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Abstract

In many settings, a group of voters must come to a joint decision on
multiple issues. In practice, this is often done by voting on the issues in
sequence. We model sequential voting in multi-issue domains as a complete-
information extensive-form game, in which the voters are perfectly rational
and their preferences are common knowledge. In each step, the voters simul-
taneously vote on one issue, and the order of the issues is given exogenously
before the process. We call this model strategic sequential voting.

We focus on domains characterized by multiple binary issues, so that
strategic sequential voting leads to a unique outcome under a natural solu-
tion concept. We show that under some conditions on the preferences, this
leads to the same outcome as truthful sequential voting, but in general it
can result in very different outcomes. In particular, sometimes the order
of the issues has a strong influence on the winner. Most significantly, we
illustrate several multiple-election paradoxes in strategic sequential voting:
there exists a profile for which the winner under strategic sequential voting
is ranked nearly at the bottom in all voters’ true preferences, and the win-
ner is Pareto-dominated by almost every other alternative. We show that
changing the order of the issues cannot completely prevent such paradoxes.
We also study the possibility of avoiding the paradoxes for strategic sequen-
tial voting by imposing some constraints on the profile, such as separability,
lexicographicity or O-legality. Finally, we investigate the existence of mul-
tiple election paradoxes for other common voting rules from a non-strategic
perspective.
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1. Introduction

In a traditional voting system, each voter is asked to report a linear or-
der over the alternatives to represent her preferences. Then, a voting rule
is applied to the resulting profile of reported preferences to select a winning
alternative. In practice, the set of alternatives often has a multi-issue struc-
ture. That is, there are p issues I = {x1, . . . ,xp}, and each issue can take a
value in a local domain. In other words, the set of alternatives is the Carte-
sian product of the local domains. For example, in multiple referenda, the
inhabitants of a local district are asked to vote on multiple inter-related is-
sues [7]. Another example is voting by committees, in which the voters select
a subset of objects [1], where each object can be seen as a binary issue.

Voting in multi-issue domains has been extensively studied by economists,
and more recently has attracted the attention of computer scientists. Previ-
ous work has focused on proposing a natural and compact voting language
for the voters to represent their preferences, as well as designing a sensible
voting rule to make decisions based on the reported preferences using such a
language. A natural approach is to let voters vote on the issues separately,
in the following way. For each issue (simultaneously, not sequentially), each
voter reports her preferences for that issue, and then, a local rule is used to
select the winning value that the issue will take. This voting process is called
issue-by-issue or seat-by-seat voting.

Computing the winner for issue-by-issue voting rules is easy. Nevertheless,
issue-by-issue voting has some drawbacks. First, a voter may feel uncomfort-
able expressing her preferences over one issue independently of the values
that the other issues take [17]. It has been pointed out that issue-by-issue
voting avoids this problem if the voters’ preferences are separable (that is, for
any issue i, regardless of the values for the other issues, the voter’s preferences
over issue i are always the same) [16]. Second, multiple-election paradoxes
arise in issue-by-issue voting [7, 16, 22, 24]. In models that do not consider
strategic (game-theoretic) voting, previous works have shown several types
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of paradoxes: sometimes the winner is a Condorcet loser; sometimes the win-
ner is Pareto-dominated by another alternative (that is, that alternative is
preferred to the winner in all votes); and sometimes the winner is ranked in
a very low position by all voters.

One way to partly escape these paradoxes consists in organizing the mul-
tiple elections sequentially [17]: given an order O over all issues (without
loss of generality, we take O to be x1 > · · · > xn), the voters first vote on
issue x1; then, the value collectively chosen for x1 is determined using some
voting rule and broadcast to the voters, who then vote on issue x2, and so on.
When the issues are all binary, it is natural to choose the majority rule at
each stage (plus, in the case of an even number of voters, some tie-breaking
mechanism). Such processes are conducted in many real-life situations. For
instance, suppose there is a full professor position and an assistant professor
position to be filled. Then, it is realistic to expect that the committee will
first decide who gets the full professor position. Another example is that at
the executive meeting of the co-owners of a building, important decisions like
whether a lift should be installed or not, how much money should be spent
to repair the roof are usually taken before minor decisions. In each of these
cases, it is clear that the decision made on one issue influences the votes on
later issues, thus the order in which the issues are decided potentially has a
strong influence on the final outcome.

