Which Voting Rule Is More Manipulable?
Results from Simulation Studies

Tobias Lindner MdB Klaus Nehring Clemens Puppe | Freudenstadt, 11 September 2011
A voting rule F on a set X of social states selects a (unique) $x \in X$ for every profile $(\succ^1, \succ^1, \ldots, \succ^n)$ of preferences over X.

F is strategy-proof if $F(\succ^1, \ldots, \succ^i, \ldots, \succ^n) \succeq_i F(\succ^1, \ldots, \succ^i', \ldots, \succ^n)$

Theorem (Gibbard-Satterthwaite)

If $\#X \geq 3$, then the only strategy-proof voting rule on an unrestricted preference domain is the dictatorship of one individual.
Manipulability of Voting Rules

- A **voting rule** F on a set X of social states selects a (unique) $x \in X$ for every profile $(\succ_1, \succ^1, \ldots, \succ^n)$ of preferences over X.

- F is **strategy-proof** if $F(\succ^1, \ldots, \succ^i, \ldots, \succ^n) \succeq^i F(\succ^1, \ldots, \succ'^i, \ldots, \succ^n)$.

Theorem (Gibbard-Satterthwaite)

If $\#X \geq 3$, then the only strategy-proof voting rule on an unrestricted preference domain is the dictatorship of one individual.
A voting rule F on a set X of social states selects a (unique) $x \in X$ for every profile $(\succeq^1, \succeq^1, \ldots, \succeq^n)$ of preferences over X. F is strategy-proof if $F(\succeq^1, \ldots, \succeq^i, \ldots, \succeq^n) \succeq^i F(\succeq^1, \ldots, \succeq^i', \ldots, \succeq^n)$.

Theorem (Gibbard-Satterthwaite)

If $\#X \geq 3$, then the only strategy-proof voting rule on an unrestricted preference domain is the dictatorship of one individual.
Manipulability of Voting Rules

- A voting rule F on a set X of social states selects a (unique) $x \in X$ for every profile $(\succ^1, \succ^1, \ldots, \succ^n)$ of preferences over X.
- F is strategy-proof if $F(\succ^1, \ldots, \succ^i, \ldots, \succ^n) \succeq^i F(\succ^1, \ldots, \succ^i, \ldots, \succ^n)$

Theorem (Gibbard-Satterthwaite)

If $\#X \geq 3$, then the only strategy-proof voting rule on an unrestricted preference domain is the dictatorship of one individual.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.

![Graph](image-url)
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.

![Graph showing single-peaked preferences](image-url)
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are **single-peaked**, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.
The Median Voter Theorem

Theorem (Black 1942/58, Moulin 1980)

Suppose that social states can be ordered from left to right such that all preferences are single-peaked, then there exist non-degenerate strategy-proof voting rules. E.g. choosing the median of the individual peaks defines an anonymous, neutral and strategy-proof voting rule.

Unfortunately, for many economically relevant domains all strategy-proof voting rules are dictatorial, even under generalized single-peakedness.
Nehring/Puppe (2007/2010) demonstrate the existence of non-dictatorial and strategy-proof voting rules for classes of generalized single-peaked preferences. Unfortunately, for many economically relevant domains all strategy-proof voting rules are dictatorial, even under generalized single-peakedness.
The Median Voter Theorem revisited

- Unfortunately, for many economically relevant domains all strategy-proof voting rules are dictatorial, even under generalized single-peakedness.

Unfortunately, for many economically relevant domains all strategy-proof voting rules are dictatorial, even under generalized single-peakedness.
The Median Voter Theorem revisited

- What happens in such domains?
- If all non-dictatorial voting rules are manipulable, which of those are less manipulable than others? (Throughout, we will assume that F respects unanimity: if all individuals happen to agree that x is best, then $F(\ldots) = x$.)
- What is a good notion of “less manipulable”?
What happens in such domains?
If all non-dictatorial voting rules are manipulable, which of those are less manipulable than others? (Throughout, we will assume that F respects unanimity: if all individuals happen to agree that x is best, then $F(\ldots) = x$.)

What is a good notion of “less manipulable”?
What happens in such domains?

If all non-dictatorial voting rules are manipulable, which of those are **less** manipulable than others? (Throughout, we will assume that F respects **unanimity**: if all individuals happen to agree that x is best, then $F(...)=x$.)

