1 +M) , so that M and M ′ are positive affi ne

transformations of each other, hence equivalent for all purposes relevant here.

Given an aggregation problem (A,µ), which alternatives are “better in the
aggregate”on the basis of the ordinal preference comparisons only? With |A| =
2, the ordering by majority comparison is arguably compelling. It could be
further backed up by May’s theorem.
What about agendas with cardinality |A| > 2. A ‘Naive’ proposal would

extend the direct majority comparison to non-binary agendas. But this cannot
work due to the possibility of Condorcet cycles. One could put the error down
to forced neglect of indirect ordinal preference information. So if M(a, b) > 0
while M(b, c) > 0 and M(a, c) < 0, the indirect comparison favors b over a.
Heuristically, if the indirect majority margins are strong enough and “deserve”
suffi cient weight, they should outweight the direct comparison.

A priori, it is not obvious how to settle the trade-off between the direct
and the indirect comparisons in general, and this can be viewed as one of the
main sources of the diffi culites of voting theory. Here we begin by focusing on
cases where there are no such trade-offs to make. Thus, say that a ordinally
dominates b in the aggregation problem (A,µ) iff, for all z ∈ A,

M(a, z) > M(b, z).

The alternative a is ordinally admissible in (A,µ) if there does not exist any
other alternative b ∈ A ordinally dominating it. Let their set be denoted by
OA(A,µ). A social choice correspondence C is ordinally admissible if C(A,µ) ⊆
OA(A,µ) for all (A,µ) ∈ D.3

3One might be drawn to want to refine ordinal admissibility by considering “weak”instead
of “strict” dominance, but this raises a host of issues. For example, naturally defined and
well-motivated ordinally admissible choice functions such as the Essential Set defined below in
section 9 contain weakly dominated alternatives. Dutta-Laslier (1999) conclude their thorough
analyis of the issue by suggesting that one may need to settle for this.
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Note that, if A = {a, b}, then a ordinally dominates b in {a, b} iffM(a, b) > 0.
By contrast, for non-binary agendas , the partial ordering defined by the ordinal
dominance relation is often quite weak, admitting a range of (non-equivalent)
multiple admissible alternatives. However, in special, yet illuminating aggrega-
tion problems (A,µ), only a single alternative may be ordinally admissible.

Example 1 Let A = {a} ∪ B, with |B| ≥ 3. The profile µ is given by the
following two conditions. First, the marginal distribution of µ on rankings over
B is the uniform distribution. Second, the alternative a is ranked second by all
P ∈ P (µ). From the first condition, it is immediate that, for all b, b′ ∈ B,
M (b′, b) = 0. By the second condition, a is ranked above b exactly by those
individuals whose top is not b. These have measure 1− 1

n , entailing a majority
margin of M(a, b) = 1 − 2

n > 0 for all b ∈ B. Thus a ordinally dominates any
b ∈ B.

From this Example, it follows immediately that no top-confined choice cor-
respondence is ordinally admissible, where “top-confined”means that the cor-
respondence chooses only alternatives that are some individual’s top. Examples
are Plurality rule, Plurality with a run-off, and Single-Transfareable vote. This
strengthens the common critique of these rules as not being Condorcet consis-
tent.

Ordinal dominance is not really a new concept although it seems to be
studied rarely; it is a weakening of the covering relation considered by, e.g.
Dutta-Laslier 1999. So the ordinally admissible set is contained in the Pareto
effi cient set and contains the uncovered set.

How should one select among ordinally admissible alternatives? A classical
proposal is Borda’s which can be defined as maximizing the average majority
margin over all comparison alternatives. The Borda Rule CBorda is given by

CBorda (A,µ) = arg max
a∈A

1

n

∑
e∈A

M (a, e) .

The Borda Rule is a special case of a scoring rule. For a given cardinality
of the agenda, a scoring function t is a non-increasing mapping from the set
{1, .., |A|} to the unit interval [0, 1]. It is usually assumed without loss of gener-
ality that t(1) = 1 and t(|A|) = 0. The aggregate score of an alternative being
defined as t (a, µ) =

∑
P∈L(A) (t({|b : bPa|}+ 1)µ (P ) , the associated scoring

rule Ct−score is given by is defined, for fixed agenda A,

Ct−score (µ) = arg max
a∈A

t (a, µ) .

Proposition 2 Let A be any fixed agenda. A scoring rule Ct−score is ordinally
admissible if and only if it is the Borda rule.
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This result is reminiscent of results that identify the Borda rule as the unique
scoring rule that is C2 —that is, depends only on the majority matrix M. But
ordinally admissibility does not entail C2, nor is it entailed by it. It is also
closely related to characterizations of the Borda rule involving Cancellation. So
it is no surprise given the literature, but good to have here to flesh out the
overall picture.

3.2 Ordinal Effi ciency

One can naturally extend the ordinal dominance to randomized (“lotteries”)
p ∈ ∆ (A) by considering expected majority margins4

M (p, q) =
∑
a,b∈A

paM(a, b)qb.

It is easy to check that skew-symmetry ofM on A×A entails skew-symmetry
of M on ∆ (A)×∆ (A) , i.e. M (p, q) = −M (q, p) for all p, q ∈ ∆ (A) .
So, identifying the alternative a with the degenerate lottery δa, say that the

lottery p ordinally dominates a iff (in A) iff, for all z ∈ A,

M(p, z) ≥M(a, z),

with at least one strict inequality. An alternative a ∈ A is ordinally effi cient
if there does not exist a lottery p ∈ ∆(A) such that p ordinally dominates a.

Ordinally effi cient alternatives maximize a weighted average of majority mar-
gins. The following result follows from standard separation arguments for convex
sets.