Now, if voters are assumed to know the preferences of other voters well
enough, then we can expect them to vote strategically at each step, forecast-
ing the outcome at later steps conditional on the outcomes at earlier steps.
Let us consider the following motivating example.

Example 1 Three residents want to vote to decide whether they should
build a swimming pool and/or a tennis court. There are two issue S and
T. S can take the value of s (meaning “to build the swimming pool”) or s̄
(meaning “not to build the swimming pool”). Similarly, T takes a value in
{t, t̄}. Suppose the preferences of the three voters are, respectively, st � s̄t �
st̄ � s̄t̄, st̄ � st � s̄t � s̄t̄ and s̄t � s̄t̄ � st̄ � st. Voters 2 and 3 took the
budget constraint into consideration so that they do not rank st as their first
choices. Suppose the voters first vote on issue S then on T. Moreover, since
both issues are binary, the local rule used at each step is majority (there will
be no ties, because the number of voters is odd). Suppose voter 1 knows the
true preferences of voters 2 and 3, she is likely to reason in the following way:
if the outcome of the first step is s, then voters 2 and 3 will vote for t̄, since
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they both prefer st̄ to st, and the final outcome will be st̄; but if the outcome
of the first step is s̄, then voters 2 and 3 will vote for t, and the final outcome
will be s̄t; because I prefer s̄t to st̄, I am better off voting for s̄, since either it
will not make any difference, or it will lead to a final outcome of s̄t instead of
st̄. If voters 2 and 3 reason in the same way, then voter 2 will vote for s and
voter 3 for s̄; hence, the result of the first step is s̄, and then, since two voters
out of three prefer s̄t to s̄t̄, the final outcome will be s̄t. Note that the result
is fully determined, provided that (1) it is common knowledge that voters
behave strategically according to the principle we have stated informally, (2)
the order in which the issues are decided, as well as the local voting rules
used in all steps, are also common knowledge, and (3) voters’ preferences are
common knowledge. Therefore, these three assumptions allow the voters and
the modeler (provided he knows as much as the voters) to predict the final
outcome.

Let us take a closer look at voter 1 in Example 1. Her preferences are
separable: she prefers s to s̄ whatever the value of T is, and t to t̄ whatever the
value of S is. And yet she strategically votes for s̄, because the outcome for S
affects the outcome for T. Moreover, while voters 2 and 3 have nonseparable
preferences, still, all three voters’ preferences enjoy the following property:
their preferences over the value of S are independent of the value of T. Such
a profile is called a legal profile with respect to the order S > T, meaning that
the voters vote on S first, then on T. Lang and Xia [17] defined a family of
sequential voting rules on multi-issue domains, restricted to O-legal profiles
for some order O over the issues, where at each step, each voter is expected
to vote for her preferred value for the issue xi under consideration given the
values of all issues decided so far 1; then, the value of xi is chosen according
to a local voting rule, and this local outcome is broadcast to the voters. For
example, suppose the local rule used to decide an issue is always majority.
For the profile given in Example 1, the outcome of the first step under the
sequential voting rule will be s (since two voters out of three prefer s to s̄,
unconditionally), and the final outcome will be st̄. This outcome is different
from the outcome we obtain if voters behave strategically. The reason for
this discrepancy is that in the work of Lang and Xia [17], voters are not
assumed to know the others’ preferences and are assumed to vote truthfully.

1The O-legality condition ensures that this notion of “preferred value of xi” is mean-
ingful.
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We have seen in Example 1 that even if the voters’ preferences are O-
legal, voters may in fact have no incentive to vote truthfully. Consequently,
existing results on multiple-election paradoxes are not directly applicable to
situations where voters vote strategically.

1.1. Our Contributions

In this paper, we analyze the complete-information game-theoretic model
of sequential voting that we illustrated in Example 1. This model applies to
any preferences that the voters may have (not only separable orO-legal ones),
though they must be complete strict orders on the set of all alternatives.