What is a good notion of “**less manipulable**”?
The Median Voter Theorem revisited

- What happens in such domains?
- If all non-dictatorial voting rules are manipulable, which of those are less manipulable than others? (Throughout, we will assume that \(F \) respects unanimity: if all individuals happen to agree that \(x \) is best, then \(F(\ldots) = x \).)
- What is a good notion of “less manipulable”?
What happens in such domains?

If all non-dictatorial voting rules are manipulable, which of those are less manipulable than others? (Throughout, we will assume that F respects unanimity: if all individuals happen to agree that x is best, then $F(\ldots) = x$.)

What is a good notion of “less manipulable”?

Voting on the Simplex

Setting of the Simulation Studies

Preliminary Results

Freudenstadt, 11 September 2011
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1 Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2 Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3 Preliminary Results
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions (\(L = 1 \)), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions \((L = 1)\), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions (\(L = 1 \)), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions (\(L = 1 \)), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

$$X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \}$$

Economic Applications:

- budget allocation problem where x_j is the money amount spent on (public) good j and L the total budget,
- aggregation of probability distributions ($L = 1$), where x_j is the probability of j

If $K \geq 3$, all strategy-proof voting rules on X are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions (\(L = 1 \)), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
The (K,L)-Simplex

Definition ((K,L)-Simplex)

A (K,L)-Simplex is the set

\[X = \{ x \in \mathbb{R}^K : \sum_{j=1}^{K} x_j = L, x_j \geq 0 \} \]

Economic Applications:

- budget allocation problem where \(x_j \) is the money amount spent on (public) good \(j \) and \(L \) the total budget,
- aggregation of probability distributions \((L = 1)\), where \(x_j \) is the probability of \(j \)

If \(K \geq 3 \), all strategy-proof voting rules on \(X \) are dictatorial, even under generalized single-peaked preferences (See Nehring and Puppe 2010).
Peaks-Only Preference Aggregation

- Let \(d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j| \) denote the **distance** between \(x \) and \(y \), e.g. in the public goods context the number of dollars that have to be shifted to get from allocation \(x \) to \(y \).
- We assume that an agent \(i \) has (generalized) single-peaked preferences on \(X \) (with respect to that distance) and submits a **proposal** \(w^i \in X \) (the peak).
- Denote by \(p(w) \) the number of agents who proposed \(w \).

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

\[
F(w^1, w^2, \ldots, w^n) = x \in X
\]

which assigns to each profile of peaks \((w^1, w^2, \ldots, w^n)\) an element \(x \) in the simplex.
Peaks-Only Preference Aggregation

- Let \(d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j| \) denote the distance between \(x \) and \(y \), e.g. in the public goods context the number of dollars that have to be shifted to get from allocation \(x \) to \(y \).
- We assume that an agent \(i \) has (generalized) single-peaked preferences on \(X \) (with respect to that distance) and submits a proposal \(w^i \in X \) (the peak).
- Denote by \(p(w) \) the number of agents who proposed \(w \).

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

\[
F(w^1, w^2, \ldots, w^n) = x \in X
\]

which assigns to each profile of peaks \((w^1, w^2, \ldots, w^n) \) an element \(x \) in the simplex.
Peaks-Only Preference Aggregation

- Let \(d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j| \) denote the distance between \(x \) and \(y \), e.g. in the public goods context the number of dollars that have to be shifted to get from allocation \(x \) to \(y \).
- We assume that an agent \(i \) has (generalized) single-peaked preferences on \(X \) (with respect to that distance) and submits a proposal \(w^i \in X \) (the peak).
- Denote by \(p(w) \) the number of agents who proposed \(w \).

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

\[
F(w^1, w^2, \ldots, w^n) = x \in X
\]

which assigns to each profile of peaks \((w^1, w^2, \ldots, w^n)\) an element \(x \) in the simplex.
Peaks-Only Preference Aggregation

- Let $d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j|$ denote the distance between x and y, e.g. in the public goods context the number of dollars that have to be shifted to get from allocation x to y.
- We assume that an agent i has (generalized) single-peaked preferences on X (with respect to that distance) and submits a proposal $w^i \in X$ (the peak).
- Denote by $p(w)$ the number of agents who proposed w.