Proposition 3 The alternative a ∈ A is ordinally effi cient in A if and only if
there exists a weight vector w ∈ ∆(A) such that, for all b ∈ A,∑

e∈A
weM(a, e) ≥

∑
e∈A

weM(b, e). (1)

Proof. For any lottery p ∈ ∆ (A) , let mp denote the vector (M(p, e))e∈A ∈
[−1,+1]A. Let M denote the closed convex set {mp}p∈∆(A). Evidently, a is
ordinally effi cient in A iff the open convex set {m ∈RA : m > ma} does not
intersect M. Thus, by a standard separation argument for convex sets, there
exists w ∈ ∆ (A) satisfying equation (1).

4Expected majority margins play a key role in the theory of “Maximal Lotteries”(Fishburn
1984, Brandl et al. 2016). In contrast to these accounts, we consider non-stochastic choice
functions F . These can be canonically extended to (non-resolute) stochastic choice functions
by requirement that a lottery be maximal at a profile if and only if all alternatives in its
support are. That is, p ∈ C (A,µ) iff a ∈ C (A,µ) for all a ∈supp(p).
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The converse (“if”) is straightforward. �

The following is an interesting illustration of the gain in normative strength
achieved by the ordinal effi ciency criterion.

Corollary 4 If a is ordinally effi cient, a is not a Condorcet looser.

Proof. By Proposition 3, there exists w ∈ ∆ (A) satisfying equation (1) for
the ordinally effi cient a.
By the symmetry of the matrix of majority margins, M(a,w) ≥M(w,w) =

0. But, if a is a Condorcet Loser, M (a, b) < 0 for all b 6= a. Hence M(a,w) < 0
unless w = δa. In that case, M(a,w) = 0 < M(b, w) for all b 6= a, contradicting
equation (1). �

An interesting example of a choice rule that is (weakly) ordinally admissible
but not (weakly) ordinally effi cient is the minmax or Simpson-Kramer rule. It
follows immediately that it is weakly (but not strictly) ordinally admissible. It
is also well-known that it may select Condorcet losers. This is generally viewed
as a serious defect of the minmax rule . The ordinal effi ency criterion appears
to be an attractive normative argument for excluding Condorcet losers.

3.3 Joint Ordinal Effi ciency

Consider sets of alternatives G as potential output of a choice correspondence
at (A,µ). When can the set G be regarded as potentially identifying the set of
ordinally optimal choices? For this to be the case, not only needs each a ∈ G
be ordinally effi cient individually, but the different a ∈ G must be viewable as
“jointly tied”. One way to capture make this notion of “joint tie” is again via
lotteries. Think of G as a choice rule’s “recommendation”. That is, the rule
permits choosing any in G without pinning down which in a definite manner.
In the execution of the rule, the implementor may choose any, but must finally
choose one. This choice is, qua content of the recommendation, essentially
arbitrary. So it could be made contingent on some external factor, such as day
of the week; indeed, one can argue that some external factor must have come in
to cause the choice of one over another. Such contingency introduces potential
uncertainy. It is most directly captured by considering the choice of “lotteries”
among the recommended alternatives.
If G represents a genuine tie, any such lottery should be potentially optimal

as well; in particular, it needs to be ordinally effi cient. So we say refer to a
set G as jointly ordinally effi cient for (A,µ) if, for no lottery p ∈ ∆ (A)
with support contained in G, there exist another lottery q ∈ ∆ (A) such that
q ordinally dominates p. An choice correspondence C is ordinally effi cient if
C(A,µ) is joint ordinally effi cient for all (A,µ) ∈ D.
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From these definitions, it seems “obvious”that the joint ordinal effi ciency of
sets may be a stricter requirement than the ordinal effi ciency of each element.
It is indeed so, but not entirely trivial to verify, so we have chosen to record it
as a formal result.

Proposition 5 There exist aggregation problems (A,µ) for which the set of
ordinally effi cient alternatives OE(A,µ) is not jointly effi cient.

Extending the argument of Proposition 3 above,

Proposition 6 The choice correspondence C is ordinally effi cient if and only
if, for all (A,µ) there exists a weight vector w(A,µ) ∈ ∆(A) such that, for all
a ∈ C(A,µ) and all b ∈ A,∑

e∈A
w(A,µ)
e M(a, e) ≥

∑
e∈A

w(A,µ)
e M(b, e). (2)

Note that the “joint optimality”of the sets C(A,µ) is reflected in maximality
of the average majority margin with respect to a common weight vector w(A,µ).

Proof. The implication from (2) to (1) is straightforward. To see the
converse, take any agenda A and any profile µ ∈ ∆ (A). Let p be any lottery
whose support equals C(A,µ). By Proposition 3 (applied without change to
ordinally effi cient lotteries rather than just alternatives), there exist a vector
w = wa,µ ∈ ∆ (A) such that,

M(p, w) ≥M(q, w) for all q ∈ ∆ (A) .

By linearity of M in the first argument and the support assumption on p,

M(p, w) = M(a,w) for all a ∈ C(A,µ).

Combining these two (in)equalities, we infer that, for all a ∈ C(A,µ) and
b ∈ A,

M(a,w) ≥M(a,w),

as asserted. �

Proposition 6 can be used in at least two different ways. On the one hand,
one can use it as providing a technical criterion for checking whether a given
choice correspondence is jointly ordinally effi cient; the weight vectors w(A,µ)

then serve merely as ‘witness’of this property, without interpretable meaning
of their own.
On the other hand, a more farreaching reading, Proposition 6 to determine

which j.o.e. choice correspondences “appropriately”, or even best serve as cri-
teria of “ordinal welfarism”; on this reading, ordinal welfarism boils down to
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an exercise in multi-criterion decision making, where each alternative is evalu-
ated by the same set of |A| criteria, where criterion e ∈ A measures the size
of the majority margin of a versus e. The trade-off among these criteria is de-
termined by the weight vector w(A,µ). One can think of the weighted average∑
e∈A w

(A,µ)
e M(a, e) of representing an “index”of aggregate welfare, with the

e ∈ A representing the different index components. Different indices will be
characterized by different component weights. The Borda rule represents the
simplest instance of it, with component weights equal at any profile.
To highlight the independent, determinative role of the weights, an index

weighting function ρ will be any function that assigns to any aggregation
problem (A,µ) a non-negative vector of weights ρ(A,µ) ∈ ∆ (A). Any i.w.
function ρ induces a choice correspondence Bρ given by

Bρ(A,µ) := arg max
a∈A

∑
M(a, e)ρe (A,µ) .