We focus on voting in multi-binary-issue domains, that is, for every i ≤ p,
xi must take a value in {0i, 1i}. This setting has the advantage that for each
issue, we can use the majority rule as the local rule for that issue. We use a
game-theoretic model to analyze outcomes that result from sequential voting.
Specifically, we model the sequential voting process as a p-stage complete-
information game as follows. There is an order O over all issues (without
loss of generality, let O = x1 > x2 > · · · > xp), indicating the order in
which these issues will be voted on. For any 1 ≤ i ≤ p, in stage i, the voters
vote on issue xi simultaneously, and the majority rule is used to choose the
winning value for xi. We make the following game-theoretic assumptions: it
is common knowledge that all voters are perfectly rational; the order O and
the fact that in each step, the majority rule is used to determine the winner
are common knowledge; all voters’ preferences are common knowledge.

We can solve this game by a type of backward induction already illus-
trated in Example 1: in the last (pth) stage, only two alternatives remain
(corresponding to the two possible settings of the last issue), so at this point
it is a weakly dominant strategy for each voter to vote for her more preferred
alternative of the two. Then, in the second-to-last ((p − 1)th) stage, there
are two possible local outcomes for the (p − 1)th issue; for each of them,
the voters can predict which alternative will finally be chosen, because they
can predict what will happen in the pth stage. Thus, the (p − 1)th stage is
effectively a majority election between two alternatives, and each voter will
vote for her more preferred alternative; etc. We call such a procedure the
strategic sequential voting procedure (SSP).

Given exogenously the order O over the issues, this game-theoretic anal-
ysis maps every profile of complete strict orders to a unique outcome. Since
any function from profiles of preferences to alternatives can be interpreted as
a voting rule, the voting rule that corresponds to SSP is denoted by SSPO.
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After the introduction of SSP in Section 3.1 and the study of its proper-
ties in subsequent subsections 3.2 and 3.3, we introduce a parameter which
we call the minimax satisfaction index (MSI) in Section 4. For an election
with m alternatives and n voters, it is defined in the following way. For each
profile, consider the highest position that the winner obtains across all in-
put rankings of the alternatives (the ranking where this position is obtained
corresponds to the most-satisfied voter); this is the maximum satisfaction
index for this profile. Then, the minimax satisfaction index is obtained by
taking the minimum over all profiles of the maximum satisfaction index. A
low minimax satisfaction index means that there exists a profile in which
the winner is ranked in low positions in all votes, thus indicating a multiple-
election paradox. Our main results are categorized into the following three
settings:

The first setting (Section 5): Voters vote over multi-binary-issue do-
mains, and their preferences are not restricted (meaning that a voter’s prefer-
ences can be any complete strict order over the alternatives). In this setting,
we show that unfortunately, multiple-election paradoxes also arise under SSP.
Our main theorem is the following.

Theorem 2 For any p ∈ N and any n ≥ 2p2+1, the minimax satisfaction
index of SSP when there are m = 2p alternatives and n voters is bp/2 + 2c.
Moreover, in the profile P that we use to prove the upper bound, the winner
SSPO(P ) is Pareto-dominated by 2p − (p + 1)p/2 alternatives.

We note that an alternative c Pareto-dominates another alternative c′

implies that c beats c′ in their pairwise election. Therefore, Theorem 2
implies that the winner for SSP is an almost Condorcet loser. It follows from
this theorem that SSP exhibits all three types of multiple-election paradoxes:
the winner is ranked almost in the bottom in every vote, the winner is an
almost Condorcet loser, and the winner is Pareto-dominated by almost every
other alternative. We further show a paradox (Theorem 3) that states that
there exists a profile such that for every order O over the issues, for every
voter, the SSP winner w.r.t. O is ranked almost in the bottom position.