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

$$F(w^1, w^2, \ldots, w^n) = x \in X$$

which assigns to each profile of peaks (w^1, w^2, \ldots, w^n) an element x in the simplex.
Peaks-Only Preference Aggregation

- Let \(d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j| \) denote the distance between \(x \) and \(y \), e.g. in the public goods context the number of dollars that have to be shifted to get from allocation \(x \) to \(y \).
- We assume that an agent \(i \) has (generalized) single-peaked preferences on \(X \) (with respect to that distance) and submits a proposal \(w^i \in X \) (the peak).
- Denote by \(p(w) \) the number of agents who proposed \(w \).

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

\[
F(w^1, w^2, \ldots, w^n) = x \in X
\]

which assigns to each profile of peaks \((w^1, w^2, \ldots, w^n)\) an element \(x \) in the simplex.
Peaks-Only Preference Aggregation

- Let \(d(x, y) = \frac{1}{2} \sum_{j=1}^{K} |x_j - y_j| \) denote the distance between \(x \) and \(y \), e.g. in the public goods context the number of dollars that have to be shifted to get from allocation \(x \) to \(y \).
- We assume that an agent \(i \) has (generalized) single-peaked preferences on \(X \) (with respect to that distance) and submits a proposal \(w^i \in X \) (the peak).
- Denote by \(p(w) \) the number of agents who proposed \(w \).

Definition (Voting Rule on the Simplex)

A voting rule on the simplex is a mapping

\[
F(w^1, w^2, \ldots, w^n) = x \in X
\]

which assigns to each profile of peaks \((w^1, w^2, \ldots, w^n)\) an element \(x \) in the simplex.
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
The Midpoint Rule

- A midpoint minimizes the sum of distances to every peak.

Definition (Midpoint)

An allocation $m(p) \in X$ is a **midpoint** if

$$m(p) = \text{argmin}_{x \in X} \sum_{w \in X} p_w d(x, w)$$

- Let $M(p)$ denote the set of midpoints. Evidently, $M(p)$ need not be a singleton but it is always non-empty.
The Midpoint Rule

- A midpoint minimizes the sum of distances to every peak.

Definition (Midpoint)

An allocation $m(p) \in X$ is a **midpoint** if

$$ m(p) = \arg\min_{x \in X} \sum_{w \in X} p_w d(x, w) $$

- Let $M(p)$ denote the set of midpoints. Evidently, $M(p)$ need not be a singleton but it is always non-empty.
The Midpoint Rule

- A midpoint minimizes the sum of distances to every peak.

Definition (Midpoint)

An allocation \(m(p) \in X \) is a **midpoint** if

\[
m(p) = \arg\min_{x \in X} \sum_{w \in X} p_w d(x, w)
\]

- Let \(M(p) \) denote the set of midpoints. Evidently, \(M(p) \) need not be a singleton but it is always non-empty.
The Midpoint Rule

- A midpoint minimizes the sum of distances to every peak.

Definition (Midpoint)

An allocation \(m(p) \in X \) is a **midpoint** if

\[
m(p) = \operatorname{argmin}_{x \in X} \sum_{w \in X} p_w d(x, w)
\]

- Let \(M(p) \) denote the set of midpoints. Evidently, \(M(p) \) need not be a singleton but it is always non-empty.
Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
The Midpoint Rule

Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
The Midpoint Rule

Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
The Midpoint Rule

Natural single valued selection for Midpoint Rule: the “shadow voter selection”. Give every point in the simplex in addition a mass of ϵ (shadow voter): $\tilde{p}(w) := \epsilon + p(w)$

Theorem

For $\lim_{\epsilon \to 0}$ we have $\tilde{M}(p) \subseteq M(p)$ and $|\tilde{M}(p)| = 1$, i.e. a unique midpoint.
The possibility to influence the set of Midpoints is restricted.

Theorem

Under the midpoint rule, an agent cannot move the midpoint (metrically) closer to his/her own peak by misrepresentation.
The possibility to influence the set of Midpoints is restricted.

Theorem

Under the midpoint rule, an agent cannot move the midpoint (metrically) closer to his/her own peak by misrepresentation.
Limited Manipulability of the Set of Midpoints

The possibility to influence the set of Midpoints is restricted.

