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First a little precision 
 

 

In their kind invitation letter, Klaus and Clemens wrote 
 
"Like others in the judgment aggregation community, we are aware 
of the existence of a sizeable amount of work of you and other – 
mainly French – authors on generalized aggregation models". 
 
Indeed,  there is a sizeable amount of work and I will only present 
some main directions and some main results. 

 
Now here a list of the main contributors:  
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LATTICE THEORY of CONSENSUS (AGGREGATION) : An overview 
 

OUTLINE 
 
ABSTRACT AGGREGATION THEORIES: WHY? HOW 

 

The LATTICE APPROACH  
 LATTICES: SOME RECALLS 
 

 The CONSTRUCTIVE METHOD 
  The federation consensus rules  

 

  The AXIOMATIC METHOD 
                  Arrowian results 
 

 The OPTIMISATION METHOD 
 Lattice metric rules and the median procedure  
 The "good" lattice structures for medians: 
  Distributive lattices 
  Median semilattice 
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ABSTRACT CONSENSUS THEORIES: WHY? 
 

 "since Arrow’s 1951 theorem, there has been a flurry of activity 
designed to prove analogues of this theorem in other contexts, and 
to establish contexts in which the rather dismaying consequences of 
this theorem are not necessarily valid. The resulting theories have 
developed somewhat independently in a number of disciplines, and 
one often sees the same theorem proved differently in different 
contexts. What is needed is a general mathematical model in which 
these matters may be disposed of in a common setting. That is to 
say, we forget about the exact nature of the objects and, using 
some abstract structure on various sets of objects under 
consideration, concern ourselves instead with ways in which the 
structure can be used to summarize a given family of objects".  
 

excerpt of the introduction of Barthélemy and Janowitz’s 1991 paper 
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ABSTRACT CONSENSUS THEORIES: HOW 

The different approaches result of the different abstract structures on 
"the sets of objects under consideration": 
Which abstract structure exist (or can be put) on the set of objects to 
aggregate ? 
 
ANSWER  
- Logical structure  
- Combinatorial structure (graph, hypergraph…) 
- Algebraic structure (vector space…)        
- Order and especially lattice structure    
- Metric space structure  
etc  
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ABSTRACT CONSENSUS THEORIES: HOW 
 

- LOGICAL APPROACH  
Guilbaud 1952 (..le problème logique de l’agrégation), Murakami 1958 (Logic and Social Choice) 

Judgment aggregation  theory  since the 2000s 
 

- COMBINATORIAL APPROACH 
 Wilson  1975 (covers and frames)  Bandelt & Barthélemy 1984 (median graphs) 
Nehring & Puppe (since) 2002 (properties spaces = separating copair hypergraphs ≈ 
separating split systems), median spaces = separating Helly copair hypergraphs) 
 

- ALGEBRAIC APPROACH 
Rubinstein and Fishburn 1986 (vector spaces) 
 

- LATTICE APPROACH 
since the 90s, see the continuation 
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LINKS between STRUCTURES  
EXAMPLES 

median graphs ↔ median spaces ↔ median semilattices 
 

n-dimensional vector spaces on GF(2) ↔  Boolean algebras 2n 
↔ 

 distributive and complemented lattices 
 

Property spaces  ↔ Subsets of Bolean algebras  
 

(classical) propositional calculus ↔  Boolean calculus 
 

These links (should) imply 
 LINKS between APPROACHES 

but… 
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LATTICES: SOME RECALLS  
 

A LATTICE  (L, ≤) is a partially ordered set (poset) such that 
the greatest lower bound and the least upper bound   

of x and y, exist for all x, y ∈ L 
 

x

y

L

x

y

x y

L  
 
NOTATION             x∧y = glb(x,y) is the meet of x and y,  

       x∨y = lub(x,y) is the join of x and y 
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L (finite) lattice imply: 

  
for every X ⊆ L, glb(X) = ∧X and lub(X) = ∨X exist 

 
In particular  

L has a least element ∧L 
and a greatest element ∨L 

 
 
 
 
 
 
 



Workshop Judgement Aggregation and Voting  September 9-11, 2011, Freudenstadt-Lauterbad 

 

11 

 
A lattice (as any poset) can be vizualized by a  

(Hasse) DIAGRAM 
 

representing the covering relation  p of ≤: 
x is covered  by y if there is no element between x and y 

 

 (formally: x p y if x < y and x ≤ z < y implies x = z) 
 

y

x

 
a diagram of a lattice  
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More generally 
 
 

A JOIN-SEMILATTICE  (L, ≤) is a poset such that 
the greatest lower bound  

of x and y, exist for all x, y ∈ L. 
 