Bρ will be called the generalized Borda rule (GBR) based on index ρ.
To reflect the change in perspective, we can now restate Proposition 6 as

follows.

Theorem 7 1. A choice correspondence C is jointly ordinally effi cient if and
only if C ⊆ Bρ for some index weighting function ρ.

2. A choice correspondence C is a generalized Borda rule if and only if it is
jointly ordinally effi cient and inclusion-maximal among all choice corre-
spondences with this property.

We do not insist on inclusion-maximality as normatively mandated here.
That, indeed, would entail that there was a perfect tie among all generalized
Borda maximizers; but this need not be the case, as one might be able to invoke
additional considerations to refine the selection.5

Formally, index weighting functions ρ are the same as probabilistic social
choice functions, as in Brandl et al. (2016). Indeed, from this perspective one
can think of the GBRs as selecting alternatives with the highest expected ma-
jority margin M(a, ρ (A,µ)) of a over some “reference lottery”ρ (A,µ). While
this adds an additional heurist angle on what a GBR does, it does not appear
to be helfpul to determine what ρ should be in the first place.

5We intend to adress the refinement issue further in future versions of the paper.
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3.4 Scoring Characterization of Generalized Borda Rules

To connect the notion of GBRs to the usual, rank-based, understanding of
Borda rules, it is helpful to provide a representation that is additively separable
in individuals.

To do so, it is helpful to view GBRs as maximizing average gross majorities
M(a, ρ (A,µ)). Recalling that M = 1

2 (M + 1) , this comes out to the same
thing.
Abreviating ρ (A,µ) to ρ, evidently

M(a, ρ) =
∑
e∈A

µ ({P : aPe}) ρe +
1

2
ρa

=
1

n

∑
i∈I

( ∑
e∈A:aPie

ρe +
1

2
ρa

)
.

Thus, if we define the generalized Borda score si (a; ρ (A,µ)) as

si (a; ρ (A,µ)) :=

( ∑
e∈A:aPie

ρe +
1

2
ρa

)
,

one has
Bρ = arg max

a∈A

1

n

∑
i∈I

si (a; ρ (A,µ)) .

Generalized Borda scores yield an intuitive imputed strength of preference
(for aPib) of

si(a; ρ)− si(b; ρ) =
1

2
ρ (a) +

∑
e:aPiePib

ρ (e) +
1

2
ρ (b) .

Thus, an individual exhibits a strong preference for a over b to the extent that
a is preferred to alternatives e of high total measure that are in turn preferred
to b.
Note also that the range of scores is typically less than the unit interval, and

will vary across individuals, even in size. 6

6 Indeed, it is given by
[
1
2
ρ (bottom (Pi)) , 1− 1

2
ρ (top (Pi))

]
.
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4 Whats is wrong with the Borda rule?

Example 8 We compare the choice in two aggregation problems (A,µ) and
(A′, µ′). A consists of two alternatives only, A = {a, b}, with , 0 < µ (ab) <
µ(ba). Think of a and b as two “projects”. Agents have the same preferences
over A in both problems; that is, in the notation introduced in section 2, (A,µ′) =
(A,µ).
The agenda A′ is obtained by adding to A a number of “slightly inferior

variants”A′′ of project a. Specifically, all individuals prefer a to any variant
a′ ∈ A′′, and those individuals who prefer a to b prefer any variant a′ ∈ A′′ to
b as well.

Since the variants in A′ are all Pareto inferior to a, in (A′, µ′) the social
choice boils down to one among a and b, just as in (A,µ). Is there any reason
that they should differ? More specifically, is there suffi ciently strong reason to
overturn the majority favoring b over a (in both problems) in the direction of
a?
In principle, one might distinguish at least two informational scenarios. In

scenario one, it is evident from the desription of the alternatives that they are
“slightly inferior variants”. For example, the a′ might result from a by throwing
away a few pennies here or there. In that case, the profile µ′ in A′ could have
been inferred (at least with high likelihood) from that in (A,µ), and it stands to
reason that only additional feature of (A′, µ′) is the mere fact that the inferior
variants have been included in the agenda, for whatever reason. In this scenario,
there seems to be no argument at all for a change in choice towards a.
In a second scenario, the alternative a′ ∈ A′′ and a are descriptively unre-

lated; for example, the alternatives might be identified by mere labels. In that
scenario, one might argue that the fact a performs better than b in the indi-
rect comparison with any a′ ∈ A is some, perhaps slight reason to upgrade the
evaluation of a in A′. How much is the case for switching the social choice to
a strengthen if |A′′| is large? This may be hard to assess ‘intuitively’, but the
Borda rule gives a clearcut answer. Any majority of b over a, however large,
may be overturned by the introduction of a suffi cient number of inferior variants.
Specifically, a simple computation reveals that CBorda(A′, µ′) = {a} whenever
|A′′| + 1 ≥ 1

µ(ab) . Indeed this follows from observing the difference in Borda

scores sBordai (A′, µ′) (a)− sBordai (A′, µ′) (b) equals 1− 1
|A′′|+1 for those individ-

uals with top a, while this difference is just − 1
|A′′|+2 . Thus if |A

′′|+ 1 ≥ 1
µ(ab) ,

the aggregate Borda score

sBorda(A′, µ′) (a)− sBorda(A′, µ′) (b)

=

(
1− 1

|A′′|+ 1

)
µ (ab) +

(
− 1

|A′′|+ 2

)
µ (ba)

> µ (ab)− 1

|A′′|+ 1
(µ (ab) + µ (ba)) = µ (ab)− 1

|A′′|+ 1
≥ 0.
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In the framework of GBRs, there is a straightforward remedy for this ap-
parent anomaly. Simply render all Pareto dominated alternatives irrelevant by
setting their index weights to zero. Then, in the larger problem (A,µ′), the
index will remain concentrated on {a, b}, and the majority preference of b over
a will be reinstated.
The Example could also be looked at in terms of Independence of Clones,

since set A′′ ∪ {a} is a cluster of clones at the preference profile µ′; see the
following section for formal definitions. Again, by adapting the index weights
to reflect the structure of clones, one can insure reliability of the induced social
choice in the presence of clones. In the example, the reasoning from Pareto
Dominance and the reasoning from cloning would independently arrive at the
same conclusion.