Theorem

Under the midpoint rule, an agent cannot move the midpoint (metrically) closer to his/her own peak by misrepresentation.
This rule selects the mean of peaks:

Definition (Mean Rule)

\[F^{\text{Mean}}(w^1, w^2, \ldots, w^n) := (\bar{w}_1, \bar{w}_2, \ldots, \bar{w}_K) \]

where

\[\bar{w}_j = \frac{1}{n} \sum_{i=1}^{n} w^i_j \]
The Mean Rule

This rule selects the mean of peaks:

Definition (Mean Rule)

\[F^{\text{Mean}}(w^1, w^2, \ldots, w^n) := (\bar{w}_1, \bar{w}_2, \ldots, \bar{w}_K) \]

where

\[\bar{w}_j = \frac{1}{n} \sum_{i=1}^{n} w^i_j \]
The Mean Rule

This rule selects the mean of peaks:

Definition (Mean Rule)

\[F^{\text{Mean}}(w^1, w^2, \ldots, w^n) := (\bar{w}_1, \bar{w}_2, \ldots, \bar{w}_K) \]

where

\[\bar{w}_j = \frac{1}{n} \sum_{i=1}^{n} w^i_j \]
The Mean Rule

- This rule selects the mean of peaks:

Definition (Mean Rule)

\[
F^{\text{Mean}}(w^1, w^2, \ldots, w^n) := (\bar{w}_1, \bar{w}_2, \ldots, \bar{w}_K)
\]

where

\[
\bar{w}_j = \frac{1}{n} \sum_{i=1}^{n} w^i_j
\]
The “Normalized Median Rule” takes the coordinate wise median and normalizes it to the simplex:

Definition (NMedian Rule)

\[F_{\text{NMedian}}(w^1, w^2, \ldots, w^n) := \left(\frac{w_1^{\text{med}}}{c} L, \frac{w_2^{\text{med}}}{c} L, \ldots, \frac{w_K^{\text{med}}}{c} L \right) \]

where \(w_j^{\text{med}} \) is the median of coordinate \(j \) and \(c = \sum_{j=1}^{K} w_j^{\text{med}} \).
The NMedian Rule

The “Normalized Median Rule” takes the coordinate wise median and normalizes it to the simplex:

Definition (NMedian Rule)

\[F^{NMedian}(w^1, w^2, \ldots, w^n) := \left(\frac{w_1^{med}}{c} L, \frac{w_2^{med}}{c} L, \ldots, \frac{w_K^{med}}{c} L \right) \]

where \(w_j^{med} \) is the median of coordinate \(j \) and \(c = \sum_{j=1}^{K} w_j^{med} \).
The “Normalized Median Rule” takes the coordinate wise median and normalizes it to the simplex:

Definition (NMedian Rule)

\[F^{NMedian}(w^1, w^2, \ldots, w^n) := \left(\frac{w_1^{med}}{c} L, \frac{w_2^{med}}{c} L, \ldots, \frac{w_K^{med}}{c} L \right) \]

where \(w_j^{med} \) is the median of coordinate \(j \) and \(c = \sum_{j=1}^{K} w_j^{med} \)
The “Normalized Median Rule” takes the coordinate wise median and normalizes it to the simplex:

Definition (NMedian Rule)

\[
F_{NMedian} (w^1, w^2, \ldots, w^n) := \left(\frac{w^1_{med}}{c} L, \frac{w^2_{med}}{c} L, \ldots, \frac{w^K_{med}}{c} L \right)
\]

where \(w^j_{med} \) is the median of coordinate \(j \) and \(c = \sum_{j=1}^{K} w^j_{med} \)
The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex in a fixed order:

Example

Let $K = 3$, $L = 21$ and $w_{1}^{med} = 7$, $w_{2}^{med} = 10$, $w_{3}^{med} = 6$. Note that $\sum_{j=1}^{3} w_{j}^{med} > L$. The w_{j}^{med} are adjusted in ascending order $(1, 2, 3)$.

$$F^{\text{SeqMedian}}(7, 10, 6) = (7, 10, 4)$$
The SeqMedian Rule

The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex in a fixed order:

Example

Let $K = 3$, $L = 21$ and $w_1^{med} = 7$, $w_2^{med} = 10$, $w_3^{med} = 6$. Note that $\sum_{j=1}^{3} w_j^{med} > L$. The w_j^{med} are adjusted in ascending order (1, 2, 3).

$$F^{SeqMedian}(7, 10, 6) = (7, 10, 4)$$
The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex in a fixed order:

Example

Let $K = 3$, $L = 21$ and $w_1^{med} = 7$, $w_2^{med} = 10$, $w_3^{med} = 6$. Note that $\sum_{j=1}^{3} w_j^{med} > L$. The w_j^{med} are adjusted in ascending order $(1, 2, 3)$.

