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Abstract

Judgement aggregation is a model of social choice in which the space of social alternatives is the set
of consistent evaluations (‘views’) on a family of logically interconnected propositions, or yes/no issues.
However, simply complying with the majority opinion in each issue often yields a logically inconsistent
collective view. Thus, we consider the Condorcet set: the set of logically consistent views which agree with
the majority on a maximal subset of issues. The elements of this set turn out to be exactly those that can be
obtained through sequential majority voting, according to which issues are sequentially decided by simple
majority unless earlier choices logically force the opposite decision. We investigate the size and structure
of the Condorcet set for several important classes of judgement aggregation problems. While the Condorcet
set verifies a version of McKelvey’s (1979) celebrated ‘chaos theorem’ in a number of contexts, in others it
is shown to be very regular and well-behaved.
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In the context of preference aggregation, pairwise majority voting often fails to produce
unambiguous outcomes because a Condorcet winner might not exist. Similarly, in the general
judgement aggregation problem where each social outcome is described as a pattern of yes/no
answers to certain interrelated propositions (a ‘view’), issue-wise majority voting may fail to
produce consistent collective ‘views;’ see Guilbaud [14] and Kornhauser and Sager [16]. Con-
sistency is guaranteed only in those cases in which the aggregation problem has the structure of
a median space; see Barthélémy and Monjardet [4] and Nehring and Puppe [33].

Does this mean that the very idea of majoritarian aggregation is ill-defined outside median
spaces? Does ‘inconsistency’ imply ‘impossibility’? One can arrive at this conclusion from a
reading of the Arrovian tradition in social theory and judgement aggregation, especially if one
takes the well-known issue-wise independence condition as non-negotiable. William H. Riker,
for example, has influentially argued that, “when no Condorcet winner exists, majority rule is
theoretically confused and practically inadequate” [36, p. xiii].

But, we submit, such a pessimistic conclusion need not be warranted. Rather than looking for
‘the’ uniquely defined majority view, it is sensible to be more modest and look for views that
are at least adequate from a majoritarian perspective. In this vein, for example, Hervé Moulin
has suggested that “a Condorcet consistent voting rule chooses a way to live with the paradox:
when a Condorcet winner does not exist, it picks a reasonable substitute” [29, p. 231]. Yet,
apart from the discussion of the pros and cons of specific properties of different voting rules,
there has been surprisingly little discussion in the literature of what exactly should count as a
‘reasonable substitute’ in this context. Here, we provide such a criterion, Condorcet admissibility.
Equipped with this criterion, a majoritarian can sidestep impossibility, but may have to live with
indeterminacy.

As indicated, our analysis is set in a judgement aggregation framework. A collection of yes/no
answers to all propositions is called a view; a view is consistent if it respects the logical interre-
lations between issues. The set of all possible consistent views is called an aggregation space.
A consistent view is more representative than another consistent view if its judgement on ev-
ery issue is supported by at least as many voters, and on some issues by strictly more voters.
A consistent view is Condorcet admissible if there is no other consistent view that is more repre-
sentative. The set of such views is the Condorcet set. It is a singleton if and only if the issue-wise
majority view is itself consistent, in which case it coincides with that view. The Condorcet set
comprises exactly those views that can count as ‘majoritarian,’ i.e. that have some minimally
defensible majoritarian rationale. In this manner, we offer a rebuttal of Riker’s claim that ma-
jority rule is “theoretically confused.” “Practical adequacy” is another matter, and in view of the
pervasive impossibility results in social choice theory, indeed a challenging problem; we do not
attempt to resolve this problem in the present paper.

The specific task of this paper is to investigate the properties of the Condorcet set, consid-
ered as a solution concept for judgement aggregation. A focal question concerns the size of the
Condorcet set, and thus the extent of majoritarian indeterminacy. We show that, frequently, the
Condorcet set can be ‘large.’ In particular, we focus on the question of when the Condorcet set at
a given profile of individual views contains, for every proposition, both a view that affirms that
particular proposition and a view that negates it. We refer to such profiles as globally indetermi-
nate, and to aggregation spaces as globally indeterminate if they admit globally indeterminate
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profiles. As our main result, we provide a general characterization of the set of indeterminate
issues, with an attendant characterization of globally indeterminate profiles and globally inde-
terminate spaces. We then show that many interesting aggregation spaces are indeed globally
indeterminate, among them the spaces corresponding to preference aggregation, the aggrega-
tion of classifications (equivalence relations), resource allocation and many committee selection
problems.

Establishing a connection to the voting literature, we observe that, in the special case of
preference aggregation, the maximal alternatives associated with some Condorcet admissible
preference ordering are exactly the alternatives in the top cycle of the majority tournament,
cf. Good [13]. From this perspective, the Condorcet set can be viewed as providing a partial
foundation of the top cycle as a criterion of majoritarianism in voting.

Descriptively, the Condorcet set arises naturally from a ‘diachronic’ interpretation of the ag-
gregation problem, in which decisions unfold over time and previous decisions potentially restrict
later decisions due to the logical interrelations between propositions; a corresponding model of
judgement aggregation has been studied by List [20] and Dietrich and List [7]. Here, we show
that a consistent view (over all issues) is an element of the Condorcet set if and only if there exists
an ordering of issues (a ‘path’) such that the given view arises from ‘sequential majority voting,’
i.e. from deciding each issue by majority voting in the specified ordering provided that the issue
is not yet determined by previous decisions. The size of the Condorcet set thus reflects the poten-
tial extent of path-dependence. In particular, an aggregation problem exhibits path-dependence
at all whenever the Condorcet set has at least two elements, i.e. whenever (simultaneous) issue-
by-issue majority voting is inconsistent.

How likely is global indeterminacy? Is it just a theoretical ‘worst case,’ or can it happen for
plausible profiles? In the special case of preference aggregation, this question has been addressed
in a rather dramatic fashion in the classical contribution of McKelvey [25]. Assuming a spatial
structure of preferences on a topological space, McKelvey showed that majority voting is not
just frequently inconsistent, it is almost always globally indeterminate; this is the content of his
famous ‘chaos theorem’ for majority voting. Here, we introduce a ‘McKelvey property’ that is
applicable to our finite setting and meant to capture the idea that global indeterminacies can
arise from slight inconsistencies. Refining our main analysis of global indeterminacy, we show
that some important aggregation spaces have the McKelvey property, while others do not. The
former include the spaces corresponding to preference aggregation and classification; the latter
include committee selection and resource allocation. Thus, committee selection and resource al-
location provide significant examples of spaces in which majority inconsistency is a problem, but
a rather tame one. More broadly, our analysis shows that the qualitative behavior of majoritarian
judgement aggregation strongly depends on the combinatorial structure of the space of feasible
views.

Related literature

The closest work to ours is the independent contribution by Lang et al. [17] who introduced
and analyzed a number of set-valued solution concepts based on the common theme of ‘min-
imization,’ among them a solution concept equivalent to the Condorcet set. However, there is
no overlap in results between their work and ours. In particular, in contrast to their work, the
present paper focuses on results supporting the Condorcet set as the natural demarcation crite-
rion for ‘majoritarian’ aggregation, and on an analysis of indeterminacy, global indeterminacy,
and path-dependence. Interestingly, even in the context of preference aggregation, the Condorcet
set characterized in Proposition 3.1 of the present paper appears to be new in the literature.
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The rest of the paper is organized as follows. In Section 1, we introduce terminology and de-
fine the Condorcet set. In Section 2 we consider (global) indeterminacy and state our main results.
In Section 3, we explore indeterminacy and path-dependence in some paradigmatic judgement
aggregation problems: preference aggregation, the aggregation of equivalence relations, commit-
tee selection and resource allocation. In the final Section 4 we consider the McKelvey property
and provide a classification of the examples in terms of this property. For ease of reading, all but
the simplest proofs are relegated to Appendix A at the end of the paper.

1. ‘Majoritarian views’: A minimalist definition

In this section, we introduce our main new concept, the Condorcet set, and argue that it cap-
tures a natural criterion for majoritarianism. We start with a brief description of the framework
of our analysis, the judgement aggregation model.

1.1. The judgement aggregation model

A judgement aggregation problem is given by a set of K propositions or issues. An element
x = (x1, x2, . . . , xK) ∈ {0,1}K is called an unconstrained view, or simply a view, and is inter-
preted as an assignment of a truth value of ‘true’ or ‘false’ to each proposition.1 Not all views
are feasible, because there are logical constraints between the propositions (determined by the
structure of the underlying decision problem faced by society). Let X ⊆ {0,1}K be the set of
‘admissible’ or consistent views; a given set X ⊆ {0,1}K is also referred to as an aggregation
space. An anonymous profile is a probability measure on X — that is, a function μ :X −→ [0,1]
such that

∑
x∈X μ(x)= 1 with the interpretation that, for all x ∈X, μ(x) is the proportion of the

voters who hold the view x. For any Y ⊆X, define μ(Y ) :=∑
y∈Y μ(y). Let �(X) be the set of

all anonymous profiles. For any μ ∈�(X), any k ∈ [1 . . .K], let

μk(1) := μ{x ∈X; xk = 1} (1)

be the total ‘popular support’ for the position “xk = 1,’ and let μk(0) := 1−μk(1). Let �∗(X) :=
{μ ∈�(X); μk(1) �= 1

2 , ∀k ∈ [1 . . .K]} be the set of anonymous profiles where there is a strict
majority supporting either 0 or 1 in each coordinate.2 An anonymous judgement aggregation rule
is a correspondence (i.e. multivalued function) F :�∗(X) ⇒ {0,1}K . Most of the rules we will
consider are single-valued, taking the form of a function F :�∗(X)−→ {0,1}K . For example,
the issue-wise majoritarian judgement aggregation rule Maj : �∗(X) −→ {0,1}K is defined as
follows: for any μ ∈ �∗(X), Majk(μ) := 1 if μk(1) > 1

2 , and Majk(μ) := 0 if μk(1) < 1
2 . For

any X, denote by Maj(X) := {Maj(μ); μ ∈�∗(X)} the set of all possible issue-wise majority
views.

Say that a profile μ is majority determinate if Maj(μ) ∈X, and say that an aggregation space
X is majority determinate if all profiles μ ∈ �∗(X) are majority determinate. Unfortunately, it

1 There are several different terms in the literature: e.g. Dokow and Holzman [10] speak of ‘binary evaluations,’ List
and Puppe [22] use the term ‘judgement set.’

2 Usually, judgement aggregation is considered on all of �(X). However, a main goal in this paper is to investigate the
multiplicity of solutions in the Condorcet set of a single profile; for this goal it is convenient to eliminate the ‘spurious’
multiplicities which arise when μk(1) = 1

2 for some k ∈ [1 . . .K]. Thus, we will confine our attention to profiles in
�∗(X) for expositional simplicity. If the set of voters is large (respectively odd), then a profile in �(X) \ �∗(X) is
highly unlikely (resp. impossible) anyways.
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Fig. 1. A linear aggregation problem.

is quite common to find that Maj(μ) /∈ X, i.e. there are in general profiles that are not majority
determinate, because the ‘majority ideal’ can be inconsistent with the underlying logical con-
straints faced by society.3 What, in this case, should be considered to be the ‘majority will’? This
is the fundamental question to which we attempt to provide an answer in the subsequent analysis.
Before we do so, let us consider for future reference a simple but fundamental special case, in
which this problem does not arise.

Example 1.1 (The line). Say that X is a linear aggregation problem, or simply a line, if 0 :=
(0,0, . . . ,0) ∈ X and the issues [1 . . .K] can be ordered in such a way that, for every view
x ∈ X \ {0} there exists kx ∈ [1 . . .K] such that xj = 1 for j � kx and xj = 0 for j > kx. As is
easily verified, Maj(μ) ∈ X for all μ in this case, i.e. X is majority determinate. Indeed, if one
identifies X with the set {0,1, . . . ,K} by means of the mapping x �→ #{k ∈ [1 . . .K]: xk = 1},
then Maj(μ) is given by the median in the usual ordering of [1 . . .K] (i.e. the view x ∈ X such
that μ({y ∈ X: y � x}) � 1

2 and μ({y ∈ X: y � x}) � 1
2 ).4 Concrete examples of this linear

structure are views on the desirable inheritance tax rate, the maximal prison term served for a
particular crime, the term limit for representative of government officials, or the number of days
within which an abortion is legal.

Fig. 1 depicts a hypothetical case in which 20% of the population consider no inheritance
tax as desirable, 35% consider an inheritance tax rate of 0.1 desirable, and 45% consider an
inheritance tax rate of 0.5 desirable.

Evidently, the issue-wise majority view (i.e. the median) is at 0.1 (see Example 1.6 below for
further discussion). ♦

1.2. Demarcating majoritarianism

How can we distinguish ‘majoritarian’ from ‘non-majoritarian’ aggregation rules? In this sub-
section we propose two basic principles that capture important aspects of majority-based group
decisions. Let us start with simplest cases first, and consider the following principle of ‘plain’
majoritarianism that one may impose on an aggregation rule F .

Plain Majoritarianism (PM). If μ(x) > 1
2 for some x ∈X, then F(μ)= x.

If #X = 2, this is of course the ordinary (‘simple’) majority criterion, shown by May [23]
to be the only neutral, anonymous and positively responsive aggregation method in this case.
Plain Majoritarianism has specific further implications. In particular, in situations in which there
are only two distinct views among the population, by PM, the group view must coincide with

3 Condorcet’s ‘voting paradox’ is a well-known instance, see Section 3.1 below; another example that has received
considerable interest recently is the so-called ‘discursive dilemma,’ see Kornhauser and Sager [16], List and Pettit [21],
and List and Puppe [22] for an overview of the subsequent literature.

4 Note that the median is unique due to our restriction to �∗(X).
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the view of the greater number. Thus PM does not see any need — or, more skeptically, does not
leave any room — for compromise. While PM is thus a strong and specific requirement that might
be questioned under some normative assumptions, we submit that it is a cogent expression of a
basic intuition of a specifically majoritarian outlook as classically expressed, for example, by the
17th century political philosopher Grotius according to whom “the majority would naturally have
the right and authority of the whole,” see Risse [37, p. 43]. We thus take Plain Majoritarianism
to be a fundamental minimal condition for demarcating whether or not a group choice is to be
counted as majoritarian: by its very definition, a majority-based aggregation rule must satisfy PM.
Whether or not majoritarianism itself is normatively compelling as a standard of group choice
is a question that we do not address here. Indeed, our present goal is not to normatively justify
majoritarian principles of judgement aggregation and social choice, but to determine the broad
outlines of their content. For example, while the Borda rule is often viewed as a normatively
attractive voting or preference aggregation rule, there is little question that it is not majoritarian
in character. The justification of majoritarianism is, ultimately, a matter of political philosophy
and not undertaken here.5

To illustrate the strength of PM, consider the following class of metric-based aggregation
rules. Denote by dH the Hamming distance that takes the number of issues in which two views
differ as their distance, formally dH (x,y) := #{k ∈ [1 . . .K]; xk �= yk} for all x,y ∈ {0,1}K . For
β > 0, consider the aggregation rules

Fβ(X,μ) := arg min
x∈X

(∑
y∈X

[
dH (x,y)

]β ·μ(y)

)
. (2)

This class of aggregation rules contains interesting and important special cases. For example, as
β → 0, the rule Fβ converges to the plurality rule, which selects the view(s) that receive largest
(relative) support. For β = 1, the rule Fβ selects the consistent view(s) that minimize the average
Hamming distance to the views of the voters. This is also known as the median rule and we will
write Median(X,μ) for F1(X,μ).6 If X has the structure of a line as in Example 1.1, i.e. if X is
isomorphic to the set {1,2, . . . ,#X} viewed as a subset of the reals, then the Hamming distance
coincides with the Euclidean distance and the median rule indeed selects the median in the usual
sense.