5 Minimal Index Requirements and their Choice
Implications

In view of the general context-dependency of weights, it is a wide open question
what appropriate or even "optimal” index weights would look like. We thus
introduce a few basic requirements that indices should have intuitively; the list
is not meant to be exhaustive, simply suffi ciently specific to provide enough
structure to allows to exhibit some common signature among this wide class of
indices.

A good index should balance reliability with informativeness. To be infor-
mative, it should be suffi ciently broad in its coverage. Intuitively, the index
should include alternatives that have identifiable distinct merit. It thus plausi-
ble to require inclusion at least of those alternatives that are some individual’s
top choice.

Axiom 9 (Dispersion) For all (A,µ) ∈ D, ρ (A,µ) (a) > 0 whenever
π (A,µ) (a) > 0.

We shall refer to the support of ρ as the set of “relevant”alternatives, de-
noted by rel(A,µ), and to alternatives in the complement as “irrelevant” or
“null”.

If an alternative is null, its presence or absence should arguably be immate-
rial, as expressed by the following axiom.

Axiom 10 (Null Consistency) For all (A,µ) ∈ D, if ρ (A,µ) (a) = 0, then
ρ (A\{a}, µ) = ρ (A,µ).7

7Since the support of ρ (A,µ) is contained in A\{a} by assumption, ρ (A,µ) can be viewed
as an element of ∆ (A) .
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Since alternatives in their role as comparators are characterized here by the
profile of individuals’preferences, presumably the index should depend contin-
uously on the profile.

Axiom 11 (Continuity) For all A, ρ (A,µ) is continuous in µ.

These conditions are intended as “conditions of regularity” without much
“edge”. Note, in particular, that they are all satisfied trivially by the Borda
index.

“Conditions of regularity”are to be contrasted with “conditions of reliabil-
ity”. For example, we have argued in the previous section that Pareto dominated
are dispensable and potentially highly unreliable as comparators. Hence they
should not be given any weight.

Axiom 12 (Pareto Irrelevance) For all (A,µ) ∈ D, ρ (A,µ) (a) = 0 when-
ever a is Pareto dominated by some b ∈ A.

Likewise, the index includes should avoid double-counting of very similar
comparators by appropriate discounting of their weight. To ensure this, we
shall make use of the notion of a “cluster of clones" common in the literature on
voting and probabilistic social choice following Tidemann (1987). A set B ⊆ A
is a cluster of clones at µ if, for all b, b′ ∈ B and a ∈ A\B : aRb iff aRb′.

Axiom 13 (Cloning Invariance) If B ⊆ A is a cluster of clones at µ,
then, for any ∅ 6= B′ ⊆ B, ρ (B′ ∪A\B,µ) (a) = ρ (A,µ) (a) for all a ∈ A\B.

All alternatives in a cluster of clones contain the same information as com-
parators for evaluation of the out-of-cluster elements a ∈ A\B. Hence the
exclusion or inclusion of some of them should not affect the index-weights of the
out-of cluster elements. Note that this also implies that the total weight of all
elements in the cluster remains unchanged: ρ (B′ ∪A\B,µ) (B′) = ρ (A,µ) (B).

A set B ⊆ A is a cluster of equal clones at µ if it is a cluster of clones
and, for all b, b′ ∈ B, M (b, b′) = 0.

Proposition 14 1. If ρ satisfies Null Consistency, then, for any (A,µ) ∈ D
and any b ∈ A such that ρ (A,µ) (b) = 0 and Bρ (A,µ) \b 6= ∅, then

Bρ (A\b, µ) = Bρ (A,µ) \{b}.
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2. If ρ satisfies Null Consistency and Pareto Irrelevance, then Bρ satisfies
Pareto Independence. That is, for any (A,µ) ∈ D and any b ∈ A such
that b is Pareto-dominated in A,

Bρ (A\b, µ) = Bρ (A,µ) \{b}.

3. If ρ satisfies Cloning Invariance, then Bρ satisfies Independence of
Equal Clones. That is, for any (A,µ) ∈ D and any ∅ 6= B′ ⊆ B ⊆ A
such that B is a cluster of equal clones at µ,

Bρ (B′ ∪A\B,µ) = Bρ (A,µ) ∩ (B′ ∪A\B) .

A few remarks are in order.

• Note that, in (1), the clause “Bρ (A,µ) \b 6= ∅”cannot be dispensed with,
since it is quite possible that Bρ (A,µ) = {b} even though ρ (A,µ) (b) = 0.

• This issue does not arise in (2), since if Bρ (A,µ) = {b}, b cannot be Pareto
dominated.

• In (3), the non-standard restriction to equal clones is necessary; we will
show by example in the next section that the standard axiom of Indepen-
dence of Clones (which drops this clause) will be violated by Bρ whenever
ρ is continuous and dispersed.8

6 Systematic Departures from Condorcet on the
Single-Peaked Domain

Consider profiles supported on the single-peaked domain on three alternatives.
These can be desribed as four-tuples (α, β1, β2, γ), where

µ(abc) = α, µ(bac) = β1, µ(bca) = β2, µ(cba) = γ,

summing up to one.9

We note first that if neither of the two “extreme”alternatives a or c is favored
by a majority of individuals (i.e. if α, β > 0), which is exactly the case if b is the
unique Condorcet winner, b is in fact the unique ordinally admissible alternative.
But if the unique Condorcet winner is one of the extremes, it is generally not
the unique ordinally admissible alternative, and the “center”alternative b may
—indeed: will! - sometimes be chosen. We develop the analysis in a sequence of
steps.