 

A MEET-SEMILATTICE (L, ≤) is a poset such that 
the least upper bound   

of x and y, exist for all x, y ∈ L. 

 
 

Then, a lattice is a meet- and a join-semilattice 
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SOME EXAMPLES of (SEMI)LATTICES of "OBJECTS" 
 
The set of all binary relations (on a set) wrt to the inclusion order 

R  ⊆  R' 
 

The set of all order relations (on a set) wrt to the inclusion order 
O ⊆ O' 

 

The set of all partitions (of a set) wrt to the refinement order 
P ≤  Q (if any class of P is contained in a class of Q) 

 

The set of all choice functions (on a set) wrt to the pointwise order 
c ≤  c' (if (c(A) ⊆  c'(A)  for every subset A) 

 

The set of all choice functions  satisfying the heredity property 
 (= Chernoff axiom = α condition = etc) wrt to the pointwise order 
 

The set of all (e)valuations of n propositional variables 
(x1,...,xn) ≤ (x'1,...,x'n) (if xi ≤ x'i for every i) 

Etc, etc 
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a b

c d
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c d

a b

c d
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d c
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c d
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c d
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a b

c d

a b

c d

 

 
 

The lattice of partitions of {a,b,c,d} 
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You find that a partially ordered set is a lattice  
 

What must you do ? 
 

To search if this lattice belongs to one of the many well studied 
particular classes of lattices such that 
Boolean, 
distributive,  
locally distributive, 
modular, 
semimodular,  
geometric,  
bounded, 
pseudo-complemented,  
etc 
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How to find the properties of a lattice ? 
 

- direct check  
 
Example:  since binary relations are sets, the lattice of binary relations 
is distributive:    

R1∪(R2∩R3) = (R1∪R2)∩(R1∪R3) 
 
- to determine the (join or meet) irreducible elements of the 
lattice and the arrow relations between them  
 
 many properties of a lattice depend only of properties of these 
arrow relations (see Darmstadt' school, Wille & co) 
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WHAT ARE the JOIN (MEET)-IRREDUCIBLES ? 
 

An element j of a lattice L is JOIN-IRREDUCIBLE if  
it is not join of other elements of L 

(formally: j = ∨X implies j ∈  X) 
 

or, equivalently  
 

j covers a unique element of L 
 (formally: ∃! x ∈ L such that x p  j) 

 

FACT  
Any element of a lattice L is join of join-irreducibles of L 

 

x = ∨Jx = ∨{j ∈ JL:  j ≤ x} 

 
The join-irreducible elements of a lattice are the "bricks" whose the 
elements of the lattice are formed  
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Dually,  
An element m of L is MEET-IRREDUCIBLE if it is not meet of other elements of L  

and equivalently if it is covered by a unique element  
Any element of a lattice is meet of meet-irreducible elements  

 

1

6

3

5
4

7

2

 
L  

JL  = {1,2,3,4}                       ML = {1,4,5,6,7} 
 
N.B.  
1,2,3, the elements covering the least element of L are called its atoms 
(6,7 are its coatoms) 
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SOME EXAMPLES for (SEMI)LATTICES of "OBJECTS" 
 

The lattice of all binary relations (on a set S)  
J = {(x, y), x,y ∈  S} 

 

The (semi)lattice of all order relations (on a set S)  
J = {(x<y), x,y ∈  S} 

 

The lattice of all partitions (of a set S)  
J = {(A/x/y/.../z), A ⊂ S, A > 1} 

 

The set of all (e)valuations of n propositional variables 
J = {(0,…0,1,0…0)} 

 

The lattice of all choice functions (on a set S)  
J = {cU,x with cU,x(A) = x if A = U and cU,x(A) = ∅ if not, for any U ⊆  S and any x ∈ U}  

 
The lattice of all choice functions (on a set) satisfying the heredity property 
  J = … 
 

Etc     (but not always easy to determine) 
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The LATTICE APPROACH: GENERAL FRAMEWORK 
 
The "objects" are elements of a lattice L 
There is a set N = {1,…n} of "voters". Each voter choses an element of L 
 So, one has n-tuples (profiles) π = (x1,.. xi...xn) of elements of L 
 
One search to define "good" procedures aggregating any n-tuple π into  

one -or several- consensus object(s) 
 

A (lattice) consensus function is a map 
F :    Ln       →       L 

                                       π = (x1,...,xn) → F(π) = x 
or 

F :      Ln       →       2L 
  π = (x1,...,xn) → F(π) ⊆ L 
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HOW to DEFINE CONSENSUS FUNCTIONS? 
 