For β = 2, the aggregation rule Fβ selects the consistent view(s) that minimize the average
of the squared Hamming distance to the views of the voters. In case of a line, this amounts to
the mean rule that selects (roughly) the average of the individual views. Finally, as β →∞, Fβ

converges to the rule that minimizes the maximal ‘disagreement’ of any individual, selecting the
midpoint(s) of the two most extreme views.

For any x,y, z ∈ {0,1}K , say that y is between x and z if, for all k ∈ [1 . . .K], (xk =
zk = 0)�⇒ (yk = 0) and (xk = zk = 1)�⇒ (yk = 1). Thus, a view is between two other views
if it coincides with them on all issues on which they agree. Furthermore, say that y is properly
between x and z if, in addition, x �= y �= z. For any x ∈ X and z ∈ {0,1}K , write x 
 z if there

5 See Waldron [40] for a prominent contemporary defense of majoritarianism, and Risse [37] for a critique well-
informed by social choice theory. Baldiga [1] discusses problems of majoritarian principles in the context of direct
vs. representative democracy.

6 In the case of preference aggregation (see Section 3.1 below), the Hamming distance is also known as the Kemeny
distance, and the median rule as the Kemeny rule [15], which has been axiomatically characterized by Young and Le-
venglick [41]. As a general-purpose judgement aggregation rule, the median rule has been studied by Barthélémy and
Monjardet [4,5], Barthélémy [2] and Barthélémy and Janowitz [3].
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exists no y ∈X which is properly between x and z. Finally, say that X is regular if there are three
views x, y and z in X such that y is properly between x and z.

Proposition 1.2. If X is regular, then Fβ satisfies PM if and only if β � 1.

Note that condition Plain Majoritarianism does not use in any way the propositional structure
of the underlying space X. But with this structure one can formulate stronger criteria for majority
decisions. The following is particularly natural.

Condorcet Consistency (CC). If Maj(μ) ∈X, then F(μ)=Maj(μ).

Clearly, condition CC implies PM but it can be decisive in many cases in which PM has
no bite. If the underlying space is majority determinate, then condition CC is even decisive for
all profiles. The additional force of CC over PM is evident from the following result which
characterizes the metric-based aggregation rules that satisfy CC.

Proposition 1.3. If X is regular, then Fβ satisfies CC if and only if β = 1.

Thus, the median rule is in fact the only metric-based aggregation rule that satisfies CC. In
particular, in regular spaces, plurality rule (i.e. limβ↘0 Fβ ) does not satisfy condition CC, and
can on these grounds not be counted as a majoritarian aggregation rule.7

1.3. Condorcet admissibility and the Condorcet set

Recall that μk(1) (resp. μk(0)) denotes the popular support for position 1 (resp. 0) in issue
k at the profile μ. Thus, for every view x ∈ X, μk(xk) is the popular support for the position
specified by x in issue k. Say that view x is more representative of μ than view y, denoted by
xR(μ)y, if it receives greater popular support in every issue. Formally,

xR(μ)y ⇐⇒ [
μk(xk) � μk(yk) for all k ∈K

]
. (3)

We propose a conception of majoritarianism according to which more representative views are
more majoritarian. In this paper, we explore the minimalist or broad-tent formulation of this
conception which relies only on R(μ) as yardstick of comparative representativeness. Then the
R(μ)-maximal views can be considered to be the ‘most majoritarian.’ Henceforth, we will thus
refer to the R(μ)-maximal views as the Condorcet admissible views, and to their set as the
Condorcet set, denoted by Cond(X,μ).

While the relation R(μ) is motivated in terms of comparative representativeness, we do not
claim here that R(μ) represents the only possible formalization of ordinary intuitions and usages
of ‘representativeness.’ Special — and crucial — to the relation R(μ) is the vector comparison
reflecting a ‘multi-criteria’ conception of representativeness, the criteria being the alignment of
a view with the distribution of individual judgements in each issue. As demonstrated by the
following results, it is this multi-criteria structure which ensures that ‘most representative’ views

7 Plurality rule does satisfy condition CC in some non-regular spaces, for instance in the space X = {(1,0,0), (0,1,0),

(0,0,1)}, and more generally, in the spaces Xcom
1,1;K introduced in Section 3.3 below.
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can indeed count as majoritarian. In particular, by Lemma 1.5 below, Condorcet admissibility
ensures Condorcet Consistency and, a fortiori, Plain Majoritarianism.8

Note that our definition of comparative representativeness allows for the full quantitative in-
formation entailed by a profile to be useable a priori. However, it turns out that the relation
R(μ) is completely determined by the set of issues in which there is agreement with Maj(μ).
Specifically, we have the following simple result.

Lemma 1.4. Let μ ∈ �∗(X). For x ∈ X, letM(x,μ) := {k ∈ [1 . . .K]; xk = Majk(μ)} be the
set of issues in which x coincides with the ‘majority ideal.’ Then,

xR(μ)y ⇐⇒ M(x,μ)⊇M(y,μ).

In particular, a view is Condorcet admissible if and only if it coincides with the ‘majority
ideal’ on a maximal subset of issues.

Condorcet admissibility is proposed here as a necessary and sufficient condition for ‘majori-
tarianism’ in the sense that, for any given profile, a view can be counted as majoritarian if and
only if it is an element of the Condorcet set. The necessity part of this claim follows almost
by definition: a decision cannot plausibly be viewed as majority-based if it is possible to in-
crease the popular support on an issue without decreasing it on any other issue. Equivalently, by
Lemma 1.4, a decision cannot be counted as ‘majoritarian’ if it is possible to respect the majority
view on a strictly larger set of issues. Moreover, Lemma 1.5 below characterizes the Condorcet
admissible views as ‘best approximations’ to the majority ideal.9 The sufficiency of Condorcet
admissibility as a criterion of majoritarianism is supported by the characterizations entailed by
Propositions 1.7 and 1.8 below which show that every Condorcet admissible view has strong
majoritarian credentials.

The following lemma yields a simple but fundamental characterization of the Condorcet set
as the set of views that are ‘best approximations’ to the majority ideal; recall that x 
 y if no
view is properly between x and y (x is ‘adjacent’ to y).

Lemma 1.5.

(a) If Maj(μ) ∈X, then Cond(X,μ)= {Maj(μ)}.
(b) Otherwise, Cond(X,μ)= {x ∈X; x
Maj(μ)}.

In this case, |Cond(X,μ)|� 3.

Example 1.6 (The median vs. the mean in the line). Consider again the line, identified with the set
{0,1, . . . ,K} as in Example 1.1, so that the view 0 corresponds to the rejection of all issues, and
every view k � 1 corresponds to the affirmation of exactly the issues � k. Let K � 3, and suppose
that under the profile μ, the view 0 is supported by two agents, while each of the views K − 2,

8 One might consider, alternatively, employing a metric approach on which the representativeness of a view is measured
by the average (transformed) distance from the individual views. As illustrated by the discussion of transforms of the
Hamming distance above, unless the minimand is the untransformed average Hamming distance, the most representative
views will not be Condorcet Consistent, cf. Proposition 1.3. Thus, whatever their merit, such approaches cannot serve as
alternative routes to articulating majoritarianism in judgement aggregation.

9 Lang et al. [17] define their version of the Condorcet set in terms of the majority ideal. We think of this as less attrac-
tive, as it uses majoritarian intuitions on the right-hand side, and a priori rules out the use of quantitative information.
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K − 1 and K is supported by one agent, respectively. Then, in accordance with Lemma 1.5,
Maj(μ)=K − 2 (the ‘median’ view) is the single most representative view. Indeed, it receives a
uniform 3/5-majority on each issue; any other feasible view looses against a majority on some
issue, and no view reaches a larger majority on any issue. In particular, the median view K − 2
is more representative than the ‘mean view,’ i.e. the view closest to the average of the individual
views (=(3K − 3)/5) whenever K � 5. Note that the median view is also more representative
than the ‘plurality view’ 0 (the single view supported by the largest fraction of agents).

In some settings, the line is only defined qualitatively in terms of the implied betweenness
relation among views, for example, if views are ordered in terms of some right to left spectrum
of political values. In those cases, a mean may be formally defined but will hinge on an arbitrary
cardinalization of distances. But even in settings in which the line represents a (discrete) quantity,
there may exist other scales that could be viewed as equally or more appropriate as a basis for
averaging. For instance, the value of the mean in Fig. 1 above (at 0.26) depends on the chosen
scale in terms of (absolute) levels of the tax rate. By contrast, the median (at 0.1) is invariant with
respect to the choice of the scale. From the perspective of representing the ‘people’s will,’ the
median has thus greater appeal in this example than the mean; clearly, it also has much greater
appeal than the ‘plurality view’ (at 0.5). ♦

An aggregation rule F : �∗(X) ⇒ {0,1}K is called Condorcet admissible if F(μ) ⊆
Cond(X,μ) for any X and μ. A natural class of Condorcet admissible rules arises in the fol-
lowing way. Consider a gain function φ : [− 1

2 , 1
2 ] −→ R, assumed to be non-decreasing and

odd (i.e. φ(r)=−φ(−r)) with φ(r) < 0 for all r < 0 and φ(r) > 0 for all r > 0. For any such
function, and strictly positive weights λk > 0 with

∑
k∈[1...K] λk = 1, define the weighted additive

majority rule Fφ,λ :�∗(X) ⇒ X by

Fφ,λ(μ) := arg max
x∈X

∑
k∈[1...K]

λk · φ
[
μk(xk)− 1

2

]
. (4)

In particular, if φ(r)= sign(r) for all r ∈ [− 1
2 , 1

2 ] and λk = 1/K for all k, then Fφ,λ is the Slater
rule:

Slater(X,μ) := arg max
x∈X

#

{
k ∈ [1 . . .K]; μk(xk) >

1

2

}
. (5)

The Slater rule selects the consistent views that maximize the number of issues in which there
is agreement with the majority will.10 This rule was first suggested by Slater [39] in the setting
of Arrovian preference aggregation, in which it selects the transitive orderings that agree with
the majority tournament in the largest number of binary comparisons.

On the other hand, it is easily verified that if φ(r)= r for all r ∈ [− 1
2 , 1

2 ] and λk = 1/K for
all k then the corresponding Fφ,λ coincides with the median rule defined above, i.e.

Median(X,μ)= arg max
x∈X

∑
k∈[1...K]

μk(xk).

This alternative representation of the median rule underlines its importance in the theory of ag-
gregation. More generally, the following result establishes a close connection between the class
of weighted additive majority rules and Condorcet admissibility.

10 It is also easily verified that Slater(X,μ)= arg minx∈X dH [x,Maj(μ)]; that is, the Slater rule selects the consistent
view(s) that minimize the Hamming distance to the issue-wise majority view.
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Proposition 1.7. Any weighted additive majority rule Fφ,λ is Condorcet admissible. Conversely,
for any μ ∈ �∗(X), any x ∈ Cond(X,μ), and any gain function φ, there exist weights λk > 0
such that Fφ,λ(μ)= {x}.

1.4. A diachronic interpretation: Sequential majority voting

Condorcet admissibility is closely related to ‘sequential’ majority voting, according to which
issues are decided sequentially by simple majority unless previous decisions force the opposite
choice. Specifically, we show now that a view x is Condorcet admissible if and only if there exists
a sequence of issues (‘a path’) γ such that x is the result of sequential majority voting along the
path γ . From an applied viewpoint, this ‘diachronic’ perspective on the judgement aggregation
problem is important since, in reality, many social decisions are made in a piecemeal fashion,
with different aspects decided at different times.

For any y = (yk)
K
k=1 ∈ {0,1}K and J ⊂ [1 . . .K], define yJ := (yj )j∈J ∈ {0,1}J . For any

i ∈ [1 . . .K] \ J , say that yi is X-consistent with yJ if there exists some x ∈ X with xJ = yJ

and xi = yi — otherwise yi is X-inconsistent with yJ . A path through [1 . . .K] is a bijection
γ : [1 . . .K] −→ [1 . . .K]. We now define the γ -sequential majority rule Fγ : �∗(X) −→ X.
Let μ ∈�∗(X) and let z :=Maj(μ). Define y := Fγ (μ) ∈X inductively as follows:

• Define yγ (1) := zγ (1).
• Inductively, let J := {γ (1), γ (2), . . . , γ (n)}, and suppose we have already decided yJ . Let

i := γ (n+ 1). If zi is X-consistent with yJ , then set yi := zi . Otherwise, set yi =¬zi .11

A key issue in the context of sequential majority voting is path-dependence [20,7]. Say that
the profile μ is path-dependent if there exist paths γ and ξ such that Fγ (μ) �= Fξ (μ). Our next
result establishes that the Condorcet admissible views are exactly those that can be obtained as
the result of sequential majority voting:

Proposition 1.8. Let X ⊆ {0,1}K .

(a) For any path γ through [1 . . .K], the rule Fγ is Condorcet admissible.
(b) Conversely, for any μ ∈ �∗(X) and x ∈ Cond(X,μ), there exists a path γ such that

Fγ (μ)= x.

This result can be viewed as a judgement aggregation counterpart to a well-known charac-
terization of the top cycle as the outcome of non-strategic voting in simple binary tree agendas
due to Miller [28]. Propositions 1.7 and 1.8 lend support to our argument for the sufficiency of
Condorcet admissibility as a criterion of majoritarian decisions, since either result shows that
every Condorcet admissible view is supportable by rules with unquestionable majoritarian cre-
dentials.12

There are two different interpretations of how the decision paths emerge in the diachronic
model, the ‘contingency’ and the ‘design’ interpretation. Under the former, the path is exoge-

11 “¬” represents logical negation. That is: ¬1 := 0 and ¬0 := 1.
12 Note that we do not claim that all Condorcet admissible views for a given profile are equally satisfactory from a
normative point of view. To the contrary, in many cases there can be additional considerations that, while not entailed by
majoritarianism per se, privilege some Condorcet admissible views over others, see Nehring and Pivato [31].
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nously given, or chosen by history; in this case, the ‘size’ of the Condorcet set, i.e. the extent of
path-dependence, measures the role of historical accident. Under the latter, the path is chosen by
an agenda setter and the Condorcet set can be viewed as her option set, given the constraint of
using simple majority voting in each single step of the decision sequence. In this case, the size of
the Condorcet set measures the extent to which the agenda setter can influence the final outcome.