$F_{SeqMedian}(7, 10, 6) = (7, 10, 4)$
The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex **in a fixed order:**

Example

Let $K = 3$, $L = 21$ and $w_1^{med} = 7$, $w_2^{med} = 10$, $w_3^{med} = 6$. Note that $\sum_{j=1}^3 w_j^{med} > L$. The w_j^{med} are adjusted in ascending order $(1, 2, 3)$.

$$F^{SeqMedian}(7, 10, 6) = (7, 10, 4)$$
The SeqMedian Rule

The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex in a fixed order:

Example

Let $K = 3$, $L = 21$ and $w_{1}^{\text{med}} = 7$, $w_{2}^{\text{med}} = 10$, $w_{3}^{\text{med}} = 6$. Note that $\sum_{j=1}^{3} w_{j}^{\text{med}} > L$. The w_{j}^{med} are adjusted in ascending order $(1, 2, 3)$.

$F^{\text{SeqMedian}}(7, 10, 6) = (7, 10, 4)$
The “Sequential Median Rule” takes the coordinate wise median and adjusts it to the simplex **in a fixed order**:

Example

Let $K = 3$, $L = 21$ and $w_1^{med} = 7$, $w_2^{med} = 10$, $w_3^{med} = 6$. Note that $\sum_{j=1}^{3} w_j^{med} > L$. The w_j^{med} are adjusted in ascending order $(1, 2, 3)$.

$$F^{SeqMedian}(7, 10, 6) = (7, 10, 4)$$
The SeqMedian Rule

Example

Let $K = 3$, $L = 21$ and $w_1^{\text{med}} = 3$, $w_2^{\text{med}} = 4$, $w_3^{\text{med}} = 8$. Note that $\sum_{j=1}^{3} w_j^{\text{med}} < L$. The w_j^{med} are adjusted in ascending order (1, 2, 3).

$$F^{\text{SeqMedian}}(3, 4, 8) = (3, 4, 14)$$

Evidently, the SeqMedian Rule depends on the order of coordinates.
The SeqMedian Rule

Example

Let $K = 3$, $L = 21$ and $w_{1}^{med} = 3$, $w_{2}^{med} = 4$, $w_{3}^{med} = 8$. Note that $\sum_{j=1}^{3} w_{j}^{med} < L$. The w_{j}^{med} are adjusted in ascending order (1, 2, 3).

$$F^{SeqMedian}(3, 4, 8) = (3, 4, 14)$$

Evidently, the SeqMedian Rule depends on the order of coordinates.
The SeqMedian Rule

Example

Let $K = 3$, $L = 21$ and $w_{1}^{med} = 3$, $w_{2}^{med} = 4$, $w_{3}^{med} = 8$. Note that $\sum_{j=1}^{3} w_{j}^{med} < L$. The w_{j}^{med} are adjusted in ascending order (1, 2, 3).

$F^{SeqMedian}(3, 4, 8) = (3, 4, 14)$

Evidently, the SeqMedian Rule depends on the order of coordinates.
The SeqMedian Rule

Example

Let $K = 3$, $L = 21$ and $w_{1}^{med} = 3$, $w_{2}^{med} = 4$, $w_{3}^{med} = 8$. Note that $\sum_{j=1}^{3} w_{j}^{med} < L$. The w_{j}^{med} are adjusted in ascending order $(1, 2, 3)$.

$$F^{\text{SeqMedian}}(3, 4, 8) = (3, 4, 14)$$

Evidently, the SeqMedian Rule depends on the order of coordinates.
The SeqMedian Rule

Example

Let $K = 3$, $L = 21$ and $w_{1}^{med} = 3$, $w_{2}^{med} = 4$, $w_{3}^{med} = 8$. Note that $\sum_{j=1}^{3} w_{j}^{med} < L$. The w_{j}^{med} are adjusted in ascending order (1, 2, 3).