constructive method 
the consensus map uses the structure defined on the objects (mean, median..for numbers) 

 
axiomatic method 
"to sit in an armchair and think of desirable properties that a consensus rule should 
possess, and then attempt to find the rules satisfying these properties" (McMorris 
1985) 
 
optimisation method  
the  consensus objects must optimize a given criteria measuring their remoteness 
to the profile 
 
What is often the more interesting is to find the relations between these methods  
 
for instance: can we characterize axiomatically an optimisation method and or define 
it algebraically ? 
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The CONSTRUCTIVE METHOD 
the FEDERATION CONSENSUS FUNCTIONS 

 
Federation (simple game) on N = {1,…n} (the set of "voters"): 
a  family F of subsets of N (the "winning coalitions") 

such that [V ∈ F, W ⊇ V] ⇒ [W ∈ F]. 
 

F →  FF  federation consensus function associated to F: 
 

π = (x1,...,xn) ∈  Ln →    FF (π) = ∨W ∈ F (∧i∈W xi) 
 
 
FF is given by a lattice polynomial 
 



Workshop Judgement Aggregation and Voting  September 9-11, 2011, Freudenstadt-Lauterbad 

 

23 

(very useful) FACT  
 

a federation consensus function FF  is obtained as 
a join of join-irreducibles: 

 
 j join-irreducible of L       π = (x1,...,xn) ∈  Ln 
 
        Nπ(j) = {i ∈ N : j ≤ xi} ⊆ N                   nπ(j) = |Nπ(j)|  

         (the set of voters which "vote" for j)                                        (the number of voters which "vote" for j) 

 

π  →    FF (π) = ∨W ∈F (∧i∈W xi) = ∨{j ∈ J: Nπ(j) ∈F } 
 

(MAJ(π) = ∪{(x,y) : {i ∈ N : xRiy} ≥ n/2} = ∪|W| ≥ n/2{∩{Ri, i ∈ W}}) 
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EXAMPLES 
Majority rule F = {W ⊆ N: |W| ≥ n/2}  

xMAJ(π) = ∨{j ∈ J : nπ(j) ≥ n/2}  
 

Strict Majority rule F = {W ⊆ N: |W| > n/2} 
xSMAJ(π) = ∨{j ∈ J : nπ(j) > n/2}  

 

"Meet-projection ("oligarchic rule") F is the filter {W ⊆ N: M ⊆ W}  
FF (π) = ∧i∈Mxi  = ∨{j ∈ J : Nπ(j) ⊇ M}  

 

Projection ("dictatorial rule") F is the ultrafilter {W ⊆ N: i ∈ W}) 
FF (π) = xi 
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The AXIOMATIC METHOD 
SOME PROPERTIES ("axioms")  

 
F : Ln    →   L 

 
π = (x1,...,xn) ∈  Ln,                            j join-irreducible of L                          Nπ(j) = {i ∈ N : j ≤ xi}         

 

F is decisive if for every j ∈ J and for all π, π' ∈ Ln, 
[Nj(π) = Nj(π')] ⇒ [j ≤ F(π) ⇔ j ≤ F (π')] 

 
F is neutral monotonic if for all j, j' ∈ J and for all π, π' ∈ Ln, 

[Nj(π) ⊆ Nj'(π')] ⇒ [j ≤ F(π) ⇒ j' ≤ F(π')] 
 
F is meet compatible (Paretian) if for every π ∈ Ln, 

∧{xj, i ∈ N} = ∨{j ∈ J : Nπ(j) = N} ≤ F(π) 
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The AXIOMATIC METHOD:  a FIRST RESULT 
 

F : Ln    →   L a consensus function on a lattice L  
 
(1)  If L is distributive, then F is a federation consensus function if and 

only F is neutral monotonic and Paretian. 
 
(2)  If L is not distributive, then F is a meet projection (oligarchic) 

consensus function if and only if F is neutral monotonic and 
Paretian. 

 
(3) If L is δ-strong, then F is a meet-projection (oligarchic) consensus 
function if and only F it is decisive and Paretian. 