8For most choice correspondences in the literature to date, the two versions of “Indepen-
dence of clones” are equivalent. But there are exceptions. The minmax rule, for example,
satisfies Independence of Equal Clones but does not satisfy Independence of Clones.

9 In this notation, alternatives are listed top to bottom; so abc is short for aPbPc, etc. .
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Claim 15 If α = 1
2 , β2 > 0, γ > 0 and ρ satisfies Dispersion, then Bρ({a, b, c}, µ) =

{b}.

Proof. Under the assumptions on the profile,

M(a, b) = M(b, a) =
1

2
;

M(a, c) = α+ β1;

M(b, c) = 1− γ.

Since β2 > 0, M(a, c) < M(b, c). So the indirect comparison between a and
b is in b′s favor, while the direct comparison is tied. By Dispersion, ρ (c) >
0, hence the indirect comparison carries strictly positive weight. Hence a /∈
Bρ({a, b, c}, µ). Further, c /∈ Bρ({a, b, c}, µ), since c is a Condorcet Loser. Thus
Bρ({a, b, c}, µ) = {b}. �

From Claim 15, we immediately get:

Proposition 16 If ρ satisfies Dispersion and Continuity, then there exists a
single-peaked profile µ such that α > 1

2 and Bρ({a, b, c}, µ) = {b}. In particular,
Bρ violates Condorcet Consistency.

Proof. Take a single-peaked profile µ′ such that α′ = 1
2 , β
′
2 > 0, γ′ > 0. By

Claim 15, Bρ({a, b, c}, µ′) = {b}. It is straightforward to verify that continuity
of ρ implies upper-hemi-continuity of Bρ. Thus Bρ({a, b, c}, µ) = {b} for all µ
in a neighborhood of µ′. The assertion of the Proposition follows. �

Proposition 17 If ρ satisfies Dispersion and Continuity, then Bρ violates In-
dependence of Clones.

Proof. Consider special case of Proposition 16 in which α > 1
2 , β1 = 0

and Bρ({a, b, c}, µ) = {b}. Then the set {b, c} is a set of clones. Thus Clone
Independence implies Bρ({a, b, c}, µ) ∩ {a, b} = Bρ({a, b}, µ). But the latter
equals {a} since α > 1

2 , a contradiction. �

To see why it would not be appropriate for Clone Independence of choice to
hold in this example, note that the assumptions on ρ are perfectly consistent
with the assumption of Clone Independence of the index measure ρ, for the
latter merely requires that the weight of b in ({a, b}, µ) be split among b and c
in ({a, b, c}, µ), which is perfectly consistent with the weight of c being stricly
positive in the latter. Thus the inclusion of c “helps”b in comparison to a, since
b outshines a in the indirect comparison via c.
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The above Propositions demonstrating some Borda-like behaviour rely only
on the weak regularitly assumptions of Dispersion and Continuity. The Borda
rule itself is a special case. If we add the reliablity requirement of Pareto Irrele-
vance on the weighting function, we get something quite Borda-unlike, namely a
necessary violation of Monotonicity, one of the classical “paradoxes of voting”.

Condition 18 (Monotonicity) If µ = αµ0 + (1 − α)δP , and µ′ = αµ0 +
(1 − α)δP ′ , where P ′ differs from P only in b being moved up in the ranking,
C(A,µ) = {b} implies C(A,µ) = {b′}.

Proposition 19 If ρ satifies Dispersion, Continuity and Pareto Irrelevance,
then Bρ violates Monotonicity.

Proof. Take a single-peaked profile µ such that α > 1
2 , β2 > 0, γ > 0. By

Proposition 16, Bρ({a, b, c}, µ) = {b}. Now consider the profile µ′ such that
α′ = α, β′1 = β1, β

′
2 = β2 + γ, γ

′
= 0. The profile µ′ results from µ by a flip

in the preference between b and c among all individuals that had c as their top
in profile µ. That is, this subset of individual has preference ranking cPbPa in
µ, while it has preference ranking bPcPa in µ; the other individuals rankings
remain the same. So Monotonicity requires that Bρ({a, b, c}, µ′) = {b}. But, by
Pareto Irrelevance, ρ({a, b, c}, µ′)(c) = 0 since γ = 0. So the choice among a
and b is decided by the direct majority comparison, which is in favor of a. Thus
Bρ({a, b, c}, µ′) = {a}, a contradiction. �

Violations of Monotonicity are certainly counterintuitive at first sight, and
ask for explanation. Here is one. The choice of b at profile µ is perfectly
reasonable, as established above. If the weight assignments at the two profiles
was the same — i.e. if ρ({a, b, c}, µ) = ρ({a, b, c}, µ) —monotonicity would be
verified. But there are good reasons that these weight assignments should not
be the same, instantiated here by the Pareto Irrelevance conditions. Obviously,
this change in weights might affect the relative evaluation between a and b —that
indeed is the very point of such change, one might say. There seems to be no a
priori reason why this second effect might not outweight the first, ceteris-paribus
effect. We conclude that while the monotonicity axioms appears plausible by
drawing on a ceteris-paribus intuition, but is not normatively binding in general
as it ignores the possibility of ceteris-non-paribus effects.

7 The Plurality Index

In this section, we propose a particular index satisfying all the above desiderata,
the “plurality index”π. The plurality index π is simply given by the distrib-
ution of individuals’preference tops: π (A,µ) (e) := µ({P : topA(P ) = e}). We
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will refer to the associated generalized Borda rule Bπ as the “plurality-weighted
Borda rule”, or pluri-Borda rule for short.
In the language of probabilistic choice, π (A,µ) is the “random dictator-

ship”lottery, and aggregate pluri-Borda scores s (a, π (A,µ)) have the following
intepretation. Pick randomly and independently two individuals, i and j; the
score s (a, π (A,µ)) is the probability that individual i prefers a to individual
j′s top alternative.
The plurality index is appealing for the simplicity of its definition and com-

putation, its intuitive accessibility and analytical tractability, and its apparent
sense. We do not claim it to be “the”“ideal”index, and it well may not be (if
such ideal index exists at all). At the same time, the plurality index does have
a simple and illuminanting axiomatic characterization that rest on just two ax-
ioms. The first is the “Irrelevance of (Pareto) inferior alternatives”axiom stated
above as a central reliability desideratum for indices. The second is the axiom
of “Mixture-Invariance".