Under either interpretation, an important task is provide quantitative measures of ‘size’ and
the implied extent of path-dependence and indeterminacy. This is indeed the central aim of our
analysis in Section 2 below. For comparison, we conclude our exposition of the general model
with a characterization of the spaces in which there is no path-dependence, and thus also no
indeterminacy.

A profile μ ∈ �∗(X) is path-independent if Fγ (μ) = Fξ (μ) for any two paths γ and ξ

through [1 . . .K]. The space X itself is called path-independent if every μ ∈ �∗(X) is path-
independent. Let J ⊆ [1 . . .K] and consider w ∈ {0,1}J which corresponds to a subset of
judgements on the issues in J . The set J is the support of w, denoted supp(w). We define
the order of w as #w := #J . If I ⊆ J and v ∈ {0,1}I , then we say v is a fragment of w (and
write v� w) if v= wI . Furthermore, w is a forbidden fragment for X if, for all x ∈X, we have
xJ �= w. Finally, w is a critical fragment if it is a ‘minimal’ forbidden fragment — that is, w is
forbidden, and there exists no proper subfragment v � w such that v is forbidden. Let W(X) be
the set of critical fragments for X and let κ(X) :=max {#w; w ∈W(X)}, thus κ(X) is maximal
order of a critical fragment for X.

A particular role is played by spaces X ⊆ {0,1}K for which κ(X) = 2; these are known as
median spaces in combinatorial mathematics. Their importance in the theory of aggregation has
been emphasized by Barthélémy and Monjardet [4] and Nehring and Puppe [33,34]. Note that a
set of feasible views X is a median space if and only if all logical interrelations are confined to
simple implications: for some j, k and all x ∈ X, xj = 0 implies that xk = 0, or xj = 0 implies
that xk = 1. The simplest example of a median space is the line considered in Example 1.1 above.

Proposition 1.9. Let X ⊆ {0,1}K . The following statements are equivalent: [i] X is path-
independent; [ii] X is majority determinate; [iii] X is a median space, i.e. κ(X)= 2.

1.5. Indeterminacy and path-dependence

By Proposition 1.9, the Condorcet set does not determine a unique collective view in most
cases, and by Lemma 1.5 it then consists of at least three elements. In particular, in these
cases there exist issues that are indeterminate in the sense that either answer in these issues
is compatible with Condorcet admissibility. Accordingly, for X ⊆ {0,1}K and μ ∈�∗(X), say
that issue k ∈ [1 . . .K] is indeterminate if there exist x,y ∈ Cond(X,μ) such that xk �= yk .
We denote the set of all indeterminate issues at μ by Indet(μ). Thus, Indet(μ) is the set
of issues in which either answer is compatible with the principle of majoritarianism as em-
bodied in the notion of Condorcet admissibility. Diachronically speaking, Indet(μ) = {k ∈
[1 . . .K]; there exist paths γ and ζ such that F

γ

k (μ) �= F
ζ
k (μ)} (by Proposition 1.8). The issues

in [1 . . .K] \ Indet(μ) are called the determinate issues. Finally, we say that μ is globally inde-
terminate if Indet(μ)= [1 . . .K], and we say that X is globally indeterminate if there exists some
globally indeterminate μ ∈�∗(X).

We turn now to our main results, the general characterizations of indeterminacy and global
indeterminacy for all aggregation spaces.



Author's personal copy

K. Nehring et al. / Journal of Economic Theory 151 (2014) 268–303 279

2. Indeterminacy and global indeterminacy: A general characterization

Consider any unconstrained view x ∈ {0,1}K and any aggregation space X ⊆ {0,1}K . Say
that x activates the critical fragment w if x coincides with w on its support, i.e. xsupp(w) = w.
Furthermore, say that x activates issue k if it activates some critical fragment w such that k ∈
supp(w). Lastly, say that the profile μ activates a critical fragment, respectively an issue, if the
corresponding issue-wise majority view Maj(μ) does.

Theorem 2.1. Let X ⊆ {0,1}K be any aggregation space and let μ ∈�∗(X) be any profile. Then
issue k is indeterminate if and only if k is activated by μ.

The proof of Theorem 2.1 in Appendix A proceeds as follows. If an issue k is indeterminate,
then there exist Condorcet admissible views x and y such that xk �= yk . One of these views, say x,
must disagree with the majority view on issue k. Proposition 1.8 says that there is some path ζ

such that Fζ (μ) = x. Through an inductive construction, we show that Fζ (μ) disagrees with
the majority view on issue k if and only if the majority view contains a critical fragment which
involves issue k, and such that ζ encounters (and Fζ (μ) agrees with) every other issue of this
critical fragment before ζ reaches k, and is thus forced to disagree with the majority on issue k

(see Proposition A.4 in Appendix A). This implies that every indeterminate issue is involved in
some critical fragment activated by μ. Conversely, given any critical fragment activated by μ,
and any issue k involved in that fragment, we can construct a path ζ which traverses the rest of
the critical fragment before reaching k, and thus must contradict the majority view in k. This
shows that k is indeterminate.

Theorem 2.1 yields a simple combinatorial characterization of globally indeterminate profiles
and spaces, as follows. Say that an unconstrained view x is critical for X if x activates every issue
in [1 . . .K], and denote the set of all views that are critical for X by Crit(X).

Theorem 2.2. Let X ⊆ {0,1}K .

(a) For any μ ∈�∗(X), (μ is globally indeterminate) ⇐⇒ (Maj(μ) ∈ Crit(X)).
(b) (X is globally indeterminate) ⇐⇒ (Maj(X)∩Crit(X) �= ∅).

Proof. (a) follows immediately from Theorem 2.1, and (b) follows from (a). �
Thus, a profile is globally indeterminate if and only if the majority ideal point at this profile

is critical for X, and the space X itself is globally indeterminate if and only if it gives rise to a
majority ideal point that is critical for X. For detailed illustration in paradigmatic applications,
see Section 3 below.

To apply Theorem 2.2(b) to show that a space X is globally indeterminate, one needs to
find an unconstrained view that is critical for X and that is the issue-wise majority view for some
profile μ on X. To determine whether such a profile exists, for any given view, may be difficult in
general, hence Theorem 2.2 may be difficult to apply. However, in a significant number of cases,
the McGarvey spaces, this problem does not arise, as these spaces are defined by the property
that Maj(X) = X; see Nehring and Pivato [30] for a detailed analysis and numerous examples,
including the spaces X

pr
N and X

eq
N corresponding to preference aggregation and the classification

problem (see Sections 3.1 and 3.2 below).
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Theorem 2.1 also entails a characterization of when no issue is indeterminate given a profile,
i.e. of when issue-wise majority voting is consistent for a given profile.

Corollary 2.3. The profile μ is majority determinate if and only if μ does not activate any critical
fragment.

The question of majority determinacy of a given profile in an arbitrary aggregation space
has been addressed before by Dietrich and List [8] and Pivato [35]. The condition derived in
Corollary 2.3 readily translates into Dietrich and List’s [8] condition of ‘majority consistency.’
Dietrich and List [8] also provide a number of other, simpler but only sufficient conditions for
majority determinacy of a given profile, among them the counterpart in the general judgement
aggregation model of Sen’s classical condition of ‘value restriction’ (see Sen [38]). Pivato [35]
provides a class of sufficient geometric conditions for determinacy of a profile.

Theorem 2.1 also yields via Corollary 2.3 the characterization of majority determinate spaces
as median spaces stated in Proposition 1.9. This follows from the observation that a critical
fragment w of X is activated by some profile μ ∈�∗(X) if and only if #w � 3.

3. The Condorcet set in paradigmatic aggregation problems

In this section we will illustrate the notions of Condorcet admissibility and Condorcet set
in four paradigmatic examples: preference aggregation, the aggregation of equivalence relations
(the “classification problem”), committee selection and the allocation of public goods.

3.1. Preference aggregation

Consider a finite set of N social alternatives. Let K := N(N − 1)/2, and bijectively iden-
tify [1 . . .K] with a subset of [1 . . .N] × [1 . . .N] which contains exactly one element of the set
{(a, b), (b, a)} for each distinct a, b ∈ [1 . . .N]. Then {0,1}K represents the space of all tour-
naments (i.e. complete, irreflexive, antisymmetric binary relations, or equivalently, complete
directed graphs) on [1 . . .N]. Intuitively, each issue corresponds to a proposition of the form ‘al-
ternative a is strictly preferred to alternative b.’13 Let X

pr
N ⊂ {0,1}K be the set of all tournaments

representing total orderings (i.e. permutations) of [1 . . .N] (sometimes X
pr
N is called the per-

mutahedron). Classical Arrovian aggregation of strict preference orderings is simply judgement
aggregation on X

pr
N . For any profile μ ∈�∗(Xpr

N), the set Cond(X
pr
N ,μ) is the set of preference

orderings on [1 . . .N] such that no other ordering agrees with the μ-majority on a larger set of
pairwise comparisons.

Note that in the case of preference aggregation, Condorcet admissibility always restricts the
set of admissible elements, i.e. Cond(X

pr
N ,μ) is never all of X

pr
N . For example, if a majority

of voters strictly prefer a to b in the profile μ, then no element of Cond(X
pr
N ,μ) can place a

and b as nearest neighbours with b � a, because switching the social ranking between a and
b while retaining all other comparisons would agree with the majority view on a strictly larger
set of issues.14 In particular, the top-ranked alternative of a Condorcet admissible ordering is

13 The focus on strict orderings is for expositional convenience here. The analysis can be generalized without difficulty
to the case of binary relations with non-trivial indifferences; in that case, one needs to introduce both issues (a, b)

(corresponding to ‘a � b’) and (b, a) (corresponding to ‘b � a’), see Nehring et al. [32] for a corresponding model.
14 a � b is a nearest-neighbour comparison if for all c with a � c and c � b either c= a or c= b.
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always preferred by a majority to the second-ranked alternative. In other words, in any Condorcet
admissible ordering, the top alternatives is the majority winner in a runoff with the top two
choices.

Observe also that majority determinacy in the sense defined above is stronger than the usual
notion of existence of a Condorcet winner. Indeed, majority determinacy in our sense requires
the existence of an entire ordering that agrees with the majority judgement in each binary com-
parison; it is thus equivalent to the existence of a Condorcet winner on each subset of [1 . . .N ].

For any x ∈ {0,1}K , let
x� be the binary relation on [1 . . .N] defined by x. Moreover, for

any μ ∈ �∗(Xpr
N), let

μ� be the binary relation defined by Maj(μ) — the so-called majority
tournament. An element y ∈X

pr
N is called a directed Hamiltonian chain of Maj(μ) if all nearest-

neighbour comparisons in
y� agree with the orderings specified by

μ�. In other words, if we

represent
y� as a linear directed graph C and represent

μ� as a complete directed graph D in the
obvious way, then C is a (directed) subgraph of D.

Let
x�∗ be the transitive closure of

x�,15 augmented by all pairs (a, a) for a ∈ [1 . . .N ]; then
x�∗ is a weak order (i.e.it is complete, reflexive and transitive). The symmetric part

x≈∗ of
x�∗

is an equivalence relation (one has a
x≈∗ b iff ‘a and b belong to the same cycle of

x�’). The
x≈∗-equivalence classes of [1 . . .N] are linearly ordered by the asymmetric part

x�∗ of
x�∗ (one

has a
x�∗ b iff ‘a is on a lower

x�-cycle than b’). The maximal
x≈∗-equivalence class is also known

as the top cycle of the tournament defined by x.16

Proposition 3.1. Let μ ∈�∗(Xpr
N).

(a) Cond(X
pr
N ,μ)= {x ∈X

pr
N ;

x� is a directed Hamiltonian chain in
μ�}.

(b) For all a, b ∈ [1 . . .N ], a
μ�∗ b if and only if, for all x ∈ Cond(X

pr
N ,μ), a

x� b. In particular,

the determinate issues given a profile μ are exactly the issues (a, b) for which either a
μ�∗ b,

or b
μ�∗ a.

(c) The profile μ is globally indeterminate if and only if the top cycle of
μ� equals [1 . . .N].

(Such profiles exist.)

While directed Hamiltonian chains are a well-known object in combinatorics, their charac-
terization in Proposition 3.1(a) appears to be new in the social choice literature. Note also that,
by Proposition 3.1(b), for every profile μ, the top cycle set of the majority tournament consists
exactly of the top elements of the Condorcet admissible orderings.

Example 3.2 (Condorcet set in the 4-permutahedron). Consider X
pr
N with the set of alterna-

tives N = {a, b, c, d}. Suppose that one third of the population endorses each of the preference
orderings a � b � c � d , b � c � d � a and c � d � a � b. For the corresponding majority tour-

nament we have c
μ� a, d

μ� a, a
μ� b, b

μ� c, b
μ� d , and c

μ� d (see Fig. 2). By Proposition 3.1(a),

15 By definition, the pair (a, b) belongs to the transitive closure of � if there exist a1, . . . , am such that a = a1, b= am

and aj � aj+1 for all j = 1, . . . ,m− 1.
16 The concept of the top cycle was introduced by Good [13], see also Moulin [29, p. 253]. For a choice-theoretic

analysis of the relation
x�∗ see Duggan [11].
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Fig. 2. A majority tournament on four alternatives.

the Condorect set consists of the following five orderings: a � b � c � d , b � c � d � a,
c � d � a � b, d � a � b � c, c � a � b � d . The global indeterminacy of the considered
profile follows from Proposition 3.1(c). ♦

By Proposition 3.1(b), the top cycle set of a majority tournament characterizes the choice
implications of ‘majoritarian’ preference aggregation: an alternative is in the top cycle if and
only if it is on top of some Condorcet admissible ordering. While choice from the top cycle of
the underlying majority tournament is thus a necessary condition for Condorcet admissibility, it
is by no means sufficient. Indeed, as already noted, Condorcet admissibility entails additional
restrictions that do not only concern the top elements. The following example provides a further
illustration.