The second setting (Section 6): Voters vote over multi-binary-issue
domains, and their preferences are restricted. We show that even when the
voters’ preferences share the same independence structure, which is compat-
ible with the order over issues voted on (formally, O-legal—see Section 2.2),
multiple-election paradoxes still arise. However, if we further restrict the vot-
ers’ preferences to be separable or lexicographic, then some paradoxes can
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be avoided.
The second setting (Section 7): Voters vote over general (not neces-

sarily multi-binary-issue) domains, and their preferences are not restricted.
To see whether there are similar paradoxes for common voting rules where
voters are assumed to vote truthfully, we calculate the minimax satisfaction
index for some common voting rules. More precisely, we calculate MSI for
dictatorships, positional scoring rules (including k-approval and Borda), plu-
rality with runoff, Copeland, maximin, STV, Bucklin, ranked pairs, and (not
necessarily balanced) voting trees. We show that for k-approval with a large
k, voting trees, Copeland0, and maximin we can find a similar paradox, and
for the others there are no such paradoxes.

1.2. Related Work

Our setting is closely related to the multi-stage sophisticated voting, stud-
ied by McKelvey and Niemi [19], Moulin [20], and Gretlein [14]. They in-
vestigated the model where the backward induction outcomes correspond to
the truthful outcomes of voting trees. Therefore, our SSP is a special case of
multi-stage sophisticated voting. However, their work focused on the char-
acterization of the outcomes as the outcomes in the sophisticated voting [12],
and therefore did not shed much light on the quality of the equilibrium
outcome. We, on the other hand, are primarily interested in the strategic
outcome of the natural procedure of voting sequentially over multiple is-
sues. Also, the relationship between sequential voting and voting trees takes
a particularly natural form in the context of domains with multiple binary
issues, as we will show. More importantly, we illustrate several multiple-
election paradoxes for SSP, indicating that the equilibrium outcome could be
extremely undesirable.

Another paper that is closely related to part of this work was written
by Dutta and Sen [11]. They showed that social choice rules correspond-
ing to binary voting trees can be implemented via backward induction via
a sequential voting mechanism. This is closely related to the relationship
revealed for multi-stage sophisticated voting and will also be mentioned later
in this paper, that is, an equivalence between the outcome of strategic be-
havior in sequential voting over multiple binary issues, and a particular type
of voting tree. It should be pointed out that the sequential mechanism that
Dutta and Sen consider is somewhat different from sequential voting as we
consider it—in particular, in the Dutta-Sen mechanism, one voter moves at
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a time, and a move consists not of a vote, but rather of choosing the next
player to move (or in some states, choosing the winner).

Nevertheless, the approach by Dutta and Sen and our approach are re-
lated at a high level, though they are motivated quite differently: Dutta and
Sen are interested in social choice rules corresponding to voting trees, and
are trying to create sequential mechanisms that implement them via back-
ward induction. We, on the other hand again, are primarily interested in
the strategic outcome of the natural mechanism for voting sequentially over
multiple issues, and use voting trees merely as a useful tool for analyzing the
outcome of this process.

It has been pointed out that typical multiple-election paradoxes partly
come from the incompleteness of information about the preferences of the
voters [16]. However, the paradoxes in this paper show that assuming that
voters’ preferences are common knowledge does not allow to get rid of mul-
tiple election paradoxes. Another interpretation of these results is that we
may need to move beyond sequential voting to properly address voting in
multi-issue domains. However, note that other approaches than sequential
voting may be extremely costly in terms of computation, which comes down
to saying that voting on multiple related issues is an extremely challenging
problem for which probably no perfect solution exists.

Lastly, in a recent paper [26], Xia and Conitzer studied a voting game
with a different type of sequential nature: in it, the voters cast their votes one
after another (strategically), and after all the voters have cast their votes,
a common voting rule (not necessarily the plurality rule) is used to select
the winner. This type of voting games has been studied in the literature [2,
9, 10, 25]. In the work of Xia and Conitzer [26], a strong general paradox
was shown for these voting games, implying that for most common voting
rules, there exists a profile such that the unique winner in all subgame-perfect
equilibria is ranked within the bottom two positions in almost all the voters’
true preferences. Desmedt and Elkind [10] showed similar paradoxes for such
voting games with the plurality rule, where random tie-breaking is used and
the voters seek to maximize their expected utility. We note that the voting
games studied in this line of work [2, 9, 10, 25, 26] are quite different from
the voting games studied in this paper: there, the voters move in sequence,
the set of alternatives does not need to have a combinatorial structure, and a
voter casts her complete vote all at once; here in this paper, the voters move
simultaneously, the set of alternatives has a combinatorial structure, and the
voters vote on one issue at a time.
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2. Preliminaries