Axiom 20 (Mixture Invariance) For all A ∈ F (A) , all µ, µ′ ∈ ∆ (L (A)) ,
and all rational α ∈ [0, 1], ρ (A,αµ+ (1− α)µ′) = αρ (A,µ) + (1− α) ρ (A,µ′) .

Mixture invariance asserts strong a strong form of “population consistency”.
Mathematically, it reflects a basic structural fact about indices, namely the

fact that they are functions from one probability space into another. Mixture
Invariance says that the basic algebraic operation in such spaces, the formation
of convex combinations, is preserved under ρ. From this perspective, Mixture
Invariance resembles the Additivity axiom underlying the standard axiomati-
zation of the Shapley value, which reflects the fact that cooperative values are
mappings from one linear space to another.

Theorem 21 The plurality index is the unique index satisfying Irrelevance of
Pareto-Inferior Alternatives and Mixture Invariance.

Proof. The proof is extremely simple, not altogether unlike the proof of
the standard characterization of the Shapley value.
Consider first unanimous profiles δP concentrated on a single preference

ordering P . All alternatives other than top(A,P ) are Pareto dominated. Hence
ρ (A, δP ) = δtop(A,P ).
Now any profile µ ∈ ∆ (A) can be written as a convex combination of

unanimous profiles, µ =
∑
P∈L(A) µP δP . By Mixture Invariance, ρ (A,µ) =∑

P∈L(A) µP ρ (A, δP ) =
∑
P∈L(A) µP δtop(A,P ) = π (A,µ).

The converse is straight forward. �
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8 Summing Up: An Arrowian Possibility Result

We can summarize the thrust of the discussion of the paper and put the con-
tribution of the Pluri-Borda rule in the context of the broader social choice
and voting literature by way of an “Arrowian”possibility result. To formulate
it, we need to formulate one key desiratum on choice correspondences, “Res-
oluteness”. Resoluteness requires that that the correrspondence select a unique
choice “generically”in the following sense, very loosely: “almost everywhere”.

Axiom 22 (Resoluteness) For every agenda A, C(A,µ) is single-valued on
an open and dense set of profiles µ ∈ ∆ (A) .

Theorem 23 There exists a choice correspondence that satisfies Ordinal Effi -
ciency, Pareto Independence, Independence of Equal Clones and Resoluteness.
In fact, the Pluri-Borda Rule satisfies these four properties.

We have note the satisfaction of the first three conditions already. In the
Appendix, it is shown that the Pluri-Borda rule is resolute.
To the best of our knowledge, it is the only such correspondence in the

existing literature. Here are some well-known rules that come close to satisfying
the four requirements of the Theorem.

1. The Single-Transferable Vote (a.k.a Alternative Vote) satisfies all require-
ments except for Ordinal Effi ciency; indeed, it is not even ordinally ad-
missible.

2. The minmax rule as well satisfies all requirement except for Ordinal Effi -
ciency; in contrast to the STV, it is ordinally admissible.

3. The Essential Set defined in the next section satisfies all requirements
except for Resoluteness. As to Resoluteness, it is easy to see that the
Essential set must contain at laest three alternatives in the absence of a
Condorcet winner. Since contains an open set, uniqueness is not a dense
property.

9 The Essential Set, a Condorcetian GBR

As noted above, if a profile admits a Condorcet winner, such winner is ordinally
admissible, indeed ordinally effi cient. Is it possible to reconcile the requireme-
nent the Condorcet winners always be chosen (“Condorcet Consistency”) with
ordinal effi ciency?
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In other words, do their exist “well-bevaved”ordinally effi cient choice cor-
respondences that select Condorcet winners whenver they exist? Without any
additional restrictions, the question is trivial, as one could just select, in the
absence of a Condorcet winner, ordinally effi cient alternatives in some arbitrary
or ad-hoc ways. An example is Black’s (1948?) rule which selects the Condorcet
winner, if a winner exists, and otherwise selects the Borda winner. So one would
one want to impose some additional restrictions, such as selection from the top
cycle, that exdend the Condorcetian spririt to in a natural manner. Note that
the answer to the revised, somewhat open-ended question is not entirely obvi-
ous, as some natural candidates such as the minmax rule fail to be ordinally
effi cient, while being ordinally admissible.
But we can find in the literature a choice correspondence that fits the bill

quite elegantly: the Essential Set. The Essential Set is most easily motivate via
the notion of a “maximal lottery”. A lottery p is a maximal lottery for (A,µ)
if M (p, q) ≥ 0 for all q ∈ ∆ (A). Maximal lotteries can be viewed as lotteries
that are Condorcet winners in an expected sense.
Since M is skew-symmetric, maximal lotteries correspond to the max-min

strategies of a zero sum game. Therefore, by the minmax theorem, they always
exists (Kreweras 1963, Fishburn 1984). They need not be unique in general, but
are always unique when the number of individuals is odd (Laffond et al. (1997).
The Essential Set at (A,µ) is defined as the set of alternatives that have

positive probability for some maximal lottery:

ES (A,µ) = {a ∈ A : pa > 0 for some p ∈ML (A,µ)}.

Ordinal effi ciency of alternatives in the Essential Set is immediate from its
definition. Joint ordinal effi ciency of the Essential Set itself follows from the con-
vexity of the set of maximal lotteries, which implies the existence of a maximal
lottery with maximal support, i.e. support equal to the essential set.
Thus, by Theorem 7, the Essential Set is contained in a GBR. But one can

show that it is in fact a GBR. This follows from the following Lemma adapted
from Laslier (2000, p. 278).