 
BM 1990 
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WHAT IS the DEPENDENCE RELATION δ  ? 
 

j, j' ∈ J = JL = {join-irreducible elements of L} 
  

jδj' ⇔ j ≠ j' and there exists x ∈ L such that j, j' ≰ x and j < j'∨x 
 

 (J, δ) is a directed graph  
  

L is said δ-strong if (J, δ) is strongly connected 
 
 
 
N.B.  
j < j' ⇒ jδj' (j < j'∨0L)   

δ = <J if and only if L is a distributive lattice 
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DEPENDENCE RELATION EXAMPLES 
 

 
 

j3 j2

j4

j1

 
 
 

j3 < j4     j3 < j1∨j2       j1 < j2∨j3 < j2∨j4 j2       j2 < j1∨j3 < j1∨j4 
 

j1

j2

j4

j3

 
δ 
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DEPENDENCE RELATION EXAMPLES 
 

- In the semilattice O of orders  
 

(x<z)δ(x<y) and (x<z)δ(y<z)  
 

since (x<z) < (x<y)∨(y<z) (= x<y<z)   (transitivity!) 
 
So, O is δ-strong 
 
-The same for the lattice of partitions 
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SOME COROLLARIES 
 

BROWN’s  RESULT (for orders)     F:      On    →     O  
F is a decisive and Pareto O-consensus function 

⇔  
F is a ∩-projection ("oligarchic") 

 
MIRKIN-LECLERC’s RESULT (for partitions)  F:     Pn      →     P  

F is an independent and Pareto P-consensus function 
⇔ 

F is a meet-projection (F(π) = ∧i∈MPi) 
 
NEUMANN and-NORTON’s RESULT (for partitions)  F:     Pn      →     P  

Characterization of join-projections F(π) = ∨i∈MPi 

 
AIZERMAN AND ALESKEROV’s  RESULT (for choice functions satisfying H)     F:      Cn    →     C  

F is a neutral monotonic and Paretian H-consensus function 
⇔  

F is a federation consensus function   
 

Etc, other classes of choice functions, valued (fuzzy) preorders, ultrametrics, hierarchies….  

 



Workshop Judgement Aggregation and Voting  September 9-11, 2011, Freudenstadt-Lauterbad 

 

31 

The AXIOMATIC METHOD: a RECENT RESULT 
F : Ln    →   L consensus function on an atomistic and δ-strong lattice  

F is decisive and Paretian 
⇔ 

F is neutral monotonic and Paretian 

⇔ 
F is a ∧-morphism (F(π∧π') = F(π)∧F(π'))  and Paretian 

⇔ 
F is a residual map and j ≤ F((j,… j)) for any j ∈ J 

⇔ 
F is a meet-projection (oligarchic) 

 

 
BLeclerc BM Order 2012 
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 COROLLARIES 
 
δ-strong atomistic lattices: 
 
- the lattice of partitions 

Dimitrov D., Marchant T., Mishra N.: Separability and Aggregation of Equivalence Relations, 
Economic Theory, 2011  
Chambers C.P., Miller A.D. : Rules for Aggregating Information. Social Choice and Welfare. 
2011 

 
- the lattice of orders  
 
- the lattice of preorders  
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GENERALIZATIONS to ORDERS 
 

 
The notion of (join or meet) irreducible extends to any ordered set 
 
The notion of dependency relation may be extended in several ways 
 
 
So, several results may be extended in some ordered sets  
 
See (up to 2003), Day W.H.E., McMorris F.R. Axiomatic Consensus Theory in Group 
Choice and Biomathematics. SIAM. 
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OPTIMISATION METHOD ( METRIC CRITERION) 
 

L (meet) semilattice  ; π = (x1,...,xn) ∈  Ln 
 
d distance on L 
R(x, π) remoteness (depending on d) between π and x ∈ L 

 
π  → {x ∈  L: R(x, π) MIN}  

 
Examples of remoteness: 

R(x, π) =  Σi = 1,...nd(xi, x) 
R(x, π) =  Σi = 1,...nd2(xi, x) 

R(x, π) =  Maxi = 1,...nd(xi, x) 
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The d-MEDIAN PROCEDURE 
 

L (meet) semilattice  ; π = (x1,...,xn) ∈  Ln 

 
d distance on L          R(x, π) =  Σi = 1,...nd(xi, x) 
 
 

The d-median procedure is: 
 

π  → Medd(π) = {x ∈  L: Σi = 1,...n d(xi, x) MIN} 
   =  {d-medians of π}   

 
 
(a profile has generally several medians) 
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the Δ-MEDIAN PROCEDURE  
 

x ∈ L → Jx = {j ∈ JL:  j ≤ x} 
 
x, x′ ∈ L , Δ  is the symmetric difference distance between Jx and Jx’: 

 

Δ(x, x′) = |Jx∆ Jx’| = |{j ∈ J: [j ∈ Jx and j ∉ Jx’] or [j ∉ Jx and j ∈ Jx’]}| 
 
L (meet) semilattice  ; π = (x1,...,xn) ∈  Ln 

 
MedΔ(π) = {x ∈  L: Σi = 1,...n Δ(xi, x) MIN} 

= {(Δ-)medians of π} 
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the Δ-MEDIAN PROCEDURE  
 