$F_{\text{SeqMedian}}(3, 4, 8) = (3, 4, 14)$

Evidently, the SeqMedian Rule depends on the order of coordinates.
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Agenda

1 Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2 Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3 Preliminary Results
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- \(L = 1 \), variation of \(K \)
- discretization of the simplex by a grid, e.g. \(K = 3, L = 1 \) by a \((3, 99)\)-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
Basic Settings

- written in Java, using parallel computing
- $L = 1$, variation of K
- discretization of the simplex by a grid, e.g. $K = 3, L = 1$ by a $(3, 99)$-grid (voting over 5050 alternatives).
1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation converges, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation *converges*, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
Basic Settings

1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation converges, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
Basic Settings

1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation converges, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
Basic Settings

1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation *converges*, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
Basic Settings

1. The (true) peaks of the agents are drawn by a pseudorandom number generator.

2. Agents are acting in a random order and determine their best responses (i.e. their utility maximizing announced peak) given the announced peaks of the other agents.

3. Say that a voting situation converges, if no agent changes his or her announced peak after a finite number of manipulations.

4. We stopped a simulation run after 200 manipulations, interpreting this as lack of convergence.
Parameters of the Simulations

- K and grid size (normalized to $L = 1$)
- peak distribution: uniform, Dirichlet, bi-modal
- preferences of the agents: Cobb-Douglas, CES, “metric” single-peaked
- number of agents
Parameters of the Simulations

- K and grid size (normalized to $L = 1$)
- peak distribution: uniform, Dirichlet, bi-modal
- preferences of the agents: Cobb-Douglas, CES, “metric”
 single-peaked
- number of agents
Parameters of the Simulations

- K and grid size (normalized to $L = 1$)
- peak distribution: uniform, Dirichlet, bi-modal
- preferences of the agents: Cobb-Douglas, CES, “metric”
 single-peaked
- number of agents
Parameters of the Simulations

- K and grid size (normalized to $L = 1$)
- peak distribution: uniform, Dirichlet, bi-modal
- preferences of the agents: Cobb-Douglas, CES, “metric” single-peaked
- number of agents
Parameters of the Simulations

- K and grid size (normalized to $L = 1$)
- peak distribution: uniform, Dirichlet, bi-modal
- preferences of the agents: Cobb-Douglas, CES, “metric” single-peaked
- number of agents
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Extent of Manipulation

- number of agents manipulating
- number of pivotal agents
- number of manipulations
- maximum utility gain of an agent given the true peaks
Extent of Manipulation

- number of agents manipulating
- number of pivotal agents
- number of manipulations
- maximum utility gain of an agent given the true peaks
Extent of Manipulation

- number of agents manipulating
- number of pivotal agents
- number of manipulations
- maximum utility gain of an agent given the true peaks
Extent of Manipulation

- number of agents manipulating
- number of pivotal agents
- number of manipulations
- maximum utility gain of an agent given the true peaks
Extent of Manipulation

- number of agents manipulating
- number of pivotal agents
- number of manipulations
- maximum utility gain of an agent given the true peaks
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that $u^i(\vec{0}) := 0$ and $u^i(\vec{w}) := 1$
 - compute $s(x) := \sum_{i} u^i(x)$
 - scale $s(x)$ such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that $u^i(\vec{0}) := 0$ and $u^i(w^i) := 1$ and compute $s(x) := \sum_{i}^{n} u^i(x)$
 - scale $s(x)$ such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that \(u^i(\vec{0}) := 0 \) and \(u^i(w^i) := 1 \) and compute \(s(x) := \sum_i^n u^i(x) \)
 - scale \(s(x) \) such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that \(u^i(\vec{0}) := 0 \) and \(u^i(w^i) := 1 \) and compute
 \[s(x) := \sum_{i=1}^{n} u^i(x) \]
 - scale \(s(x) \) such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship

- normalize an agent’s utility such that \(u^i(\vec{0}) := 0 \) and \(u^i(w^i) := 1 \) and compute \(s(x) := \sum_i^n u^i(x) \)
- scale \(s(x) \) such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
- for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that $u^i(\vec{0}) := 0$ and $u^i(w^i) := 1$
 - compute $s(x) := \sum^n_i u^i(x)$
 - scale $s(x)$ such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that \(u^i(\vec{0}) := 0 \) and \(u^i(w^i) := 1 \) and compute \(s(x) := \sum_{i}^{n} u^i(x) \)
 - scale \(s(x) \) such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship

- normalize an agent’s utility such that \(u^i(0) := 0 \) and \(u^i(w^i) := 1 \) and compute \(s(x) := \sum_{i}^{n} u^i(x) \)
- scale \(s(x) \) such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
- for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that $u^i(\vec{0}) := 0$ and $u^i(w^i) := 1$ and compute $s(x) := \sum_i^n u^i(x)$
 - scale $s(x)$ such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Effect of Manipulation