Example 3.3 (The ‘fairest vote of all’). The Copeland rule ranks each alternative according to
the number of alternatives which it beats in pairwise majority comparisons, and selects the al-
ternative(s) with the largest such number. For instance, in Fig. 2, the alternatives b and c each
receive a ‘Copeland score’ of 2, while a and d receive a score of 1; thus, the ‘Copeland winners’
are b and c. Evidently, the Copeland rule chooses a Condorcet winner whenever it exists. As seen
from this simple example, however, the Copeland rule often produces ties. To solve this problem,
Dasgupta and Maskin [6] have proposed the following refinement of the Copeland rule under the
name of the ‘fairest vote of all.’17 First, order alternatives according to their Copeland score; if
this yields a tie between two or more alternatives, order those according to their Borda scores
while retaining the lexicographic precedence of the Copeland score among the other alternatives
(note that the Borda rule generically yields a strict ranking of alternatives). Evidently, the result-
ing voting rule chooses from the top cycle; however, it does in general not produce a Condorcet
admissible ranking. For instance, for the profile in Example 3.2 it yields the unique ordering
c � b � a � d which is not Condorcet admissible because in the case of both nearest-neighbour
pairs (c, b) and (a, d) a majority prefers the lower ranked alternative. We thus conclude that the
method proposed by Dasgupta and Maskin is not ‘genuinely’ majoritarian; this makes intuitive
sense, since the invocation of Borda count introduces prima facie non-majoritarian considera-
tions. ♦

3.2. Classification

An interesting example of judgement aggregation frequently discussed in the literature is
the ‘classification problem,’ i.e. the problem of aggregating a set of equivalence relations (see

17 Originally, Dasgupta and Maskin [6] proposed it as a voting rule, i.e. an aggregation method that specifies only a cho-
sen alternative given any profile of individual preferences; we present here the straightforward extension of Dasgupta’s
and Maskin’s method to a preference aggregation rule.
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Fig. 3. Global indeterminacy in the classification problem.

Fishburn and Rubinstein [12] and, for a recent contribution, Dimitrov et al. [9]). The individual
equivalence relations correspond to the classifications of a set of objects by different experts.
The experts disagree about the appropriate classification into equivalence classes, and the prob-
lem consists in finding an overall classification that best represents their view as a group.

Formally, let N ∈N, let K :=N(N − 1)/2, and identify [1 . . .K] with a subset of [1 . . .N] ×
[1 . . .N] containing exactly one of the pairs (a, b) or (b, a) for each a �= b ∈ [1 . . .N]. Thus,
an element of {0,1}K may represent a symmetric, reflexive binary relation, i.e. an undirected
graph on [1 . . .N]. By X

eq
N ⊆ {0,1}K we denote the set of all equivalence relations on [1 . . .N].

The equivalence relation represented by x ∈X
eq
N will be denoted by

x∼; moreover, for any graph
x ∈ {0,1}K denote by tr(x) its transitive closure. The graph 1 is called the complete graph;
x is called connected if tr(x)= 1. The following result characterizes the Condorcet set and the
determinate issues for every profile in the classification problem.

Proposition 3.4. Let μ ∈ �∗(Xeq
N ), and let xμ ∈ {0,1}K be the issue-wise majority judgement

(the ‘majority graph’).

(a) Let x ∈X
eq
N represent the equivalence relation

x∼ on N . Then, x ∈ Cond(X
eq
N ,μ) if and only

if : [i]
x∼⊆ tr(xμ), and [ii] if not a

x∼ b, then there exist a′, b′ ∈N such that a
x∼ a′ (or a = a′),

b
x∼ b′ (or b= b′), and {a′, b′} is not an edge of xμ.

(b) The issue (a, b) ∈ [1 . . .K] is determinate if and only if xμ

(a,b) = 0 and tr(xμ)(a,b) = 0, or

xμ

(a,b) = 1 and tr(xμ)(c,d) = xμ

(c,d) = 1 for all edges (c, d) ∈ [1 . . .K] belonging to the same
connected component of xμ as (a, b).

(c) The profile μ is globally indeterminate if and only if xμ is connected but not complete. (Such
profiles exist.)

Proposition 3.4(c) is illustrated in the case of N = 3 in Fig. 3. The top graph is the majority
graph xμ of the profile μ that puts equal popular weight to the following three equivalence rela-
tions, represented by their corresponding partitions of {a, b, c}, respectively: x1 corresponding to
{{a, b, c}}, x2 corresponding to {{a, b}, {c}}, and x3 corresponding {{b}, {a, c}}. The Condorcet
set is given by {x1,x2,x3} (see the three graphs at the bottom in Fig. 3); global indeterminacy is
easily verified.
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3.3. Committee selection

For any x ∈ {0,1}K , let ‖x‖ := #{k ∈ [1 . . .K]; xk = 1}. Let 0 � I � J � K , and define

Xcom
I,J ;K := {

x ∈ {0,1}K ; I � ‖x‖� J
}
. (6)

Heuristically, [1 . . .K] is a set of K ‘candidates,’ and Xcom
I,J ;K is the set of all ‘committees’ com-

prised of at least I and at most J of these candidates.18 The characterization of the Condorcet
set in this case follows immediately from Lemma 1.5:

Proposition 3.5. Let 0 � I � J � K and let μ ∈ �∗(Xcom
I,J ;K). Let M := {k ∈ [1 . . .K];

μ(xj ) > 1
2 } be the set of all candidates receiving majority support.

(a) If I � |M|� J , then Cond(Xcom
I,J ;K,μ)= {1M}.

(b) If |M|< I , then Cond(Xcom
I,J ;K,μ)= {1H ; M ⊂H ⊆ [1 . . .K], and |H | = I }.

(c) If |M|> J , then Cond(Xcom
I,J ;K,μ)= {1H ; H ⊂M and |H | = J }.

Next, we study indeterminacy in the committee selection problem. The set of (in)determinate
issues given any profile μ is easily determined using Proposition 3.5. In contrast to the preference
aggregation and classification problems, the results concerning global indeterminacy are multi-
faceted in the committee selection problem. While global indeterminacy again occurs often, it
does not occur always.

Proposition 3.6. Consider Xcom
I,J ;K and suppose that I > 0 and J < K . Then Xcom

I,J ;K is globally
indeterminate unless I = J =K/2.

The restriction to the case I > 0 and J < K is essential for the conclusion of Proposition 3.6.
Indeed, otherwise the committee selection problem displays the following property of ‘compre-
hensiveness’ which leads to significantly different results. For any x,y ∈ {0,1}K , write x � y if
xk � yk for all k ∈ [1 . . .K]. A subset X ⊂ {0,1}K is comprehensive if, for any x,y ∈ {0,1}K , if
x ∈X and x � y, then also y ∈ {0,1}K also. Thus, a space is comprehensive if any view affirming
a larger set of propositions than some feasible view is feasible as well. For example, Xcom

I,K;K is

comprehensive, for any I � K .19

In the following result, a space X is called non-degenerate if, for every k ∈ [1 . . .K], there
is some critical fragment w of order at least 3 such that k ∈ supp(w). For example, the space
Xcom

K−1,K;K is degenerate since all critical fragments have order 2.20

Proposition 3.7. Let X be comprehensive and non-degenerate. Then X is globally indeterminate
if and only if 0 ∈Maj(X).

To illustrate, consider the class of comprehensive committee selection problems Xcom
I,K;K .

Here, Proposition 3.7 yields the following corollary.

18 The committee selection problem has a long history in social choice theory; according to McLean [26] the aggregation
problem corresponding to Xcom

7,7;20 was studied by Ramon Lull already in the year 1274 in his ‘Book of the Gentile and
the Three Wise Men.’ For a related model interpreted in terms of ‘community standards,’ see Miller [27].
19 Likewise, the spaces Xcom

0,J ;K for 0 � J � K are isomorphic to comprehensive problems.
20 It follows from the analysis in Section 2 above that degenerate spaces are never globally indeterminate.
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Corollary 3.8. Let I > 0. The space Xcom
I,K;K is globally indeterminate if and only if I < K/2.

To verify this, simply observe that 0 ∈ Maj(Xcom
I,K;K) only if I < K/2; indeed, if every voter

approves of more than half of the candidates, then at least one candidate must receive a majority
of votes.

3.4. Resource allocation

In this subsection, we show how the general judgement aggregation framework allows one to
represent and analyze resource allocation problems. While global indeterminacy can also arise
in this context, the indeterminacy turns out to be much more ‘well-behaved’ than in the cases of
preference aggregation or classification.

Fix M,Q ∈ N, and consider the Q-dimensional ‘discrete cube’ [0 . . .M]Q. Each element
x ∈ [1 . . .M]Q can be represented by a point Φ(x) := x̃ ∈ {0,1}Q×M defined as follows:

for all (q,m) ∈ [1 . . .Q] × [1 . . .M], x̃(q,m) :=
{

1 if xq � m;
0 if xq < m.

(7)

For example, Φ(0Q)= 0Q×M and Φ(1Q)= 1Q×M . This defines an injection Φ : [0 . . .M]Q −→
{0,1}Q×M . Any subset of P ⊆ [0 . . .M]Q can thereby be represented as a subset X :=Φ(P )⊆
{0,1}Q×M . Judgement aggregation over X thus represents social choice over a Q-dimensional
‘policy space,’ where each voter’s position represents her ideal point in P , the set of feasible poli-
cies. This framework is especially useful for resource allocation problems, as we now illustrate.
Let

�Q
M :=

{
x ∈ [0 . . .M]Q;

Q∑
q=1

xq =M

}
, and

X�
M,Q :=Φ

[�Q
M

]⊆ {0,1}Q×M. (8)

Geometrically, �Q
M is a ‘discrete simplex’; points in �Q

M represent all ways of allocating M

indivisible dollars among Q public goods. Thus, judgement aggregation over X�
M,Q describes a

group which decides how to allocate a budget of M dollars to Q public goods by voting ‘yea’
or ‘nay’ to propositions of the form ‘xq should be at least m dollars’ for each q ∈ [1 . . .Q] and
m ∈ [1 . . .M]. We will thus henceforth refer to spaces of the form X�

M,Q as budget spaces, cf.
Lindner et al. [19].

On the space X�
M,Q, the Condorcet set allows for the following explicit characterization. For

each q ∈ [1 . . .Q] and every μ ∈�∗(X�
M,Q), let m∗

q := medq(μ) denote the median in coordi-

nate q (that is: m∗
q is the unique m ∈ [0 . . .M] such that μ(xq,m) > 1

2 > μ(xq,m+1); as already
noted this value exists because μ ∈�∗(X�

M,Q)). It follows that Maj(μ)= Φ(m∗
1, . . . ,m

∗
Q) (see

Lemma A.3(b)). Let D(μ) := (
∑Q

q=1 m∗
q) − M be the ‘majority deficit’ corresponding to the

profile μ. Note that the majority deficit can be positive or negative.

Proposition 3.9. Let M,Q ∈N, and let μ ∈�∗(X�
M,Q).

(a) If D(μ)= 0, then Cond(X�
M,Q,μ)=Maj(μ).
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(b) If D(μ) > 0, then Cond(X�
M,Q,μ) = {Φ(x); x ∈ �Q

M and xq ∈ [m∗
q − D(μ),m∗

q ] for all
q ∈ [1 . . .Q]}.

(c) If D(μ) < 0, then Cond(X�
M,Q,μ) = {Φ(x); x ∈ �Q

M and xq ∈ [m∗
q, m∗

q + |D(μ)|] for all
q ∈ [1 . . .Q]}.

In particular, one has Cond(X�
M,Q,μ)= Slater(X�

M,Q,μ) for all μ.

Thus, a profile μ is majority determinate if and only if D(μ)= 0. Moreover, if there is positive
(negative) deficit, the Condorcet set arises by allocating at most (at least) the median amount to
each claimant while distributing the slack in any feasible way.

Note that, if Q = 2, the spaces X�
M,Q have the structure of a line, in particular X�

M,Q is a
median space in this case, hence majority determinate. The following result characterizes global
indeterminacy in the spaces X�

M,Q if Q � 3 and describes the qualitative structure of indetermi-
nacy in these spaces in general. For any profile μ define the degree of indeterminacy ind(μ) as
the number of indeterminate issues given μ, i.e.

ind(μ) := #Indet(μ).

Proposition 3.10. Consider a budget space X�
M,Q and suppose that Q � 3.

(a) A profile μ is globally indeterminate if and only if m∗
q = 0 for all q ∈ [1 . . .Q].

(b) For all profiles μ, ind(μ) � Q · |D(μ)|.

Note that, if Q � 3, m∗
q(μ) = 0 for all q ∈ [1 . . .Q] can easily occur; for instance, this will

be the case if there are sufficiently many voters and every voter is only interested in positive
quantities of less than half of the goods q ∈ [1 . . .Q] (provided that the relevant sets of goods
differ across voters). By Proposition 3.10(a), global indeterminacy can thus arise in nondegener-
ate cases in the resource allocation problem (if Q � 3). On the other hand, Proposition 3.10(b)
shows that typical profiles lead to ‘local’ but not global indeterminacy. In particular, the indeter-
minacy will not be global whenever every agent’s ideal allocation involves a positive amount of
more than half of the goods, as stated by the following result.

Corollary 3.11. Consider a budget space X�
M,Q and suppose that μ ∈ �∗(X�

M,Q) is such that
every agent’s allocation involves a positive quantity of more than half of the goods. Then,
Maj(μ) �= 0; in particular, by Proposition 3.10(a), μ is not globally indeterminate.

4. When does majority voting lead to chaos? The ‘McKelvey’ criterion

Consider again the majority tournament shown in Fig. 2 above. As we have seen, any profile
that induces this majority tournament is globally indeterminate. On the other hand, the displayed
majority tournament is ‘nearly’ consistent: one only needs to reverse the binary comparison be-
tween a and b to obtain the consistent (transitive) ordering b � c � d � a. This demonstrates that
just a little inconsistency can cause global indeterminacy in the preference aggregation problem,
an observation strongly reminiscent of McKelvey’s classical ‘chaos’ theorem in a spatial context,
see McKelvey [25].

Similarly, consider a graph x ∈ {0,1}K that partitions the set [1 . . .N] into two cliques A1 and
A2 and that contains exactly one additional edge connecting some a ∈A1 with some b ∈A2. By
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Proposition 3.4(c), any profile in �∗(Xeq
N ) that induces x as the issue-wise majority judgement

is globally indeterminate. But as above, among all elements in {0,1}K \ X
eq
N , x is as close as

possible to X
eq
N in the sense that the value in only one issue has to be reversed in order to obtain

an equivalence relation (by removing the edge (a, b)). Thus, also in the classification problem a
little inconsistency can cause global indeterminacy. This motivates the following definitions.

For any judgement aggregation space X ⊆ {0,1}K and any y ∈ {0,1}K define the degree of
inconsistency of y (relative to X) as

inc(y) :=min
x∈X

dH (x,y).

Also, for any profile μ, let21

inc(μ) := inc
[
Maj(μ)

]=min
x∈X

dH

[
x,Maj(μ)

]
.

Say that an aggregation space X is McKelvey if there exists a globally indeterminate profile μ ∈
�∗(X) such that inc(μ)= 1. Thus, a space is McKelvey if there exists a globally indeterminate
profile such that its corresponding issue-wise majority view is only minimally inconsistent. Any
feasible view x ∈X that verifies the McKelvey property, i.e. that satisfies dH [x,Maj(μ)] = 1 for
some globally indeterminate profile μ, will be referred to as a McKelvey view.

Theorem 2.2(a) entails the following straightforward characterization of McKelvey spaces.

Corollary 4.1. A space X ⊆ {0,1}K is McKelvey if and only if there exists a profile μ such that
Maj(μ) ∈ Crit(X)∩X′ where

X′ :=
{

y ∈ {0,1}K \X; min
x∈X

dH (y, x)= 1
}
.