 

x ∈ L → Jx = {j ∈ JL:  j ≤ x} 
x, x′ ∈ L , Δ  is the symmetric difference distance between Jx and Jx’  

Δ(x, x′ ) = |Jx∆ Jx’| = |{j ∈ J: [j ∈ Jx and j ∉ Jx’] or [j ∉ Jx and j ∈ Jx’]} | 

L (meet) semilattice  ; π = (x1,...,xn) ∈  Ln 

 

Med(π) = {x ∈  L: Σi = 1,...n Δ(xi, x) MIN} = {(Δ-)medians of π} 

 
j ∈ JL    nπ (j) = |{i ∈ N : j ≤ xi})| 
 
 

MedΔ(π) = {x ∈  L: A(π,x) = Σj ≤ xnπ(j) MAX} 
 

 
The computation of medians is a problem of combinatorial 
optimization, and -generally-  a difficult problem  
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"GOOD" LATTICE STRUCTURES for (Δ-)MEDIANS  
 

I Distributive lattices 
 

A lattice L is distributive if each one of the meet and join operations is 
distributive over the other, for instance, if for all x,y,z ∈ L,  

x∧(y∨z) = (x∧y)∨(x∧z) 
 

equivalently if for all x,y,z ∈ L, 
 

(x∧y)∨(x∧z)∨(y∧z) = (x∨y)∧(x∨z)∧(y∨z)  
 
 
This element is called the algebraic median of x,y,z 
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A lattice L is distributive if each one of the meet and join operations is distributive over the other, for 
instance, if for all x,y,z ∈ L,  

x∧(y∨z) = (x∧y)∨(x∧z) 

equivalently, if for all x,y,z ∈ L, 
(x∧y)∨(x∧z)∨(y∧z) = (x∨y)∧(x∨z)∧(y∨z)  

This element is called the algebraic median of x,y,z 
 

More generally, the algebraic median of π = (x1,...,xn) is obtained by the 
majority rule (nπ (j) = |{i ∈ N : j ≤ xi})|  

xSMAJ(π) = ∨S ⊆ N,  S> n/2(∧i ∈ Sxi) = ∧S ⊆ N,  S> n/2(∨i ∈ Sxi)  
     = ∨j ∈J{nπ(j) > n/2} (nπ (j) = |{i ∈ N : j ≤ xi})| 

        = ∨j ∈J{strict majority join-irreducible} 
One also considers  

xMAJ(π) = ∨j ∈J{nπ(j) ≥ n/2} 
                                   = ∨j ∈J{majority join-irreducible} 

then 
xSMAJ(π) ≤ xMAJ(π) 
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MEDIANS in DISTRIBUTIVE LATTICES 
 

If L is a distributive lattice,  
the set of medians of any profile is an interval of L 

containing its algebraic median as least element 
 

π ∈ Ln  ⇒   Med(π) = [xSMAJ(π), xMAJ(π)] 
 

xSMAJ

xMAJ

 
 
 

where 
xSMAJ(π) = ∨{ j ∈ J: nπ(j) > n/2}  ≤  xMAJ(π) = ∨{ j ∈ J: nπ(j) ≥ n/2}   

(nπ (j) = |{i ∈ N : j ≤ xi}|) 
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EXAMPLE 

a 
b c 

d e f 

g h 

k 

i

l 

u 

0  
π = (a, a, e, f, g, l) 

 

xSMAJ(π) = a         xMAJ(π) = h 
 

Med(π) = [a,h] = {a,d,b,h} 
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NB 1 if n is odd 
 

Med(π) = xSMAJ(π)  
the metric median = the algebraic median of π 

  
 
 
For instance,  

 
Med(x,y,z) = (x∧y)∨(x∧z)∨(y∧z) (=(x∨y)∧(x∨z)∧(y∨z)) 

minimizes Δ(x,t) + Δ(y,t) + Δ(z,t) 
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NB 2 In a distributive lattice L,  
Δ(x,x’) = minimum path length between x and x’ in the covering graph of L 

 

x

y

m

z 

 
 

Δ(x,m) + Δ(y,m) + Δ(z,m) = 6 < Δ(x,t) + Δ(y,t) + Δ(z,t) for any t ≠ m 

 

x

y

!

"
x

y

m

z !!