Lemma 24 For any (A,µ) ∈ D, there exists p ∈ ∆ (A) such that
i) the support of p equals ES (A,µ) , and
ii) for all a ∈ A, a ∈ ES (A,µ) iff M(a, p) = 0, and a /∈ ES (A,µ) iff

M(a, p) < 0.

Let the set of p described in the Lemma be denoted by MLo(A,µ) ⊆
ML (A,µ).

We thus obtain the following result.

Proposition 25 The Essential Set correspondence ES is a Generalized Borda
Rule ES = Bρ, where ρ is any selection from MLo.
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In section 6, we have shown that “regular” indices will produce Condorcet
inconsistent choices at some profiles. But the Essential Set is Condorcet consis-
tent. So the indices associated with the Essential Set cannot be regular. Indeed,
any selection ρ ∈ ML violates Dispersion, since, for any Condorcet consistent
profile µ in A, ρ (a) = 1 if a is the Condorcet winner. Likewise, any selection
ρ ∈ML violates Continuity, in particular: continuity at the uniform distribution
µ on L (A). To see this, consider profiles of the form (1− ε)µ+ εδP , where P is
any preference ranking in L (A) and ε > 0. All of these profiles are Condorcet
consistent, with top(P ) being the unique Condorcet winner. Any ρ ∈ ML will
put ρ (A, (1− ε)µ+ εδP ) = δtop(P ). By Continuity, ρ (A,µ) = δtop(P ), which
leads to contradiction since P is arbitrary.10

So while the Essential Set has impeccable reliability properties, including
Independence of Clones and Pareto Independence (see Laslier 2000), by relying
on indices which are arguably too narrow and not as “informative”as they could
be, it does not appear to be fully satisfactory as a criterion of ordinal welfarism.
Setting this discussion aside, in view of the many attractive properties of

the Essential Set, one would want to find a place for it in the broader scheme
of Generalized Borda Rules. Here is one way to do it, via the underlying ML-
indices. The following result points out that these indices are exactly the ones
which allow alternatives to be relevant as comparators only if they are best
choices.

Axiom 26 (Choice Congruence) For all (A,µ) ∈ D, rel (A,µ) ⊆ Bρ(A,µ).

Proposition 27 An index ρ with associated GBR Bρ satisfies Choice Congru-
ence if and only if ρ is a maximal lottery index. (ρ ∈ML).

Note that in view of Proposition 25, this result doesn’t characterize the
Essential Set exactly, but only a somewhat larger family of correspondences.

Proof. If. Fix (A,µ). Take p = ρ (A,µ) ∈ ML(A,µ). Since p maximizes
M(q, p) over q ∈ ∆ (A) , so does any a in in its support rel (A,µ), which verifies
the inclusion rel (A,µ) ⊆ Bρ(A,µ).
For the converse, take any (A,µ) and take p = ρ (A,µ). Now by skew-

symmetry ofM, M(p, p) = 0. ThusM(a, p) = 0 for all a ∈ rel (A,µ) . By Choice

10One might consider allowing indices to be set- valued, and point to the upper-
hemicontinuity of ML as a correspondence. While this reasonable for ML as a stochastic
choice correspondence as in Fishburn (1984) and Brandl et al. (2016), it does not seem ap-
pealing when ML is a correspondence of indices. The point is that, in view of the perfect
symmetry of the uniform distribution, arguably any “reasonable”index should assign uniform
weight to all alternatives, while ML (A,µ) = ∆ (A) .
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Congruence, M(b, p) ≤ 0 for all b ∈ Bρ(A,µ). Thus, the dual (minimum) player
garantuees 0 by playing p, ie. p = ρ (A,µ) ∈ML(A,µ).�
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10 Appendix: Remaing Proofs

10.1 Characterization of Borda Rule

Proof of Proposition 2.

The if-part follows from the majority margin representation of the Borda
rule.

The only-if part follows from the following Lemma:

Lemma 28 For any m,m′,m′′,m′′′ ∈ N such that m+m′ = m′′+m′′′ ≤ |A|+1,
t(m) + t (m′) = t(m′′) + t (m′′′) .

Proof. By way of contradiction. Consider a quadruple m,m′,m′′,m′′′ ∈ N
such that m+m′ = m′′ +m′′′ ≤ |A|+ 1, but t(m) + t (m′) < t(m′′) + t (m′′′) .

Let M := m+m′ − 1 ≤ |A|.
Consider a profile µ concentrated on 3 linear rankings P, P ′, P ′′ with masses

µ (P ) = µ (P ′) = 1
2 − ε and µ (P ′′) = 2ε

such that (a1P...Pa|A|), (aMP
′..P ′a1P

′aM+1P
′...P ′a|A|) and P ′′ any order-

ing such that amP ′′a for all a 6= am and, for all k ≤M and k′ > M, akP
′′ak′ .

By construction, for all k ≤M and k′ > M, ak is unanimously preferred to
ak′ .
Also, for any k, k′ ≤M, M (ak, ak′) = 2ε iff akP ′′ak′ .
Thus am is the unique ordinally admissible alternative (irrespective of ε > 0).

While am has the m− th rank in P, it has the m′-th rank in P ′. Dto. am′′

has the m′′ − th rank in P, and the m′′-th rank in P ′; let m̃ denote its rank in
P ′′.

The average score of am is(
1

2
− ε
)
t (m) +

(
1

2
− ε
)
t (m′) + 2εs(1),

while the average score of am′′ is(
1

2
− ε
)
t (m′′) +

(
1

2
− ε
)
t (m′′′) + 2εs(m̃),

which is larger if ε is suffi ciently small since t(m) + t (m′) < t(m′′) + t (m′′′) by
assumption. �
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Now, for any m′ = 1 and any m ≤ |A|, consider m′′ = 2 and m′′′ = m − 1.
Then the Lemma yields, for all m : 2 ≤ m ≤ |A|,

t (1) + t(m) = t(2) + t(m− 1), i.o.w.

t (1)− t(2) = t(m− 1)− t(m);

hence Ct−score is in fact the Borda rule. �

10.2 Ordinal Effi ciency vs. Joint Ordinal Effi ciency

Proof of Proposition 5.