Above, we have seen that the preference aggregation problem is McKelvey. In fact, in the
preference aggregation example every feasible view is a McKelvey view. To see this, take
any preference ordering �∈ X

pr
N , say with a1 � a2 � · · · � aN , and consider the tournament

x ∈ {0,1}K that coincides with � except in issue (a1, aN) in which it specifies a1
x≺ aN . By

construction, we have inc(x) = 1. Moreover, any profile μ such that x = Maj(μ) is globally
indeterminate by Proposition 3.1(c).22

The spaces underlying the classification problem are also McKelvey as shown above. The
McKelvey views are exactly the equivalence relations that partition [1 . . .N ] into two equivalence
classes, see Proposition 4.2(b) below.

By contrast, resource allocation problems are never McKelvey by Proposition 3.10(a). More-
over, since inc(μ)= |D(μ)| in this case, the degree of indeterminacy of a profile is proportional
to the degree of its inconsistency by Proposition 3.10(b). Resource allocation problems are thus
an interesting example of aggregation problems in which majoritarian aggregation may be highly
indeterminate, yet well-behaved and ‘non-chaotic.’

21 In the context of preference aggregation, this ‘inconsistency measure’ was first proposed by Slater [39]. As pointed
out by Laslier [18, p. 68], Slater was in fact more interested in the measure itself than in the now called ‘Slater rule’ that
selects, for any profile μ, the minimizers in X of inc[Maj(μ)] (cf. footnote 10 above).
22 The existence of a profile μ with x=Maj(μ) follows from a classic result by McGarvey [24], see also Nehring and
Pivato [30].
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The extent of potential majority ‘chaos’ can be measured quantitatively by the following
McKelvey index χ(X) of an aggregation space X as the smallest constant C ∈R such that, for all
profiles μ ∈�∗(X),

ind(μ) � C ·K · inc(μ).

By construction, for any X, one has 0 � χ(X) � 1. At the extremes, one has χ(X) = 1 just in
case X is a McKelvey space; on the other hand, χ(X)= 0 just in case X is majority determinate,
i.e. a median space. Budget spaces with at least 3 goods occupy a middle ground. Indeed, as
stated in Proposition 4.2(d) below, one obtains χ(X)= 1

M
for such spaces; thus, there is a simple

quantitative sense in which majoritarian aggregation in budget spaces is far from chaotic.
The following result summarizes these findings and also shows that the committee selection

problem has the McKelvey property only under restrictive conditions.

Proposition 4.2.

(a) (Preference aggregation) For X
pr
N one has

χ
(
X

pr
N

)= 1,

i.e. the preference aggregation problem is McKelvey. Moreover, any feasible view in X
pr
N is a

McKelvey view.
(b) (Classification) For X

eq
N one has

χ
(
X

eq
N

)= 1,

i.e. the classification problem is McKelvey. Moreover, the McKelvey views are the equiva-
lence relations that partition [1 . . .N] into two equivalence classes.

(c) (Committee selection) Consider Xcom
I,J ;K and assume that K > 2 and I � J . Then

χ
(
Xcom

I,J ;K
)= 1 ⇐⇒ (I = 1 or J =K − 1).

(d) (Resource allocation) For X�
M,Q one has

χ
(
X�

M,Q

)= 1

M
,

in particular, the budget spaces X�
M,Q are never McKelvey.

5. Conclusion

We have proposed a natural and workable demarcation criterion for majoritarian social choice.
In particular, we challenged the view that in the absence of a Condorcet winner (or, more gener-
ally, a consistent issue-wise majority view) there is no well-defined ‘will of the majority.’ Indeed,
in spite of the Condorcet paradox it is possible to define a consistent and generally applicable no-
tion of ‘majoritarianism,’ the Condorcet set. However, this comes at the price of indeterminacy,
since the Condorcet is often large. In this paper, we have analyzed the structure of indeterminacy
in some detail, but there remain a number of interesting open problems.

First, is it possible to refine the notion of Condorcet admissibility using quantitative informa-
tion on the majority margins in each issue? This is answered positively in Nehring and Pivato
[31], by exploring a condition of symmetry across issues.
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Secondly, one may ask under what circumstances the path-dependence entailed by sequential
majority voting can even force one to override unanimous consent in some issues. This problem
is addressed in Nehring et al. [32], where we characterize the aggregation problems for which
sequential majority voting never overrides unanimous consent no matter in which sequence the
decisions are taken (‘strong sequential unanimity consistency’). It turns out that this is a very re-
stricted class, but we also give examples of interesting aggregation problems for which there exist
particular decision paths along which sequential majority voting respects unanimous consent at
all profiles (‘weak sequential unanimity consistency’).

Several further questions are worthwhile to address. For example, what is the asymptotic
behavior of the Condorcet set as the number of issues grows? Or, what is the distribution over
the outcomes of sequential majority voting induced by a given distribution over the set of possible
decisions paths? And what is the induced probability of unanimity violations? We hope that the
present paper will stimulate further research along these or similar lines.

Appendix A. Proofs

Notation. We define the elements 0K := (0,0, . . . ,0) and 1K := (1,1, . . . ,1) in {0,1}K (we will
simply write “0” and “1” when K is clear from context). For any subset J ⊆ [1 . . .K], let 1J

denote the vector x ∈ {0,1}K such that xj = 1 for all j ∈ J and xk = 0 for all k ∈ [1 . . .K] \ J .

Proof of Proposition 1.2. First, suppose β � 1 and let μ ∈ �∗(X) be such that μ(x) > 1
2 for

some x ∈ X and β � 1. Since dβ is a concave function of d if β � 1, the local minima of the
function

∑
y∈X[d(·,y)]β ·μ(y) must all be elements of supp(μ), thus the global minimum is by

assumption at x.
Conversely, suppose β > 1. Consider a triple x,y, z ∈X such that y is between x and z, and

assume without loss of generality that x
 y and y
 z. Let A := d(x,y) and B := d(y, z); thus,
A+ B = d(x, z). Let μ ∈�∗(X) be such that μ(x)= 1

2 + ε and μ(z)= 1
2 − ε, for some ε > 0.

Thus, PM requires Fβ(μ)= {x}.
However, the objective function

∑
r∈X[d(·, r)]β ·μ(r) has the value ( 1

2 − ε) · (A+B)β at x,
whereas at y, it has the value(

1

2
+ ε

)
Aβ +

(
1

2
− ε

)
Bβ <

(
1

2
+ ε

)(
Aβ +Bβ

)
.

For any β > 1, we have (Aβ + Bβ) < (A+ B)β . Thus, if ε is sufficiently small, we have ( 1
2 +

ε)(Aβ +Bβ) < ( 1
2 − ε) · (A+B)β ; thus the minimum value does not occur at x, so Fβ(μ) �= {x},

contradicting PM. �
Proof of Proposition 1.3. It is straightforward to verify that F1 (the median rule) is Condorcet
consistent. We will prove the converse by contrapositive. If β > 1, then Proposition 1.2 im-
plies that Fβ violates PM; hence it cannot be CC. So, suppose β < 1. Again, consider a triple
x,y, z ∈X such that y is between x and z, and assume without loss of generality that x
 y and
y
 z. Let A := d(x,y) and B := d(y, z); thus, A+B = d(x, z). Let C :=Aβ +Bβ − (A+B)β ;
then C > 0 because β < 1.

Let μ ∈ �∗(X) be such that μ(x) = μ(z) = 1
2 − ε, while μ(y) = 2ε, for some ε > 0. It is

easily checked that Maj(μ)= y. Thus, CC requires Fβ(μ)= {y}.
However, if we define φ(s) :=∑

r∈X[d(s, r)]β · μ(r) for all s ∈ X, then φ(x) = μ(y)Aβ +
μ(z)(A+B)β , whereas φ(y)= μ(x)Aβ +μ(z)Bβ = μ(z)(Aβ +Bβ). Thus,
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φ(y)− φ(x)= μ(z)
(
Aβ +Bβ

)−μ(y)Aβ −μ(z)(A+B)β

= μ(z)C −μ(y)Aβ

=
(

1

2
− ε

)
C − 2εAβ.

Recall C > 0. Thus, if ε is small enough, then φ(y) − φ(x) > 0, which means φ(y) > φ(x),
which means y /∈ Fβ(μ), contradicting CC. �
Proof of Lemma 1.4. For any μ ∈�∗(X) and any k ∈ [1 . . .K], observe that

μk(xk) > μk(yk) ⇐⇒ xk =Majk(μ) �= yk �⇒ k ∈M(x,μ), (A.1)

while

μk(xk)= μk(yk) ⇐⇒ xk = yk �⇒ k ∈M(x,μ) ⇐⇒ k ∈M(y,μ).

(A.2)

Thus, μk(xk) � μk(yk) for all k ∈ [1 . . .K], if and only if either (A.1) or (A.2) applies for each
k ∈ [1 . . .K], if and only ifM(x,μ)⊇M(y,μ). �
Proof of Lemma 1.5. (a) is immediate from the definition of Condorcet admissibility, as is the
first part of (b). Now suppose Maj(μ) /∈X; it remains only to show that |Cond(X,μ)|� 3. To see
this, note that Maj(μ) /∈X only if there is some X-critical fragment w which is activated by μ.
This fragment w must have order 3 or more (if |w| = 2, then w could not be activated by μ: if
each coordinate received majority support, then a nonzero proportion of voters would endorse
both coordinates of w, which is impossible because w is forbidden).

Now, fix some coordinate j ∈ supp(w), and let wj be the fragment obtained by deleting
coordinate j from w. Let Xj := {x ∈ X; wj � x}; then Xj is nonempty, because wj is not
forbidden, because x is critical. Let x be an element of Xj such that there exists no y ∈Xj with
M(x,μ) �M(y,μ).

Claim 1. x ∈ Cond(X,μ).

Proof. Suppose there was some y ∈ X withM(x,μ) �M(y,μ). Then we must have y /∈ Xj ,
which means yj =wj . But supp(w) \ {j} ⊆M(x,μ)⊂M(y,μ), so wj � y. Thus, w � y. But
w is forbidden, so this is impossible for any y ∈X. � Claim 1

Thus, we can obtain an element of Cond(X,μ) by contradicting the majority will in any single
coordinate of w; thus, there are at least as many different elements of Cond(X,μ) as there are
coordinates in w — hence |Cond(X,μ)|� |w|� 3. �
Proof of Proposition 1.7. To show that any weighted additive majority rule Fφ,λ is Condorcet
admissible, take two views x and y such that x agrees with the majority view on a strictly larger
set of issues than y; say x agrees with Maj(μ) on Kx ⊆ [1 . . .K], and y agrees with Maj(μ) on
Ky ⊆ [1 . . .K], with Kx � Ky. If k ∈Ky, or if k /∈Kx, then μk(xk)= μk(yk); on the other hand,
if k ∈Kx \Ky, then

μk(xk)− 1

2
> 0 > μk(yk)− 1

2
,
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hence φ[μk(xk) − 1
2 ] > φ[μk(yk) − 1

2 ] by our assumptions on φ. This shows that y does not
maximize the sum on the right hand side of (4), and hence that y is not chosen by Fφ,λ.

Conversely, let a gain function φ and a view x ∈ Cond(X,μ) be given. Suppose that x agrees
with the majority view in the set Kx ⊆ [1 . . .K] of issues, and let m := |Kx| (note that m > 0). If
m=K , then x agrees with the majority view in all issues and is the unique Condorcet admissible
view by Lemma 1.5. Thus, assume that m < K . For ε > 0, define λk(ε)= 1

m
− ε if k ∈Kx and

λk(ε)= mε
K−m

if k /∈Kx. If ε is sufficiently small, we obtain 0 < λk(ε) < 1 for all k. Moreover,
for sufficiently small ε the view x is the unique maximizer of the right hand side of (4). Indeed,
any other view y ∈ Cond(X,μ) disagrees with the majority view in least one issue k ∈Kx. Since,
for all k /∈Kx, λk(ε) tends to zero, and φ[μk(xk)− 1

2 ]> 0 for all k ∈Kx, this shows that y is not
chosen by Fφ,λ(ε) for sufficiently small ε. �
Proof of Proposition 1.8. Let z :=Maj(μ).

(a) Let γ be a path through [1 . . .K], and let x := Fγ (μ). We must show that x ∈ Cond(X,μ).
Let y ∈X, and suppose y is between x and z.

Claim 1. For all t ∈ [1 . . .K], we have xγ (t) = yγ (t).

Proof. (by induction on t ) First, xγ (1) = zγ (1) (by definition of Fγ ). Thus, yγ (1) = xγ (1) also
(because y is between x and z).

Now, let J := {γ (1), . . . , γ (t − 1)}, and suppose inductively that xJ = yJ ; we will show that
xγ (t) = yγ (t). If xγ (t) = zγ (t), then yγ (t) = xγ (t) (because y is between x and z). If xγ (t) �= zγ (t),
then this must be because zγ (t) is X-inconsistent with xJ . But then zγ (t) is also X-incon-
sistent with yJ (by induction), so we must also have yγ (t) �= zγ (t) (because y ∈ X). Thus,
yγ (t) = xγ (t). � Claim 1

Thus, if y is between z and x, then Claim 1 implies that y is x. Thus, x 
 z; hence x ∈
Cond(X,μ), as desired.

(b) Let x ∈ Cond(X,μ); we must find a path γ such that Fγ (μ)= x. Let J := |M(x,μ)|, and
let γ : [1 . . .K] −→ [1 . . .K] be a path such that γ [1 . . . J ] =M(x,μ). Thus, xγ (j) = zγ (j) for
all j ∈ [1 . . . J ], while xγ (j) �= zγ (j) for all j ∈ [J + 1 . . .K]. Let y := Fγ (μ).

Claim 2. For all t ∈ [1 . . . J ], yγ (t) = xγ (t).

Proof. (by induction on t ) First, yγ (1) = zγ (1) by definition of Fγ ; hence yγ (1) = xγ (1).
Let t ∈ [1 . . . J ], let I := {γ (1), . . . , γ (t − 1)} and suppose inductively that yI = xI . Now,

xγ (t) is X-consistent with xI (because x ∈ X); hence zγ (t) is X-consistent with yI (because
yI = xI by induction hypothesis, while zγ (t) = xγ (t) by definition of γ and J ). Thus, yγ (t) =
zγ (t); hence yγ (t) = xγ (t). � Claim 2

Claim 2 implies yJ = xJ ; hence y is between x and z (by definition of J ). But y ∈ X and
x
 z; thus we must have y= x — in other words, Fγ (μ)= x, as desired. �
Proof of Proposition 1.9. “[i] ⇐⇒ [ii]” follows immediately from Lemma 1.5 and Proposi-
tion 1.8. “[ii] ⇐⇒ [iii]” follows from Nehring and Puppe [33, Fact 3.4]. �

The proof of Theorem 2.1 is somewhat involved, so it is deferred until the end of the appendix.
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Proof of Proposition 3.1. (a) “⊆” (by contrapositive) Let x ∈X
pr
N represent the ordering (a1

x≺
a2

x≺ a3
x≺ · · · x≺ aN), and suppose

x≺ is not a directed Hamiltonian chain in
μ≺. Then there exists

n ∈ [1 . . .N) such that an

μ� an+1. Define the ordering
y≺ by switching the positions of an and

an+1 in
x≺. That is: a1

y≺ a2
y≺ · · · y≺ an−2

y≺ an−1
y≺ an+1

y≺ an

y≺ an+2
y≺ an+3

y≺ · · · y≺ aN .