"

"

=

=

z

z

z

y

y

y

x

x

z

x  
Med(x,y,z) = (x∧y)∨(x∧z)∨(y∧z)  
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"GOOD" LATTICE STRUCTURES for MEDIANS  

II Median semilattices 
 

 
A meet semilattice L is lower distributive if, for any x ∈ L, 

the order ideal {x′ ∈ L: x′ ≤ x} is a distributive lattice 
  
 

 
 

a lower distributive meet semilattice 
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A meet semilattice L is lower distributive if, for any x ∈ L, 
the order ideal {x′ ∈ L: x′ ≤ x} is a distributive lattice 

  
A median semilattice is a lower distributive meet semilattice L in 
which, for all x1, x2, x3 ∈ L,  

x1∨x2, x1∨x3 and x2∨x3 all exist   ⇒  x1∨x2∨x3 exists 
 

 
Counter-example 

 

 
example 
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MEDIAN SEMILATTICES  EXAMPLES 
 

Distributive lattices 
(oriented) Trees  
 
Poset of all the cliques of an (unoriented) graph : 
Poset of all the chains of a poset  
Poset of all the antichains of a poset  
 
Poset of all the hierarchies on a set  

0

1

2

3

λ

1 2 5 4 3 7 8 6 9 10
1 2

5

4

3 6

7 8

9 10
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MEDIAN SEMILATTICES 
 

L median semilattice    ⇒  
for any π = (x1,x2,…xn) ∈ Ln, its algebraic  median 
xSMAJ(π) = ∨{ j ∈ J: nπ(j) > n/2} (= ∨S ⊆ N,  S> n/2(∧i ∈ Sxi)) exists 

and in particular 
for all x1, x2, x3 ∈ L, their algebraic  median  

(x1∧x2)(x2∧x3)∨(x3∧x1) exists 
 

 

BUT the element xMAJ(π) does not necessarily exist  
?

xSMAJ

xMAJ
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L median semilattice    ⇒  
for any π = (x1,x2,…xn) ∈ Ln, its algebraic  median 

xSMAJ(π) = ∨{ j ∈ J: nπ(j) > n/2} exists 
 
and in particular 
for all x1, x2, x3 ∈ L, their algebraic  median  

(x1∧x2)(x2∧x3)∨(x3∧x1) exists 
 

but the element xMAJ(π) does not necessarily exist  
 

a

0

f

c

b

d

e

 
π = (c,d,e,f)    xSMAJ(π) = ∨j ∈J{nπ(j) ≥ 3} = b   
      xMAJ(π) = ∨j ∈J{nπ(j) ≥ 2} = a∨b∨e does not exist  
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MEDIANS in MEDIAN SEMILATTICES 
 

π = (x1,...,xn) ∈ Ln      j join-irreducible       nπ (j) = |{i ∈ N : j ≤ xi})| 
 

C(Π) = {j ∈ J: nπ(j) > n/2} (strict majority join-irreducible) 
⊆ 

        B(Π) = {j ∈ J : nπ(j) ≥ n/2} ( majority join-irreducible) 
 

L median semilattice and π ∈ Ln 

 if n is odd,  
Med(π) = xSMAJ(π) = ∨{ j ∈ J: nπ(j) > n/2} 

if n is even,  

Med(π) = {∨K : C(Π) ⊆ K ⊆ B(Π) ⊆ J and ∨K exists} 
 

Bandelt and Barthélemy,1984 
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COMPUTATION of MEDIANS in a MEDIAN SEMILATTICE I 
 

b  = xSMAJa

0

f

c
d

e

 
L 

π = (c,d,e,f) ∈ L4            →         Med(π) = {b,d,e}  
 

C(Π) = {j ∈ J: nπ(j) ≥ 3} = b 
B(Π) = {j ∈ J: nπ(j) ≥ n/2} = {a,b,e} 

 
K = C(Π) = {b} →  b,  
K = {a,b}→ a∨b = d,  
K = {b,e} → b∨e = e 
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COMPUTATION of MEDIANS in a MEDIAN SEMILATTICE II 
 

b  = xSMAJa

0

f

c
d

e

 
L 

π = (c,d,e,f) ∈ L4            →         Med(π) = {b,d,e}  
 

 
In a median semilattice L, Δ(x,x’) = minimum path length between x 
and x’ in the covering graph of L 

 
Δ(c,b) + Δ(d,b) + Δ(e,b) + Δ(f,b) = 7 
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COMPUTATION of MEDIANS in a MEDIAN SEMILATTICE III 
Sholander’s embedding 

 

Any median semilattice L can be embedded in a distributive 
lattice D so that L is an (order) ideal of D 