Let A = {a1, ..., am}, ε > 0 suffi ciently small, and µ ∈ ∆ (L (A)) such that,

1. ` = 1, ..,m, M(a`, a`+1) = ε, and

2. for `, `′ ≤ m such that |`− `′| ≥ 2, |M(a`, a`′)| < ε.

Addition is modm; for suffi ciently small ε, such profiles profiles exist by the
McGarvey’s (1953) theorem.

First, we verify that each a ∈ A is ordinally effi cient. Indeed, by construc-
tion, a` has the largest majority margin over a`+1 among all a ∈ A. It thus
verifies Proposition 3 for the weight vector (0, .., 1a`+1 , ...0), establishing ordinal
effi ciency.

Now suppose that A is jointly ordinally effi cient (as a set). By (the argument
of) Proposition 3, there exists some weight vector w ∈ ∆ (A) such that

A = arg max
a∈A

M(a,w).

By the skew-symmetry of M, M(w,w) = 0. Hence maxa∈AM(a,w) = 0. It
follows that w is a maximal lottery in (A,µ) and A the essential set.

By a well-known result due to Laffond et al. (1997), if the number of indi-
viduals is odd ,then the unique maximal lottery has support of odd cardinality.
If follows that if |A| is even and at least 4, and if the number of individuals is
odd, A cannot be jointly ordinally effi cient in (A,µ). �
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10.3 Resoluteness of Pluri-Borda

Proposition 29 The Pluri-Borda rule Bπ is resolute.

We need to show that, for any agenda A, {µ ∈ ∆Q (L (A)) : |Bπ (A,µ) | = 1}
is open and dense in ∆Q (L (A)) .

Openness is straightforward; it remains to verify density.

Consider any aggregation problem (A,µ).

Case 1. Two tops, ie. |{π(a) > 0}| = 2.
In this case, Bπ (A,µ) is multi-valued iff π(a1) = π(a2) = 1

2 for some a1, a2,
and Bπ (A,µ) = {a1, a2}. Let µ′ be any unanimous profile with unanimous top
a1. The profiles µε := (1− ε)µ+ εµ′ are two-tops profiles, with a1 the absolute
majority winner. Evidently Bπ (A,µε) = {a1}, verifying density.

Case 2. More than two tops.

Take any a among Bπ (A,µ). (π (a) might be zero, i.e. a may or may not
be a top at µ).

Write µ =
∑
i∈{1,..n}

1
nδRi

and construct µ′ =
∑
i∈{1,..n}

1
nδR′

i
by requiring

the following conditions of R′i

1. For any b ∈ {a} ∪ tops (µ) and b′ ∈ A\ ({a} ∪ tops (µ)) ,

bP ′i b
′.

So all the non-tops other than a are moved to the bottom (in arbitrary
manner).

2. For any b, b′ ∈ tops (µ) \{a},

bR′ib
′ iff bR′ib

′.

So these preferences remain unchanged.

3. For any b ∈ A\{top (Ri) , a},
aP ′i b.

So if a is the top of Ri, R′i leaves it there. If a is not the top of Ri, R
′

moves a into second place.

Claim 30 Let a ∈ Bπ (A,µ). If π(a) ≥ 1
2 or if π(b) < 1

2 for all b ∈ Bπ (A,µ) ,
{a} = Bπ (A,µ′) .
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This follows from the following subclaims. We write sπ (a, µ) short for the
aggregate pluri-Borda score

∑
P∈L(A) µP sP (a, π (A,µ)) .

1. For all b ∈ A\ ({a} ∪ tops (µ)) , b /∈ Bπ (A,µ′) .

For such b, by the construction of µ′, their pluri-Borda score sπ (b, µ)
equals 0.

2. For all b ∈ tops (µ) \{a}, if 0 < π (b) < 1
2 , then

sπ(a, µ)− sπ (b, µ) ≥ (1− π (b))
π (a) + π (b)

2
− π (b)

(
π (a) + π (b)

2

)
= (1− 2π (b))

(
π (a) + π (b)

2

)
> 0.

The last inequality is strict since both terms are stricly positive. For the
first, this follows from the condition π (b) < 1

2 , for the latter from 0 < π (b).

3. For all b ∈ tops (µ) \Bπ (A,µ) ,

sπ (b, µ′) ≤ sπ (b, µ) < sπ(a, µ) ≤ sπ(a, µ′).

The outer inequalities follow from the construction of µ′, the inner strict
inequality from b /∈ Bπ (A,µ). Since sπ (b, µ′) < sπ(a, µ′), b /∈ Bπ (A,µ′) .

So if π(b) ≥ 1
2 for some b ∈ Bπ (A,µ) , let a := b. Since the profile has at

least three tops, the Claim follows from subclaims (1) and (2).
On the other hand, if π(b) < 1

2 for all b ∈ Bπ (A,µ) , let a be any element
of Bπ (A,µ). For any b with π (b) < 1

2 , b /∈ Bπ (A,µ′) by subclaims (1) and (2).
For any b with π (b) ≥ 1

2 , by assumption b /∈ Bπ (A,µ) . Hence b /∈ Bπ (A,µ′) ,
establishing the Claim. �

By the Claim, if there are more than two tops, there exists a ∈ Bπ (A,µ)
such that {a} = Bπ (A,µ′) for the associated µ′. Since µ and µ′ have the same
distribution of tops π = π′, for any µε := (1− ε)µ+ εµ′, and all b ∈ A

sπ (b, µε) = (1− ε)sπ (b, µ) + εsπ (b, µ′) ,

whence it follows that {a} = Bπ (A,µε) , again verifying density of the set of
single-valued profiles. �
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