Observe that
y≺ agrees with

x≺ in every pairwise ordering except the ordering of {an, an+1}. Thus,
M(y,μ)=M(x,μ)∪ {(an ≺ an+1)}. Thus,M(x,μ) is not maximal, so x /∈ Cond(X

pr
N ,μ).

“⊇” Let (a1
μ≺ a2

μ≺ · · · μ≺ aN) be any directed Hamiltonian chain in
μ≺. Let x ∈X

pr
N be the tran-

sitive closure of this Hamiltonian chain (so that a1
x≺ a2

x≺ · · · x≺ aN ). ThenM(x,μ) ⊇ {(a1 ≺
a2), (a2 ≺ a3), . . . , (aN−1 ≺ aN)}. Furthermore, for any y ∈X

pr
N , ifM(y,μ)⊇ {(a1 ≺ a2), (a2 ≺

a3), . . . , (aN−1 ≺ aN)}, then clearly y= x. Thus,M(x,μ) is maximal, so x ∈ Cond(X
pr
N ,μ).

(b) “⇒” (by contrapositive) Suppose there is some x ∈ Cond(X
pr
N ,μ) with a

x≺ b. Relabel

[1 . . .N] = {a1, . . . , aN } such that a1
x≺ a2

x≺ · · · x≺ aN . Then a = ak and b = al for some k < l.

By part (a), the nearest-neighbour orderings in
x≺ agree with the orderings specified by

μ≺, hence

a = ak

μ≺ ak+1, ak+1
μ≺ ak+2, . . . , al−1

μ≺ al = b, i.e. a
μ�∗ b, which means a

μ

/�∗ b.

Thus, contrapositively, if a
μ�∗ b, then we must have a

x� b for all x ∈ Cond(X
pr
N ,μ).

“⇐” (by contrapositive) Suppose that a
μ�∗ b, and assume without loss of generality that

a �= b. We will construct x ∈ Cond(X
pr
N ,μ) with a

x≺ b. Let A := {ak, ak+1, . . . , al} be a minimal

set such that ak = a, al = b and ak

μ≺ ak+1, ak+1
μ≺ ak+2, . . . , al−1

μ≺ al . Consider any path
γ that decides the issues (ak, ak+1), (ak+1, ak+2), . . . , (al−1, al) first, and let x := Fγ (μ). By
minimality of A, there are no transitivity constraints among these first l − k decisions, thus they

all agree with the majority view, i.e. a = ak
x≺ ak+1

x≺ · · · x≺ al = b. Hence, a
x≺ b by transitivity.

Thus, contrapositively, if a
x� b for all x ∈ Cond(X

pr
N ,μ), then we must have a

μ�∗ b.
(c) Part (b) implies that μ is globally indeterminate if and only if, for all a, b ∈ [1 . . .N],

neither a
μ�∗ b nor b

μ�∗ a. This is the case if and only if, for all a, b ∈ [1 . . .N ], we have both

b
μ�∗ a and a

μ�∗ b — i.e. there is a directed path from a to b in the majority tournament, and
also a directed path from b to a in the majority tournament. This statement, in turn, is true if and
only if all elements of [1 . . .N ] are part of the same cycle — i.e. the top cycle of μ encompasses
all of [1 . . .N]. �

Proof of Proposition 3.4. (a) “⇐�” (by contrapositive) Suppose x /∈ Cond(X
eq
N ,μ). Thus, there

is some y ∈ X
eq
N \ {x} with yR(μ)x; thus, Lemma 1.4 implies thatM(x,μ) �M(y,μ). Thus,

there exist some a, b ∈ [1 . . .N] such that (a, b) ∈M(y,μ) \M(x,μ); in other words, x(a,b) �=
y(a,b) = x

μ

(a,b).

First suppose x
μ

(a,b) = y(a,b) = 0 whereas x(a,b) = 1. Thus, a
x∼ b, but a

y� b. Now, let

C ⊆ [1 . . .N] be the
x∼-equivalence class containing a and b; we show that C is not connected in

the graph defined by xμ. To see this, let a = c0, c1, c2, . . . , cL = b be any putative path in C con-

necting a with b. Then there must exist some 
 ∈ [1 . . .L] such that c
−1
y� c
 (because a

y� b).

But c
−1
x∼ c
 (because c0, c1, . . . , cL ∈ C). In other words, y(c
−1,c
) = 0 whereas x(c
−1,c
) = 1.

Thus, we must have x
μ

(c
−1,c
)
= 0 (otherwiseM(x,μ) �⊆M(y,μ)). Thus, (c0, c1, . . . , cL) is not
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a path in the graph defined by xμ. Thus, C is not connected as a subset of the xμ-graph, hence
x∼�⊆ tr(xμ), i.e. x violates condition [i].

Suppose instead that x satisfies condition [i], but that there is some a, b ∈ [1 . . .N ] such that

x
μ

(a,b) = y(a,b) = 1 whereas x(a,b) = 0. Thus, a
y∼ b, but a

x� b. Thus, a and b lie in different
x∼-equivalence classes; call them A and B . Let C be the

y∼-equivalence class which contains
both a and b.

Claim 1. A∪B ⊆ C.

Proof. Since x satisfies condition [i], the
x∼-equivalence class A lies in an xμ-connected compo-

nent. Thus, for any c ∈A, there exists a path a = c0, c1, . . . , cL = c in A such that x
μ

(c
−1,c
)
= 1

for all 
 ∈ [1 . . .L]. And of course, x(c
−1,c
) = 1 (because c
−1
x∼ c
 because they are both in A).

Thus, we must have y(c
−1,c
) = 1 (otherwise M(x,μ) �⊆M(y,μ)). Thus c
−1
y∼ c
 for all


 ∈ [1 . . .L]. Thus, a
y∼ c by transitivity. This holds for all c ∈ A, so A ⊆ C. By an identical

argument, B ⊆ C. � Claim 1

Now, for any a′ ∈ A and b′ ∈ B , we have x(a′,b′) = 0 (because a′ x� b′) but y(a′,b′) = 1 (be-

cause a′ y∼ b′ because a′ ∈A⊂ C and b′ ∈ B ⊂ C by Claim 1). Thus, we must have x
μ

(a′,b′) = 1
(otherwiseM(x,μ) �⊆M(y,μ)). Thus, condition [ii] is violated.

“�⇒” (by contrapositive) First suppose x violates condition [i], i.e.
x∼�⊆ tr(xμ); thus, there is

some equivalence class B ⊆ [1 . . .N] of
x∼ which is not connected in the graph defined by xμ.

Thus, B = C�D, where for all c ∈C and d ∈D, we have x
μ

(c,d) = 0 (whereas x(c,d) = 1). Define

y ∈ {0,1}K to be identical to x, except that y(c,d) := 0 for all c ∈ C and d ∈D. Then it is easy
to verify that y ∈ X

eq
N , andM(y,μ)=M(x,μ) � {(c, d); c ∈ C and d ∈D}; thus, Lemma 1.4

implies that yR(μ)x, so x /∈ Cond(X
eq
N ,μ).

Now suppose x violates condition [ii]. Thus, there exist distinct
x∼-equivalence classes B,C ⊂

[1 . . .N] such that, for all b ∈ B and c ∈ C, we have x
μ

(b,c) = 1 (whereas x(b,c) = 0). Define

y ∈ {0,1}K to be identical to x, except that y(b,c) := 1 for all b ∈ B and c ∈ C. Then it is easy
to verify that y ∈ X

eq
N , andM(y,μ) =M(x,μ) � {(b, c); b ∈ B and c ∈ C}; thus, Lemma 1.4

implies that yR(μ)x, so x /∈ Cond(X
eq
N ,μ).

(b) The second part follows from part (a) in a straightforward manner.
(c) Part (b) implies that μ is globally indeterminate if and only if, for all a, b ∈ [1 . . .N ], either

(1) xμ

(a,b) = 0 but tr(x)
μ

(a,b) = 1, or

(2) xμ

(a,b) = 1 but xμ

(c,d) = 0 for some vertices c and d in the same connected component as a

and b.

“�⇒” (by contrapositive) If xμ was complete, then xμ

(a,b) = 1 for all (a, b), so neither Case (1)
nor Case (2) could ever occur. Thus, xμ cannot be complete if there is to be any indeterminacy.

On the other hand if xμ was disconnected, then for any a, b ∈ [1 . . .N ] in different connected
components, we would have xμ

(a,b) = tr(x)
μ

(a,b) = 0, so neither Case (1) nor Case (2) could ever
occur for these points. It follows that for either Case (1) or Case (2) to ever occur, xμ must be
connected, but not complete.



Author's personal copy

294 K. Nehring et al. / Journal of Economic Theory 151 (2014) 268–303

“⇐�” Suppose xμ was connected but not complete. Then there is some c, d ∈ [1 . . .N ] such
that xμ

(c,d) = 0. Furthermore, c and d belong to the same connected component as every other

vertex in [1 . . .N]. Thus, for any a, b ∈ [1 . . .N] such that xμ

(a,b) = 1, we have an instance of
Case (2), so the edge (a, b) is indeterminate. On the other hand, for any a, b ∈ [1 . . .N] such
that xμ

(a,b) = 0, we must still have tr(x)
μ

(a,b) = 1 (because xμ is connected), so we get an instance
of Case (1), so again the edge (a, b) is indeterminate. In this way, we see that all edges are
indeterminate, so μ is globally indeterminate. �
Proof of Proposition 3.5. Observe that 1M =Maj(μ).

(a) If I � |M|� J , then 1M ∈Xcom
I,J ;K , so Cond(Xcom

I,J ;K,μ)= {1M}.
(b) If |M| < I , then 1M /∈ Xcom

I,J ;K , and for any G,H ⊆ [1 . . .K] if 1G,1H ∈ Xcom
I,J ;K , then

we have 1GM(μ)1H if and only if H ∩ M ⊆ G ∩ M while G \ M ⊆ H \ M . Thus, 1H ∈
Cond(Xcom

I,J ;K,μ) if and only if M ⊂ H and there is no 1G ∈ Xcom
I,J ;K with M ⊂ G ⊂ H — in

other words, if M ⊂H and |H | = I .
The proof of (c) is similar to (b). �
The following lemma will be useful in the proof of Proposition 3.6.

Lemma A.1. Consider the committee selection problem Xcom
I ,J ;K . For all I � J , we have

Crit(Xcom
I ,J ;K) ⊆ {0,1}. Moreover, if I > 0 then 0 ∈ Crit(Xcom

I,J ;K), and if J < K then 1 ∈
Crit(Xcom

I,J ;K).

Proof. Evidently, the critical fragments of Xcom
I,J ;K are given as follows: if I > 0, then all frag-

ments of exactly K − I + 1 zeros are critical; moreover, if J < K , then all fragments of exactly
J +1 ones are critical. No other fragments are critical. This implies at once that 0 ∈ Crit(Xcom

I,J ;K)

if I > 0, and 1 ∈ Crit(Xcom
I,J ;K) if J < K . Moreover, I � J , so (K − I + 1)+ (J + 1) > K , so no

element x ∈ {0,1}K different from 0 and 1 can be critical for Xcom
I,J ;K . �

Proof of Proposition 3.6. By Lemma A.1, Crit(Xcom
I ,J ;K)= {0,1}. First, assume that K/2 < J .

For each l ∈ [1 . . .K], denote by xl the element of Xcom
I,J ;K with xl

k = 1 for k = l, l+ 1, . . . , l + J

(mod K), and xk = 0 otherwise. Evidently, for the profile μ that assigns weight 1/K to each xl ,
l ∈ [1 . . .K], one obtains Maj(μ) = 1. Next, assume that I < K/2; by a completely symmetric
argument, one shows that 0 ∈Maj(Xcom

I,J ;K) in this case. Thus, in either case Xcom
I,J ;K is issue-wise

indeterminate by Theorem 2.2(b).
Now assume that J � K/2 � I , which is only possible if K is even and I = J = K/2.

As is easily verified, Maj(Xcom
K
2 , K

2 ;K
) ∩ {0,1} = ∅ in this case. For instance, suppose that Maj(μ)

specifies a zero in each of the first K−1 coordinates, then μ must contain strictly more ones than
zeros in coordinate K ; hence [Maj(μ)]K = 1. Thus, Xcom

K
2 , K

2 ;K
is not issue-wise indeterminate,

again by Theorem 2.2(b). �
Notation A.2. Let J ⊂ [1 . . .K], and let w ∈ {0,1}J . We define [w] := {x ∈ {0,1}K ; w � x}.
Thus, w is X-forbidden if and only if X∩ [w] = ∅. It is sometimes convenient to express w as an
element of {0,1,∗}K , where we define wk = ∗ for all k /∈ J . For example, suppose J = {i, i +
1, . . . , j} for some i � j � K ; then we would write w= (∗, . . . ,∗︸ ︷︷ ︸

i−1

,wi,wi+1, . . . ,wj ,∗, . . . ,∗︸ ︷︷ ︸
K−j

).
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Proof of Proposition 3.7. We must show that Crit(X)= {0}.

Claim 1. Let w be any X-critical fragment. Then w is all zeros.

Proof. (by contradiction) Suppose w was not all zeros. By reordering [1 . . .K] if necessary,
suppose that

w= (1,1, . . . ,1︸ ︷︷ ︸
N

,0, . . . ,0︸ ︷︷ ︸
M

,∗, . . . ,∗).

Let w′ = (∗,
N−1︷ ︸︸ ︷

1, . . . ,1,

M︷ ︸︸ ︷
0, . . . ,0,∗, . . . ,∗). Then w′ is not X-forbidden (because w is X-critical).

Thus, there exists some x′ ∈X such that w′ � x. Define x ∈ {0,1}K by x1 := 1 and xk := x′k for
all k � 2. Then x � x′. Thus, x ∈X because x′ ∈X and X is comprehensive. But w � x, and w
is X-forbidden. Contradiction. � Claim 1

Now, by nondegeneracy, for every k ∈ [1 . . .K] there is some critical fragment wk ∈W3(X)

such that k ∈ supp(wk). By Claim 1, wk is all zeros. Thus, the fragment {wk}Kk=1 is a ‘critical
covering’ of 0, so 0 ∈ Crit(X).