Sholander 1954 

Then 
MED(π) = [xSMAJ(π), xMAJ(π)]D∩L 

 

a

0

e

f

c d

b  = xSMAJ

xMAJ

 
MEDIAN SEMILATTICES  
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AXIOMATICS of the MEDIAN PROCEDURE 
L median semilattice    L* = ∪{Ln, n ∈ } 

m: L* → (2L\{∅}) an aggregation (multi)procedure  

m is the median procedure ⇔  m satisfies the following  
three properties: 
"Condorcet": π ∈ Ln with even n,  
j ∈ JL, 2n(j) = n, t ∈ L and t∨j exists 
 ⇒                                [t∨j- ∈ m(π) ⇔ t∨j ∈ m(π)] 
Consistency:   π, π′ ∈ L* and m(π)∩m(π′) ≠ ∅  
⇒                                 m(ππ′) = m(π)∩m(π′) 
Faithfulness: π = (t) ∈ L  ⇒ m(π) = {t} 
Barthelemy, Janowitz (1991)   McMorris, Mulder, Powers (2000) 
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the MEDIAN PROCEDURE for other DISTANCES or/and  
other SEMILATTICES  

 
Many results on the properties of the median procedure for Δ  or other 
distances in other classes of semilattices and on the determination of 
the medians. 
 
Example (Leclerc, Discrete Applied Mathematics, 2003): 
 

The median procedure in the semilattice of orders is Paretian for the 
distance Δ  but not Paretian for many other distances d: 
 
There exist profiles π = (O1,..Oi...On) of orders and (median) orders 
M minimizing  Σi = 1,...nd(Oi, M)  such that  

∩{Oi, i ∈ N} �  M 
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PARETO PROPERTY and MEDIANS  
Question: does ∧{xi} ≤ m hold for any median m of any profile π of 

the (semi)lattice L? 
 

 
_________________________________________________________________________ 
Type of (semi)lattice   weight metrics d  metric Δ  metric ∂ 
________________________________________________________________
_________ 
distributive lattice   Yes (1)   Yes (♦)  Yes (♦) 
 

modular lattice   ?       ?  Yes (2) 
 

LLD lattice   No (∅)   No (∅)  No (3) 
 

lower semimodular lattice  No (↑)   No (↑)  No (↑) 
 

upper semimodular lattice  No (¬)   No (¬)  Yes (2) 
 

geometric lattice   No (∅)   No (4,5)  Yes (↑) 
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partition lattice   No (4)   Yes (6)  Yes (↑) 
 

median semilattice   Yes (7)   Yes (♦)  Yes (♦) 
 
distributive semilattice  No (∅)   No (4)  No (♦) 
 
LLD semilattice   No (↑)   No (↑)  No (↑) 
 
order semilattice   No (8)   Yes (8)  Yes (♦) 
_________________________________________________________________________ 
 

(1) Monjardet (1980); (2) Leclerc (1990); (3) Li (1996); (4) Leclerc (1994); (5) Barthélemy and Leclerc (1995); (6) Régnier (1965); (7) 
Leclerc (1993); (8) Leclerc (1999); (♦) from the entry at left; (∅) from the entry at right; (↑) from the entry above; (¬) from the entry 
below. 

 
 
 
The metric ∂ is the "lattice metric" (minimum path length in the unvalued undirected covering graph of 
L); Δ is the symmetric difference metric on the representations by join-irreducibles; these join-
irreducible may be weighted to give the "weight metrics". 
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(more or less) RELATED WORKS 

 
P. Gärdenfors, 2006,  A Representation Theorem For Voting With Logical 
Consequences , Economics and Philosophy, 22,  181 – 190 

Alternatives = elements of an (atomless) Boolean algebra    
 
T.R. Daniels, E. Pacuit (2009) A General Approach to Aggregation Problems 
Journal of Logic and Computation  19(3), 517-536.  
Alternatives = Judgment sets  
= deductively closed (wrt a consequence relation) subsets of a language  
= elements of a (rather special) lattice  
 

El. Dokow, R. Holzman (2010) Aggregation of binary evaluations, Journal of 
Economic Theory, 145 (2), 495-511. 
Alternatives = (feasible) binary evaluations = elements of 2n  
(Boolean aggregators : Guilbaud, Eckert & bm)  



Workshop Judgement Aggregation and Voting  September 9-11, 2011, Freudenstadt-Lauterbad 

 

58 

 
BONUS 

 

654321

213465

123456

123465213456

214365

214356 124365

124356

124635

124653

214653

241356

421356 214635

421365

241365

421635

426135

241635

241653246135

462135

642135

426153

421653
246153

246513

246531462153

642153

465213

426513

426531
462513

642513

645213

654213

462531

642531

645231

654231 645321

465321

465231

 
 