2.1. Basics of Voting

Let X be the set of alternatives, |X | = m. A vote is a linear order (that
is, a transitive, antisymmetric, and total relation) over X . The set of all
linear orders over X is denoted by L(X ). For any c ∈ X and V ∈ L(X ), we
write c �V d if c is ranked in a higher position than d in V ; we let rankV (c)
denote the position of c in V from the top. For any n ∈ N, an n-profile P is
a collection of n votes, that is, P ∈ L(X )n. For any c, d ∈ X and any profile
P , we say c Pareto-dominates d, if for every V ∈ P , c is ranked higher than
d in V , that is, c �V d. A voting rule r is a mapping that assigns to each
profile a unique winning alternative. That is, r : L(X ) ∪ L(X )2 ∪ . . . → X .
For example, when there are two alternatives, the majority rule selects the
alternative that is preferred by the majority of voters. Some other common
voting rules are listed below.

• Dictatorships: for every n ∈ N there exists a voter j ≤ n such that the
winner is always the alternative that is ranked in the top position in
Vj.

• (Positional) scoring rules: Given a scoring vector ~v = (v(1), . . . , v(m)),
for any vote V ∈ L(X ) and any c ∈ X , let s(V, c) = v(i), where i
is the rank of c in V . For any profile P = (V1, . . . , Vn), let s(P, c) =
n∑

j=1

s(Vj, c). The rule will select c ∈ X so that s(P, c) is maximized.

Some examples of positional scoring rules are Borda, for which the
scoring vector is (m− 1, m− 2, . . . , 0), k-approval (Appk, with k ≤ m),
for which the scoring vector is (1, . . . , 1

︸ ︷︷ ︸

k

, 0, . . . , 0), plurality, for which

the scoring vector is (1, 0, . . . , 0), and veto, for which the scoring vector
is (1, . . . , 1, 0).

• Copelandα (0 ≤ α ≤ 1): For any two alternatives c and d, we can
simulate a pairwise election between them, by seeing how many votes
prefer c to d, and how many prefer d to c; the winner of the pairwise
election is the one preferred more often. Then, an alternative receives
one point for each win in a pairwise election, α points for each draw,
and 0 point for each loss. The winner is the alternative that has the
highest total score.
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• Plurality with runoff (P luo): The election has two rounds. In the first
round, the alternatives are ranked from high to low according to the
number of times they are ranked in the top position in the votes of the
profile (that is, according to their plurality scores). Only the top two
alternatives enter the second (runoff) round. In the runoff, we simulate
a pairwise election between these two alternatives, and the alternative
that wins the pairwise election is the winner.

• Maximin: Let N(c, d) denote the number of votes that rank c ahead of
d. The winner is the alternative c that maximizes min{N(c, c′) : c′ ∈
X , c′ 6= c}.

• STV: The election has m− 1 rounds. In each round, we count for each
remaining alternative how many votes rank it highest among the re-
maining alternatives; then, the alternative with the lowest count drops
out. The last remaining alternative is the winner.

• Bucklin: An alternative c’s Bucklin score is the smallest number k such
that more than half of the voters rank c among their top k alterna-
tives. The winner is the alternative that has the lowest Bucklin score.
If multiple alternatives have the lowest score k, then ties are broken
by the number of voters who rank an alternative among their top k
alternatives.

• Ranked pairs: This rule first creates an entire ranking of all the al-
ternatives. N(c, d) is defined as for the maximin rule. In each step,
we will consider a pair of alternatives c, d that we have not previously
considered; specifically, we choose the remaining pair with the highest
N(c, d). We then fix the ordering c � d, unless it contradicts orderings
that we fixed previously (that is, it violates transitivity). We continue
until all pairs of alternatives are considered (hence we end up with a
full ranking). The alternative at the top of the ranking wins.