Conversely if x ∈ Crit(X), then we must have x = 0, because Claim 1 says that the families
‘covering’ x are all zeros. Thus, Crit(X)= {0}. �
Proof of Corollary 3.8. Xcom

I,K;K is comprehensive, so we can apply Proposition 3.7.
“�⇒” (by contrapositive) Suppose I � K/2. Let μ ∈�∗(Xcom

I,K;K). Observe that

K∑
k=1

μk(1)=
K∑

k=1

∑
x∈X

μ[x]xk =
∑
x∈X

μ[x]
K∑

k=1

xk �
∑
x∈X

μ[x]I � K

2
.

Thus, there must exist some k ∈ [1 . . .K] such that μk(1) > 1
2 , and hence Majk(μ) = 1. Thus,

0 /∈Maj(Xcom
I,K;K); thus, Proposition 3.7 says Xcom

I,K;K is not globally indeterminate.
“⇐�” Suppose I < K/2. Let μ be a measure which is uniformly distributed on the set

X′ := {x ∈ {0,1}K ; |x| = I } (a subset of Xcom
I,K;K ). Then for all k ∈ [1 . . .K], μk(1)= I/K < 1

2 ,
so Majk(μ)= 0. Thus, 0 ∈Maj(Xcom

I,K;K); thus, Proposition 3.7 says Xcom
I,K;K is globally indeter-

minate. �
To prove Proposition 3.9, we need a lemma and some further notation. Recall (footnote 10)

that the Slater rule minimizes the Hamming distance to Maj(μ). The next lemma clarifies what
this means in the discrete cube [0 . . .M]Q. For any x,y ∈ [0 . . .M]Q, we define

d1(x,y) :=
Q∑

q=1

|xq − yq |.

(This is the metric induced by the 
1 norm on RQ.) Let �([0 . . .M]Q) be the set of all prob-
ability distributions on [0 . . .M]Q — that is, all functions ν : [0 . . .M]Q −→ [0,1] such that∑

m∈[0...M]Q ν(m)= 1. For any ν ∈�([0 . . .M]Q) and all q ∈ [1 . . .Q], we define a nonincreas-
ing function νq : [0 . . .M + 1] −→ [0,1] by
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Fig. 4. The Condorcet (= Slater) rule on the simplex. Here, Maj(X�
M,Q

,μ) = Φ[m∗] and Cond(X�
M,Q

,μ) =
Slater(X�

M,Q
,μ)=Φ[S], where S is the intersection of �Q

M
with another, parallel simplex. Figures (a) and (b) illustrate

the case when m∗ is above the simplex. (c) illustrates the case when m∗ is below the simplex.

νq(n) :=
∑{

ν(m); m= (m1, . . . ,mD) ∈ [0 . . .M]Q and mq � n
}
, (A.3)

for every n ∈ [0 . . .M], while νq(M + 1) := 0. Let

�∗([0 . . .M]Q) := {
ν ∈�

([0 . . .M]Q); νq(m) �= 1

2
, ∀n ∈ [0 . . .M] and ∀q ∈ [1 . . .Q]

}
.

If ν ∈�∗([0 . . .M]Q), then the median of ν is the (unique) point m∗ ∈ [0 . . .M]Q such that, for
all q ∈ [1 . . .Q], we have νq(m∗

q) > 1
2 > νq(m∗

q + 1).

Lemma A.3. Define Φ : [0 . . .M]Q −→ {0,1}Q×M by equation (7) in Section 3.4.

(a) Φ is an isometry from the metric d1 on [0 . . .M]Q to the Hamming metric on {0,1}Q×M .
That is: for all x,y ∈ [0 . . .M]Q, we have dH (Φ(x),Φ(y))= d1(x,y).

(b) Let P ⊆ [0 . . .M]Q and let X := Φ[P ] ⊂ {0,1}Q×M . Let μ ∈ �∗(X). Define ν ∈
�([0 . . .M]Q) by ν(m) := μ[Φ(m)] for all m ∈ [0 . . .M]Q. Then ν ∈ �∗([0 . . .M]Q). If
m∗ is the median of ν, then Φ(m∗)=Maj(μ).

(c) Thus, if S is the set of all points in P of minimal d1-distance from m∗, then Slater(X,μ)=
Φ[S].

For any r > 0, let ♦(m∗, r) := {n ∈ ZQ; d1(n,m∗) = r} be the ‘sphere’ of radius r around
the median m∗ in the d1 metric on ZQ — this will be a polytope with 2Q faces, each of which
is a Q-dimensional simplex. (For example, if Q= 3, then ♦(m∗, r) is a regular octahedron.) In
Lemma A.3(c), we have S = P ∩♦(m∗, r) for some r ∈N. If P =�Q

M is the simplex defined in
Eq. (8), then typically this intersection will be between P and one of the two simplicial faces of
♦(m∗, r) which lies parallel to P — see Fig. 4.

Proof of Lemma A.3. (a) Let x= (x1, . . . , xD) and y= (y1, . . . , yD) be elements of [0 . . .M]Q.
Let x̃ :=Φ(x) and ỹ :=Φ(y) (elements of {0,1}M×Q). For all q ∈ [1 . . .Q], if xq < yq , then we
have x̃(q,m) = 0 �= 1 = ỹ(q,m) for all m ∈ [xq + 1 . . . yq ]. If yq < xq , then we have ỹ(q,m) = 0 �=
1 = x̃(q,m) for all m ∈ [yq + 1 . . . xq ]. Either way, x̃(q,m) = ỹ(q,m) for all other m ∈ [1 . . .M], so
that x̃ and ỹ differ in exactly |xq − yq | of the coordinates (q,1), . . . , (q,M). This holds for all
q ∈ [1 . . .Q]; hence dH (̃x, ỹ)= |x1 − y1| + · · · + |xD − yD| = d1(x,y).

(b) Let x := Maj(μ); we must show that x= Φ(m∗). For all q ∈ [1 . . .Q] and n ∈ [1 . . .M],
combining the defining equations (1), (7), and (A.3) yields μ(q,n)(1)= νq(n). Thus,
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x(q,n) = 1 ⇐⇒ μ(q,n)(1) >
1

2
⇐⇒ νq(n) >

1

2

⇐⇒ m∗
q � n ⇐⇒

(7)
Φ

(
m∗)

(q,n)
= 1.

Thus, x(q,n) =Φ(m∗)(q,n), for all q ∈ [1 . . .Q] and n ∈ [1 . . .M], as desired.
(c) This follows by combining (a) and (b). �

Proof of Proposition 3.9. Let m∗ ∈ [0 . . .M]Q be the median point from Lemma A.3(b); thus,
Φ(m∗) = Maj(μ). Note that 0 � m∗

q � M , for all q ∈ [1 . . .Q] (because every point in X�
M,Q

satisfies these constraints). There are three cases: either
∑Q

q=1 m∗
q =M , or

∑Q
q=1 m∗

q > M , or∑Q
q=1 m∗

q < M .

If
∑Q

q=1 m∗
q = M , then Maj(μ) ∈ X�

M,Q, in which case Cond(X�
M,Q,μ) = Maj(μ) by

Lemma 1.5(a). Clearly, Slater(X,μ)=Maj(μ) also, so we’re done.
If

∑Q
q=1 m∗

q > M , then m∗ lies ‘above’ the simplex �Q
M (as in Figs. 4(a, b)). Let O :=

{n ∈ ZQ; nq � m∗
q, ∀q ∈ [1 . . .Q]}. (Heuristically, O is the ‘negative orthant’ with its origin

at m∗.) Let S := O ∩ �Q
M ; then it is easy to verify that Cond(X�

M,Q,μ) = Φ[S], and satisfies

the formula in Proposition 3.9(b). However, if R :=D(μ)=∑Q
q=1 m∗

q −M , then we have S =
♦(m∗,R)∩�Q

M — in other words, S is the set of points in�Q
M minimizing the d1-distance to m∗;

thus, Lemma A.3(c) says Slater(X�
M,Q,μ) = Φ[S]. Thus, Slater(X�

M,Q,μ) = Cond(X�
M,Q,μ),

as claimed.
If

∑Q
q=1 m∗

q < M , then the argument is similar, except that now m∗ lies ‘below’ �Q
M (as in

Fig. 4(c)), so we define O to be the ‘positive’ orthant based at m∗, which we intersect with
�Q

M . �
Proof of Proposition 3.10. (b) follows immediately from Proposition 3.9(b, c).

(a) “�⇒” Suppose μ is globally indeterminate. If D(μ) > 0, then Proposition 3.9(b) says
that μ can only be globally indeterminate if D(μ) � M and m∗

q =M for all q ∈ [1 . . .Q]. But

if m∗
q =M for some q ∈ [1 . . .Q], then μ[x]� 1

2 , where x is the allocation where all M dollars
go to claimant q; thus, m∗

p = 0 for all other p ∈ [1 . . .Q] \ {q}. Thus, it is impossible to have
m∗

q =M for all q ∈ [1 . . .Q].
So, suppose instead that D(μ) < 0. Then Proposition 3.9(c) says that μ can only be globally

indeterminate if D(μ) �−M and m∗
q = 0 for all q ∈ [1 . . .Q].

“⇐�” Conversely, suppose m∗
q = 0 for all q ∈ [1 . . .Q]. Then D(μ)=∑Q

q=1 m∗
q−M =−M .

Thus, Proposition 3.9(c) implies that μ is globally indeterminate. �
Proof of Corollary 3.11. Suppose μ ∈�∗(X�

M,Q) is such that every agent’s allocation involves
a positive quantity of more than half of the goods. Then for some q ∈ [1 . . .Q], more than half the
agents support allocating at least one dollar to q , so m∗

q � 1. Thus, Proposition 3.10(a) implies
that μ is not globally indeterminate. �
Proof of Proposition 4.2. (a) was already proved in the paragraphs prior to Proposition 4.2.

(b) Let x ∈ {0,1}K be a graph that partitions the set [1 . . .N] into two cliques A1 and A2

and that contains exactly one additional edge connecting some a ∈ A1 with some b ∈ A2.
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Clearly, inc(x) = 1 (remove the additional edge, to obtain an element of X
eq
N with two equiv-

alence classes). Since X
eq
N is McGarvey, there exists some μ ∈ �(X

eq
N ) such that Maj(μ) = x.

Finally, the graph defined by x is connected, but not complete. Thus, Theorem 2.2(a) and Propo-
sition 3.4(c) imply that μ is globally indeterminate.

(c) “⇐�” Suppose I = 1. Let X′ := {x ∈ Xcom
I,J ;K ; |x| = 1}. If μ ∈ �∗(Xcom

I,J ;K) is a pro-
file uniformly distributed over all X′, then Maj(μ) = 0, so Proposition 3.5(b) implies that
Cond(Xcom

I,J ;K,μ) = X′; thus, μ is globally indeterminate. But inc(0) = 1 because I = 1; thus,
Xcom

I,J ;K is McKelvey.
The proof when J =K − 1 is very similar.
“�⇒” From Proposition 3.5(b,c), it is clear that μ can only be globally indeterminate if

Maj(μ) = 0 or Maj(μ) = 1. Thus, Xcom
I,J ;K can only be McKelvey if either inc(0) = 1 or

inc(1) = 1. But inc(0) = I and inc(1) = K − J . Thus, Xcom
I,J ;K can only be McKelvey if either

I = 1 or J =K − 1.
(d) Let μ ∈ �∗(X�

M,Q). By Proposition 3.10(b) one has χ(X�
M,Q) � Q

K
= 1

M
. On the

other hand, by part (a) of Proposition 3.10, for globally indeterminate profiles μ, one obtains
inc(μ)=M and ind(μ)=K , hence χ(X�

M,Q) � 1
M

. In particular, X�
M,Q is never McKelvey. �

A.1. Towards the proof of Theorem 2.1

The crux of path-dependence is that earlier precedents can override a majority in a later de-
cision. An explanation of how this happens requires on a close analysis of the way that paths
interact with critical fragments. Recall that W(X,μ) is the set of X-critical fragments activated
by profile μ. Let w ∈W(X,μ) and let J := supp(w). If ζ is a path, and k ∈ J , then we say that
ζ focuses w on k if:

(F1) ζ covers every other element of J before reaching k; and
(F2) for all j ∈ J \ {k}, we have F

ζ
j (μ)=wj =Majj (μ); hence

(F3) F
ζ
k (μ)=¬wk �=Majk(μ).

The following result is used to prove Theorem 2.1. It characterizes exactly when diachronic
aggregation violates a majority in a particular coordinate.

Proposition A.4. Let X ⊆ {0,1}K . Let μ ∈�∗(X), let k ∈ [1 . . .K], and let ζ be a path through
[1 . . .K]. Then:

F
ζ
k (μ) �=Majk(μ) ⇐⇒ there is some w ∈W(X,μ) such that ζ focuses w on k.

The “⇐�” direction of Proposition A.4 follows immediately from (F3). The proof of the
“�⇒” direction of Proposition A.4 involves a certain combinatorial construction.

If I, J ⊆ [1 . . .K]; then fragments v ∈ {0,1}I and w ∈ {0,1}J are compatible if vk = wk for
all k ∈ I ∩ J (hence, if I ∩ J = ∅, then v and w are always compatible). In this case, we define
v w ∈ {0,1}I∪J by (v w)i = vi for all i ∈ I and (v w)j =wj for all j ∈ J .

A forbidden tree of height 1 is a pair T := (w, j), where w is a critical fragment (called the
wood of T ) and j ∈ supp(w). We say that j is the root of T .

For any h � 2, we inductively define a forbidden tree of height h to be a system T :=
(w, j ;T1, . . . , TN), such that:
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Fig. 5. Construction of forbidden trees. Boxes labelled ‘0’ or ‘1’ are part of the wood of the tree. Boxes labelled ‘∗’ are
in the support of the tree, but not its wood. The shaded boxes are the roots of the trees. See Example A.5 for explanation.

(T1) w is a critical fragment, and j ∈ supp(w). (Here, j is called the root of T , and w is the
trunk of T .)

(T2) For all n ∈ [1 . . .N], Tn is a forbidden tree of height h − 1 or less, whose root jn is an
element of supp(w) \ {j}.

(T3) For all n ∈ [1 . . .N], if subtree Tn has trunk wn, then wn
jn
=¬wjn .

(T4) For all n ∈ [1 . . .N], let w̃n be the wood of Tn, and let Jn := supp(w̃n) \ {jn}. Finally let
J0 := J \ {j1, . . . , jn}. Then the subfamilies wJ0 , w̃1

J1
, w̃2

J2
, . . . , w̃N

JN
are all compatible.

The wood of T is the fragment w̃ :=wJ0  w̃1
J1
 w̃2

J2
 · · ·  w̃N

JN
.

Note. The wood of T includes the root of T , but not the roots of its subtrees T1, . . . , TN . In
contrast, the support of T is defined inductively:

supp(T ) := supp(w)∪
N⋃

n=1

supp(Tn).