 
A "Condorcet" (consistent) domain of maximum size 64 for linear orders on n = 6 
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Most of the domains of linear orders where majority rule works well (no 
"voting paradox") are distributive lattices (sublattices of the permutoedre 
lattice) 
(see Acyclic domains of linear orders: a survey, in The Mathematics of Preference, Choice and Order, Essays in honor of Peter C. Fishburn, 
S. Brams, W. V. Gehrlein & F. S. Roberts (Editors), Springer, 2009, 139-160) 

 
First example: single-peaked domains are distributive lattices 

 
                        BACDE→ ABCDE 
                   ↑ 
                CBADE→ BCADE 
           ↑               ↑ 
DCBAE → CDBAE → CBDAE → BCDAE 
      ↑           ↑          ↑                ↑ 
DCBEA → CDBEA → CBDEA → BCDEA 

           ↑           ↑ 
     DCEBA → CDEBA 

     ↑ 
                             EDCBA → DECBA 

 
 
 

Guilbaud 1952 
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SOME REFERENCES on ABSTRACT AGGREGATION THEORIES 
 

J.P. Barthélemy, M.F. Janowitz, 1991, A formal theory of consensus, SIAM J. Discr. Math. 4, 305-322. 
 

Day W.H.E., McMorris F.R. 2003, Axiomatic Consensus Theory in Group Choice and Biomathematics 
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Guilbaud G. Th. 1952, Les théories de l'intérêt général et le problème logique de l'agrégation, Économie 
Appliquée 5, 501-584, (complete) Translation : Theories of the general interest and the logical problem of 
aggregation, Electronic Journal for History and Probability 4(1), 2008. 
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B. Leclerc (2003) The median procedure in the semilattice of orders, Discr. Appl.Math., 127 (2), 241-269. 
 
B. Monjardet, 1990, Arrowian characterizations of latticial federation consensus functions, 
Mathematical Social Sciences 20 (1), 51-71 
 

F.R. McMorris, H.M. Mulder and R.C. Powers, (2000) The median function on median graphs and 
semilattices, Discrete Applied Mathematics, 101, 221-230. 

 

K. Nehring, C. Puppe, 2010, Abstract Arrowian aggregation, Journal of Economic Theory, 145(2), 467-494  
 
Rubinstein A., Fishburn P.C.,1986 , Algebraic Aggregation Theory, Journal of Economic Theory 38, 63-
77. 
 

Wilson R.B.,1975, On the theory of aggregation, Journal of Economic Theory 10, 89-99. 



Workshop Judgement Aggregation and Voting  September 9-11, 2011, Freudenstadt-Lauterbad 

 

61 

 
(Some) REFERENCES on MEDIAN GRAPHS, MEDIAN PROCEDURE & co 

 
S.P. Avann (1948) Ternary distributive semi-lattices, Bulletin  American Mathematical Society 54,79.  
S.P. Avann (1961) Metric ternary distributive semi-lattices, Proceedings of the American Mathematical Society 12, 407- 414. 
K. Balakrishnan, B. Brešar, M. Changat, W. Imrich, S. Klavžar, M. Kovše, A. R. Subhamathi  (2009), On the remoteness function in 
median graph, Discrete Applied Mathematics 157 (18), 3679-3688. 
H.J. Bandelt (1984) Discrete ordered sets whose covering graphs are medians, Proceedings of the American Mathematical Society 9, 6-8. 
H.J. Bandelt (1984) Retracts of hypercubes, Journal of Graph Theory 8, 501–510. 
H.J. Bandelt (1985)Networks with Condorcet solutions, European J. Oper. Res 20, 314-326. 
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advertizing 
 

ALL that YOU WANT to KNOW on (finite) POSETS  

Finite Ordered Sets: Concepts, results and uses 
by Nathalie Caspard, Bruno Leclerc and Bernard Monjardet 

 

Collection Encyclopedia of Mathematics and its Applications  
Cambridge University Press 
To appear January 2012 
(Deeply) Revised and updated version of  

Collection Mathématiques & Applications (SMAI-Springer), 2007. 
 

From Zentrallblatt  
This book treats the main concepts and theorems of finite ordered sets. It is well-organized 
and provides a very good survey over the applications of order theory. 
From Mathematical Reviews:  
"The book is unique in giving equal attention to the combinatorial, logical and applied 
aspects of partially ordered sets. It helps mathematicians working in different fields realize 
that they might find information on the partially ordered sets that they study in places 
where they would have never thought of looking. A must read 

 