• Voting trees: A voting tree is a binary tree with m leaves, where each
leaf is associated with an alternative. In each round, there is a pairwise
election between an alternative c and its sibling d: if the majority of
voters prefer c to d, then d is eliminated, and c is associated with the
parent of these two nodes; similarly, if the majority of voters prefer d
to c, then c is eliminated, and d is associated with the parent of these

10



two nodes. The alternative that is associated with the root of the tree
(wins all its rounds) is the winner.

2.2. Multi-Issue Domains

In this paper, the set of all alternatives X is a multi-binary-issue domain.
That is, let I = {x1, . . . ,xp} (p ≥ 2) be a set of binary issues, where each
issue xi takes a value in a binary local domain Di = {0i, 1i}. The set of
alternatives is X = D1×· · ·×Dp, that is, an alternative is uniquely identified
by its values on all issues. For any U ⊆ I we denote DU =

∏

xi∈U Di.
Conditional preferential independence originates in the literature of mul-

tiattribute decision theory [15]. Given a preference relation � over L(X ), an
issue xi, and a subset of issues W ⊆ (I \{xi}), let U = I \ (W ∪{xi}); then,
xi is preferentially independent of W given U (with respect to �) if for any
~u ∈ DU and any ~w, ~w′ ∈ DW ,

(~u, 0i, ~w) � (~u, 1i, ~w) if and only if (~u, 0i, ~w′) � (~u, 1i, ~w′)

In words, if we wish to find out whether changing the value of xi from
0i to 1i (while keeping everything else fixed) will make the voter better or
worse off, we only need to know the values of the issues in U .

Let O = x1 > · · · > xp. A preference relation � is O-legal if for any
i ≤ p, xi is preferentially independent of {xi+1, . . . ,xp} given {x1, . . . ,xi−1}.
In words, to find out whether a particular change in the value of an issue
will make the voter better or worse off, we only need to know the values of
earlier issues. A preference relation � is separable if for any i ≤ p, xi is
preferentially independent of X \ {xi}. That is, we do not need to know the
value of any other issue to find out whether a particular change in the value
of an issue will make the voter better or worse off. It follows directly that a
separable preference relation is O-legal for any O.

A preference relation � is O-lexicographic if for any i ≤ p, any ~u ∈ D1 ×
· · ·×Di−1, any ai, bi ∈ Di, and any ~d1, ~d2, ~e1, ~e2 ∈ Di+1×· · ·×Dp, (~u, ai, ~d1) �
(~u, bi, ~e1) if and only if she prefers (~u, ai, ~d2) � (~u, bi, ~e2). In words, if a
profile is O-lexicographic, then it is O-legal, and moreover, earlier issues are
more important—that is, to compare two alternatives, it suffices to know the
values of the issues up to and including the first issue xi on which they differ.
(While the values of x1, . . . ,xi−1 will be the same, they still matter in that
they affect the voter’s preferences on xi.) We note that O-lexicographicity
and separability are incomparable notions. For example, 0102 � 1102 �
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0112 � 1112 is separable (flipping 11 or 12 always makes the alternative rank
higher) but not (x1 > x2)-lexicographic (0102 � 1112 but 1102 � 0112). On
the other hand, 0102 � 0112 � 1112 � 1102 is (x1 > x2)-lexicographic but not
separable. A profile is separable/O-lexicographic/O-legal if it is composed
of preference relations that are all separable/O-lexicographic/O-legal.

We now recall the definition of sequential composition of local voting
rules [17]. Given a vector of local rules (r1, . . . , rp) (where for any i ≤ p, ri is
a voting rule for preferences over Di), the sequential composition of r1, . . . , rp

with respect to O, denoted by SeqO(r1, . . . , rp), is defined for all O-legal
profiles as follows: SeqO(r1, . . . , rp)(P ) = (d1, . . . , dp) ∈ X , where for any
i ≤ p, di = ri(P |xi:d1···di−1

), where P |
xi:d1···di−1

is composed of the voters’ local
preferences over xi, given that the issues preceding it take values d1, . . . , di−1.
Thus, the winner is selected in p steps, one for each issue, in the following
way: in step i, di is selected by applying the local rule ri to the preferences
of voters over Di, conditioned on the values d1, . . . , di−1 that have already
been determined for the issues that precede xi. In this paper, we focus on
the case where every ri is the majority rule, because it is the most natural
voting rule for two alternatives.