Example A.5. Let K = 36, and identify [1 . . .K] with a 6 × 6 grid as shown in Fig. 5(A).
Let J1 := {1,2,3} and suppose w1 := (0,0,0) ∈ {0,1}J1 is critical [see Fig. 5(B)]. Then T1 :=
(w1,2) is a forbidden tree of height 1 [see Fig. 5(C)]. Let J2 := {2,8,14,20,26,32} and suppose
w2 := (1,1,1,1,1,1) ∈ {0,1}J2 is critical [see Fig. 5(D)]. Then T2 := (w2,26;T1) is a forbidden
tree of height 2 [see Fig. 5(E)]. Let J3 := {25,26,27,28,29} and suppose w3 := (0,0,0,0,0) ∈
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{0,1}J3 is critical [see Fig. 5(F)]. Then T3 := (w3,28;T2) is a forbidden tree of height 3 [see
Fig. 5(G)]. Let J4 := {14,15,16,17,18} and suppose w4 := (1,0,0,0,0) ∈ {0,1}J4 is critical
[see Fig. 5(H)]. Then T4 := (w4,16) is a forbidden tree of height 1 [see Fig. 5(I)]. Finally, let
J5 := {16,22,28,34} and suppose w5 := (1,1,1,1) ∈ {0,1}J5 is critical [see Fig. 5(J)]. Then
T5 := (w5,34;T3, T4) is a forbidden tree of height 4, shown in Fig. 5(K). A ‘schematic’ of T5
is shown in Fig. 5(L). Observe that two ‘branches’ of T5 overlap in coordinate 14, but they are
compatible because w2

14 = 1=w4
14; this is the significance of condition (T4). The support of T5

is all entries in Fig. 5(K) containing ‘0’, ‘1’, or ‘∗’. The wood of T5 is all entries in Fig. 5(K)
containing a ‘0’ or a ‘1’ (but not a ‘∗’). ♦

For any μ ∈�∗(X), we say that μ activates the tree T if μ activates the wood of T .

Lemma A.6. Let X ⊆ {0,1}K .

(a) Let w̃ be the wood of a forbidden tree. Then w̃ is itself a forbidden fragment for X.
(b) Let μ ∈�∗(X), let k ∈ [1 . . .K], and let ζ be a path such that F

ζ
k (μ) �=Majk(μ). Then k is

the root of a forbidden tree T activated by μ, such that:
(b1) ζ covers every other element of supp(T ) before reaching k; and
(b2) if w̃ is the wood of T , then for all j ∈ supp(w̃) \ {k} we have F

ζ
j (μ)=Majj (μ)= w̃j .

Proof. (a) (by induction on height) If T is a tree of height 1, then T := (w, j), and its wood is
the forbidden fragment w by definition.

Now let h � 2 and inductively suppose the claim is true for all trees of height less than h. Let
T := (w, j, T1, . . . , TN) be a forbidden tree of height h, with wood w̃ and let J̃ = supp(w̃). Let
x ∈ X, and suppose (by contradiction) that xJ̃ = w̃. Let J := supp(w). For all n ∈ [1 . . .N ], let
forbidden tree Tn have root jn ∈ J .

Claim 1. (a) For all n ∈ [1 . . .N], we have xjn =wjn .
(b) Also, xJ\{j1,...,jN } =wJ\{j1,...,jN }.

Proof. (a) Fix n ∈ [1 . . .N]. Let Tn have wood wn and let Jn := supp(wn); then w̃Jn∩J̃ =wn

Jn∩J̃

by definition of ‘wood’ in condition (T4). Thus, xJn∩J̃ =wn

Jn∩J̃
, because xJ̃ = w̃ by hypothesis.

But Jn ∩ J̃ = Jn \ {jn}, so we have xJn\{jn} =wn
Jn\{jn}. We must then have xjn =¬wn

jn
, because

wn is a forbidden fragment (by induction hypothesis). Thus, xjn =wjn , because wjn =¬wn
jn

by
(T3).

(b) J \ {j1, . . . , jN } = J̃ ∩ J and w̃J̃∩J = wJ̃∩J (by definition of ‘wood’ in (T4)); thus
xJ\{j1,...,jN } =wJ\{j1,...,jN } (because xJ̃ = w̃ by hypothesis). � Claim 1

Claim 1 implies that xJ =w. But w is a forbidden fragment (by (T1)). Contradiction.
Thus, for all x ∈X we must have xJ̃ �= w̃; hence w̃ is a forbidden fragment, as desired.

(b) Suppose k = γ (t) for some t ∈ [1 . . .K]. If F
ζ
k (μ) �=Majk(μ), then we must have t � 2.

We will prove the claim by induction on t .
Base case. If t = 2, then let J := {ζ(1), ζ(2)} and w := MajJ (μ); then w must be a critical

fragment, so (w, k) is a forbidden tree of height 1.
Induction. If t � 3, and F

ζ
k (μ) �= Majk(μ), then there must exist some subset J ⊆

{ζ(1), . . . , ζ(t)} including k = ζ(t) such that, if we define wk := Majk(μ), and define wj :=
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F
ζ
j (μ) for all j ∈ J \ {k}, then w ∈ {0,1}J is a forbidden fragment for X. By choosing J to be a

minimal subset with this property, we can assume w is critical.
Let {j1, . . . , jN } be the set of all elements of J \ {k} such that Majjn

(μ) �=wjn . By induction
hypothesis, each jn is the root of a μ-activated forbidden tree Tn such that

(b1′) ζ covers every other element of supp(Tn) before reaching jn; and
(b2′) if wn is the wood of Tn and Jn := supp(wn), then for all j ∈ Jn \ {jn}, we have F

ζ
j (μ)=

Majj (μ)=wn
j .

Let T := (w, k;T1, . . . , TN); we claim T is a forbidden tree. (T1) is true because w is a criti-
cal fragment by construction. (T2) is true by definition of T1, . . . , Tn. To see (T3), note for all
n ∈ [1 . . .N] that μ activates wn by hypothesis, so wn

jn
=Majjn

(μ), whereas wjn �=Majjn
(μ) by

definition of {j1, . . . , jN }; thus wn
jn
= ¬wjn . To see (T4), observe that the woods of T1, . . . , TN

are all compatible because they are all subfamilies of Fζ (μ), by condition (b2′). Finally, proper-
ties (b1) and (b2) follow immediately from the definitions of J and T , and properties (b1′) and
(b2′). �
Proof of Proposition A.4“�⇒”. Let μ, k, and ζ by as in the statement of the Proposition.
Lemma A.6(b) says that k is the root of a μ-activated forbidden tree T satisfying (b1) and (b2).
Let w̃ be the wood of T ; then Lemma A.6(a) says that w̃ is itself a forbidden fragment. Let
J̃ := supp(w̃); then k ∈ J̃ , and w̃J̃\{k} is not forbidden, by (b2). Thus, any forbidden subfragment

of w̃ must contain coordinate k. Since J̃ is finite, there exists some J ⊆ J̃ (with k ∈ J ) such that
w := w̃J is a minimal forbidden subfragment — i.e. a critical fragment. At this point, (F1) follows
from (b1), (F2) follows from (b2), and (F3) is true because F

ζ
k (μ) �=Majk(μ) by hypothesis. �

Proof of Theorem 2.1. We first establish two claims.

Claim 1. Indet(μ)= {k ∈ [1 . . .K]; there exists a path γ such that F
γ

k (μ) �=Majk(μ)}.

Proof. “⊆” Proposition 1.8(b) says that k ∈ Indet(μ) if and only if there are paths γ and ζ such
that F

γ

k (μ) �= F
ζ
k (μ). Either F

γ

k (μ)=Majk(μ) or F
ζ
k (μ)=Majk(μ). If F

ζ
k (μ)=Majk(μ), then

F
γ

k (μ) �=Majk(μ).

“⊇” Suppose Majk(μ)= x. If ζ is any path such that ζ(1)= k, then F
ζ
k (μ)= x. Thus, if γ is

some path such that F
γ

k (μ) �=Majk(μ), then F
γ

k (μ) �= F
ζ
k (μ); hence k ∈ Indet(μ). � Claim 1

Claim 2. For any w ∈W(X,μ) and k ∈ supp(w), there is a path focusing w on k.

Proof. Suppose supp(w) = J := {j1, j2, . . . , jN }, where jN = k. Let γ be a path such that
γ (n) = jn for all n ∈ [1 . . .N], after which γ traverses the rest of [1 . . .K] in some order
(this gives (F1)). For all j ∈ J we have Majj (μ) = wj (because w is activated by μ, by hy-
pothesis). Thus, we have F

γ

j (μ) = wj for all j ∈ J \ {k} (because wJ\{k} is not forbidden,

because w is critical); this yields (F2). But then F
γ

k (μ) �=wk , because w is forbidden in X; this
yields (F3). � Claim 2

Now let B :=⋃
w∈W(X,μ) supp(w). We must show that Indet(μ)= B .

We have Indet(μ)⊆ B by Claim 1 and Proposition A.4“�⇒”.
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To see that Indet(μ)⊇ B , let w ∈W(X,μ), and let k ∈ supp(w). Claim 2 says there is a path
γ which focuses w on k. Then Proposition A.4“⇐�” implies that F

γ

k (μ) �= Majk(μ); hence
Claim 1 says k ∈ Indet(μ). �
References

[1] K. Baldiga, Representative democracy and the implementation of majority-preferred alternatives, 2012, preprint.
[2] J.-P. Barthélémy, Social welfare and aggregation procedures: combinatorial and algorithmic aspects, in: Applica-

tions of Combinatorics and Graph Theory to the Biological and Social Sciences, in: IMA Vol. Math. Its Appl.,
vol. 17, Springer, New York, 1989, pp. 39–73.

[3] J.-P. Barthélémy, M.F. Janowitz, A formal theory of consensus, SIAM J. Discrete Math. 4 (3) (1991) 305–322.
[4] J.-P. Barthélémy, B. Monjardet, The median procedure in cluster analysis and social choice theory, Math. Soc. Sci.

1 (3) (1981) 235–267.
[5] J.-P. Barthélémy, B. Monjardet, The median procedure in data analysis: new results and open problems, in: Classi-

fication and Related Methods of Data Analysis, Aachen, 1987, North-Holland, Amsterdam, 1988, pp. 309–316.
[6] P. Dasgupta, E. Maskin, The fairest vote of all, Sci. Am. 290 (3) (2004) 92–97.
[7] F. Dietrich, C. List, Judgement aggregation by quota rules: Majority voting generalized, J. Theor. Polit. 19 (4) (2007)

391–424.
[8] F. Dietrich, C. List, Majority voting on restricted domains, J. Econ. Theory 145 (2) (2010) 512–543.
[9] D. Dimitrov, T. Marchant, D. Mishra, Separability and aggregation of equivalence relations, Econ. Theory 51 (1)

(2012) 191–212.
[10] E. Dokow, R. Holzman, Aggregation of binary evaluations, J. Econ. Theory 145 (2010) 495–511.
[11] J. Duggan, A systematic approach to the construction of non-empty choice sets, Soc. Choice Welfare 28 (2007)

491–506.
[12] P. Fishburn, A. Rubinstein, Aggregation of equivalence relations, J. Classif. 3 (1986) 61–65.
[13] I.J. Good, A note on Condorcet sets, Public Choice 10 (1971) 97–101.
[14] T. Guilbaud, Les theories de l’interet general et le probleme logique de l’aggregation, Econ. Appl. 5 (4) (1952)

501–584, complete English translation in: Electron. J. Hist. Probab. Stat. 4 (2008).
[15] J.G. Kemeny, Math without numbers, Daedalus 88 (1959) 571–591.
[16] L. Kornhauser, L. Sager, Unpacking the court, Yale Law J. 96 (1986) 82–117.
[17] S. Lang, G. Pigozzi, M. Slavkovik, L. van der Torre, Judgement aggregation rules based on minimization, in:

Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, ACM, New York, NY,
2011, pp. 238–246.

[18] J.-F. Laslier, Tournament Solutions and Majority Voting, Springer, Berlin, 1997.
[19] T. Lindner, K. Nehring, C. Puppe, Allocating public goods via the midpoint rule, 2010, preprint.
[20] C. List, A model of path-dependence in decisions over multiple propositions, Amer. Polit. Sci. Rev. 98 (3) (2004)

495–513.
[21] C. List, P. Pettit, Aggregating sets of judgements: An impossibility result, Econ. Philos. 18 (2002) 89–110.
[22] C. List, C. Puppe, Judgement aggregation: a survey, in: P. Anand, P. Pattanaik, C. Puppe (Eds.), Oxford Handbook

of Rational and Social Choice, Oxford University Press, Oxford, UK, 2009, pp. 457–481, Ch. 19.
[23] K. May, A set of independent, necessary, and sufficient conditions for simple majority decision, Econometrica 20

(1952) 680–684.
[24] D.C. McGarvey, A theorem on the construction of voting paradoxes, Econometrica 21 (1953) 608–610.
[25] R. McKelvey, General conditions for global intransitivities in formal voting models, Econometrica 47 (5) (1979)

1085–1112.
[26] I. McLean, The Borda and Condorcet principles: Three medieval applications, Soc. Choice Welfare 7 (1990)

99–108.
[27] Alan D. Miller, Community Standards, J. Econ. Theory 148 (6) (2013) 2696–2705.
[28] N.R. Miller, Graph-theoretical approaches to the theory of voting, Am. J. Polit. Sci. 21 (1977) 769–803.
[29] H. Moulin, Axioms of Cooperative Decision Making, Cambridge University Press, Cambridge, UK, 1988.
[30] K. Nehring, M. Pivato, Incoherent majorities: the McGarvey problem in judgement aggregation, Discrete Appl.

Math. 159 (15) (2011) 1488–1507.
[31] K. Nehring, M. Pivato, Majority rule without a majority, 2012, preprint.
[32] K. Nehring, M. Pivato, C. Puppe, Unanimity overruled: Majority voting and the burden of history, 2013, preprint.
[33] K. Nehring, C. Puppe, The structure of strategy-proof social choice I: General characterization and possibility results

on median spaces, J. Econ. Theory 135 (2007) 269–305.



Author's personal copy

K. Nehring et al. / Journal of Economic Theory 151 (2014) 268–303 303

[34] K. Nehring, C. Puppe, Abstract Arrowian aggregation, J. Econ. Theory 145 (2010) 467–494.
[35] M. Pivato, Geometric models of consistent judgement aggregation, Soc. Choice Welfare 33 (4) (2009) 559–574.
[36] W.H. Riker, Liberalism Against Populism, Freeman, San Francisco, 1982.
[37] M. Risse, Arguing for majority rule, J Polit. Philos. 12 (2004) 41–64.
[38] A.K. Sen, Collective Choice and Social Welfare, Holden Day, San Francisco, 1970.
[39] P. Slater, Inconsistencies in a schedule of paired comparisons, Biometrica 48 (1961) 303–312.
[40] J. Waldron, The Dignity of Legislation, Cambridge University Press, Cambridge, 1999.
[41] H.P. Young, A. Levenglick, A consistent extension of Condorcet’s election principle, SIAM J. Appl. Math. 35 (2)

(1978) 285–300.