- distance between outcome under true peaks and outcome under announced peaks (after convergence)
- average deviation (of an agent) between true and announced peaks
- sum of utility gains/losses
- comparison of sum of utilities to utilitarian maximum and expected utility under random dictatorship
 - normalize an agent’s utility such that $u^i(\vec{0}) := 0$ and $u^i(w^i) := 1$ and compute $s(x) := \sum_{i}^n u^i(x)$
 - scale $s(x)$ such that 1 is the utilitarian maximum and 0 the expectation under random dictatorship
 - for later: “utility loss” = loss in this scale
Agenda

1. Voting on the Simplex
 - Peaks-Only Preference Aggregation
 - Voting Rules

2. Setting of the Simulation Studies
 - Basic Settings and Parameters
 - Variables Measuring Manipulability

3. Preliminary Results
Setting

- \(K = 3 \), grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
- Dirichlet-\((1, 2, 3)\) distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Setting

- $K = 3$, grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
- Dirichlet-$\left(1, 2, 3\right)$ distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Setting

- $K = 3$, grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
- Dirichlet-$(1, 2, 3)$ distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Setting

- $K = 3$, grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
 - Dirichlet-$(1, 2, 3)$ distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Setting

- $K = 3$, grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
- Dirichlet-(1, 2, 3) distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Setting

- $K = 3$, grid size 99 (i.e. 5050 possible peaks)
- sample size 1000
- Cobb-Douglas preferences
- Dirichlet-$(1, 2, 3)$ distribution of the true peaks (to avoid artefacts from (very special) symmetry of distribution)
- number of agents: 3 to 45
Extent of Manipulation

Table: number of agents = 5

<table>
<thead>
<tr>
<th>MANIPULATIONS</th>
<th>MAXUTILGAIN</th>
<th>PERCAGMANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>12,11</td>
<td>7,41%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>16,19</td>
<td>1,94%</td>
</tr>
<tr>
<td>NMEAN</td>
<td>2,4</td>
<td>0,38%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>2,46</td>
<td>0,74%</td>
</tr>
</tbody>
</table>
Extent of Manipulation

Table: number of agents = 5

<table>
<thead>
<tr>
<th>MANIPULATIONS</th>
<th>MAXUTILGAIN</th>
<th>PERCAGMANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>12,11</td>
<td>7,41%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>16,19</td>
<td>1,94%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>2,4</td>
<td>0,38%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>2,46</td>
<td>0,74%</td>
</tr>
</tbody>
</table>
Extent of Manipulation

Table: number of agents = 45

<table>
<thead>
<tr>
<th>MANIPULATIONS</th>
<th>MAXUTILGAIN</th>
<th>PERCAGMANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>53.09</td>
<td>1.87%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>58.09</td>
<td>0.78%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>1.61</td>
<td>0.08%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>5.54</td>
<td>0.39%</td>
</tr>
</tbody>
</table>

Voting on the Simplex

Setting of the Simulation Studies

Preliminary Results

Tobias Lindner MdB, Klaus Nehring, Clemens Puppe – Which Voting Rule Is More Manipulable?
Extent of Manipulation

Table: number of agents = 45

<table>
<thead>
<tr>
<th>MANIPULATIONS</th>
<th>MAXUTILGAIN</th>
<th>PERCAGMANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>53.09</td>
<td>1.87%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>58.09</td>
<td>0.78%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>1.61</td>
<td>0.08%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>5.54</td>
<td>0.39%</td>
</tr>
</tbody>
</table>
Effect of Manipulation

Table: number of agents = 5

<table>
<thead>
<tr>
<th></th>
<th>AVDEV</th>
<th>DISTANCE</th>
<th>UTLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>39,28%</td>
<td>7,38%</td>
<td>1,60%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>4,86%</td>
<td>4,51%</td>
<td>1,05%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>1,93%</td>
<td>1,87%</td>
<td>1,05%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>1,74%</td>
<td>4,18%</td>
<td>1,35%</td>
</tr>
</tbody>
</table>
Effect of Manipulation

Table: number of agents = 5

<table>
<thead>
<tr>
<th></th>
<th>AVDEV</th>
<th>DISTANCE</th>
<th>UTLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>39.28%</td>
<td>7.38%</td>
<td>1.60%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>4.86%</td>
<td>4.51%</td>
<td>1.05%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>1.93%</td>
<td>1.87%</td>
<td>1.05%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>1.74%</td>
<td>4.18%</td>
<td>1.35%</td>
</tr>
</tbody>
</table>
Effect of Manipulation

Table: number of agents = 45

<table>
<thead>
<tr>
<th></th>
<th>AVDEV</th>
<th>DISTANCE</th>
<th>UTLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>43.09%</td>
<td>5.73%</td>
<td>1.02%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>2.96%</td>
<td>0.88%</td>
<td>0.20%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>0.07%</td>
<td>0.78%</td>
<td>0.40%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>0.44%</td>
<td>1.40%</td>
<td>0.56%</td>
</tr>
</tbody>
</table>
Effect of Manipulation

Table: number of agents = 45

<table>
<thead>
<tr>
<th></th>
<th>AVDEV</th>
<th>DISTANCE</th>
<th>UTLOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>43.09%</td>
<td>5.73%</td>
<td>1.02%</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>2.96%</td>
<td>0.88%</td>
<td>0.20%</td>
</tr>
<tr>
<td>NMEDIAN</td>
<td>0.07%</td>
<td>0.78%</td>
<td>0.40%</td>
</tr>
<tr>
<td>SEQMEDIAN</td>
<td>0.44%</td>
<td>1.40%</td>
<td>0.56%</td>
</tr>
</tbody>
</table>
Effect of Manipulation

Voting on the Simplex

Setting of the Simulation Studies

Tobias Lindner MdB, Klaus Nehring, Clemens Puppe – Which Voting Rule Is More Manipulable?

Freudenstadt, 11 September 2011

Preliminary Results
Effect of Manipulation

Voting on the Simplex

Setting of the Simulation Studies

Preliminary Results

Tobias Lindner MdB, Klaus Nehring, Clemens Puppe – Which Voting Rule Is More Manipulable?
Effect of Manipulation

Voting on the Simplex

Setting of the Simulation Studies

Preliminary Results

Tobias Lindner MdB, Klaus Nehring, Clemens Puppe – Which Voting Rule Is More Manipulable?
Effect of Manipulation

NMedian: Distance

Voting on the Simplex

Setting of the Simulation Studies

Preliminary Results

Freudenstadt, 11 September 2011
Observations

- Midpoint seems to be invariant against variations of the CES-ρ while NMedian does not.
- Similarities between rules which use the median (number of agents manipulating, manipulations).
- Mean is highly manipulable in all situations.
- Good welfare properties of the Midpoint and the NMedian.
Observations

- Midpoint seems to be invariant against variations of the CES-\(\rho\) while NMedian does not
- Similarities between rules which use the median (number of agents manipulating, manipulations)
- Mean is highly manipulable in all situations
- Good welfare properties of the Midpoint and the NMedian
Observations

- Midpoint seems to be invariant against variations of the CES-\(\rho\) while NMedian does not.
- Similarities between rules which use the median (number of agents manipulating, manipulations).
- Mean is highly manipulable in all situations.
- Good welfare properties of the Midpoint and the NMedian.
Observations

- Midpoint seems to be invariant against variations of the CES-ρ while NMedian does not
- Similarities between rules which use the median (number of agents manipulating, manipulations)
- Mean is highly manipulable in all situations
- Good welfare properties of the Midpoint and the NMedian
Observations

- Midpoint seems to be invariant against variations of the CES-ρ while NMedian does not
- Similarities between rules which use the median (number of agents manipulating, manipulations)
- Mean is highly manipulable in all situations
- Good welfare properties of the Midpoint and the NMedian
Outlook

- What are the forces driving the extent of manipulation under different rules?
- What are characteristics of manipulable profiles for different rules?
- Is there a chance to predict the manipulability of a profile (under a certain rule)?
Outlook

- What are the forces driving the extent of manipulation under different rules?
- What are characteristics of manipulable profiles for different rules?
- Is there a chance to predict the manipulability of a profile (under a certain rule)?
Outlook

- What are the forces driving the extent of manipulation under different rules?
- What are characteristics of manipulable profiles for different rules?
- Is there a chance to predict the manipulability of a profile (under a certain rule)?
What are the forces driving the extent of manipulation under different rules?

What are characteristics of manipulable profiles for different rules?

Is there a chance to predict the manipulability of a profile (under a certain rule)?