3. Strategic Sequential Voting

As we have illustrated in Example 1, sequential voting on multi-issue
domains can be seen as a game where in each step, the voters decide whether
to vote for or against the issue under consideration after reasoning about
what will happen next. We make the following assumptions.

1. All voters act strategically (in an optimal manner that will be explained
later), and this is common knowledge.

2. The order in which the issues will be voted upon, as well as the local
voting rules used at the different steps (namely, majority rules), are
common knowledge.

3. All voters’ preferences on the set of alternatives are common knowledge.

Assumption 1 is standard in game theory. Assumption 2 merely means
that the rule has been announced. Assumption 3 (complete information)
is the most significant assumption. It may be interesting to consider more
general settings with incomplete information, resulting in a Bayesian game.
Nevertheless, because the complete-information setting is a special case of
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the incomplete-information setting (where the prior distribution is degener-
ate), in that sense, all negative results obtained for the complete-information
setting also apply to the incomplete-information setting. That is, the restric-
tion to complete information only strengthens negative results. Of course, for
incomplete information setting in general, we need a more elaborate model
to reason about voters’ strategic behavior.

3.1. Formal Definition

Given these assumptions, the voting process can be modeled as a game
that is composed of p stages where in each stage, the voters vote simultane-
ously on one issue. Let O be the order over the set of issues, which without
loss of generality we assume to be x1 > · · · > xp. Let P be the profile of
preferences over X . The game is defined as follows: for each i ≤ p, in stage i
the voters vote simultaneously on issue i; then, the value of xi is determined
by the majority rule (plus, in the case of an even number of voters, some
tie-breaking mechanism), and this local outcome is broadcast to all voters.

We now show how to solve the game. Because of assumptions 1 to 3, at
step i the voters vote strategically, by recursively figuring out what the final
outcome will be if the local outcome for xi is 0i, and what it will be if it is 1i.
More concretely, suppose that steps 1 to i− 1 resulted in issues x1, . . . ,xi−1

taking the values d1, . . . , di−1, and let ~d = (d1, . . . , di−1). Suppose also that if
xi takes the value 0i (respectively, 1i), then, recursively, the remaining issues

will take the tuple of values ~a (respectively, ~b). Then, xi is determined by a

pairwise comparison between (~d, 0i,~a) and (~d, 1i,~b) in the following way: if

the majority of voters prefer (~d, 0i,~a) over (~d, 1i,~b), then xi takes the value 0i;
in the opposite case, xi takes the value 1i. This process, which corresponds to
the strategic behavior in the sequential election, is what we call the strategic
sequential voting (SSP) procedure, and for any profile P , the winner with
respect to the order O is denoted by SSPO(P ).

As we shall see later, SSP can not only be thought of as the strategic
outcome of sequential voting, but also as a voting rule in its own right. The
following definition and two propositions merely serve to make the game-
theoretic solution concept that we use precise; a reader who is not interested
in this may safely skip them.

Definition 1 Consider a finite extensive-form game which transitions among
states. In each nonterminal state s, all players simultaneously take an ac-
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tion; this joint local action profile (as
1, . . . , a

s
n) determines the next state s′.2

Terminal states t are associated with payoffs for the players (alternatively,
players have ordinal preferences over the terminal states). The current state
is always common knowledge among the players.3

Suppose that in every final nonterminal state s (that is, every state that
has only terminal states as successors), every player i has a (weakly) domi-
nant action as

i . At each final nonterminal state, its local profile of dominant
actions (as

1, . . . , a
s
n) results in a terminal state t(s) and associated payoffs.

We then replace each final nonterminal state s with the terminal state t(s)
that its dominant-strategy profile leads to. Furthermore suppose that in the
resulting smaller tree, again, in every final nonterminal state, every player
has a (weakly) dominant strategy. Then, we can repeat this procedure, etc.
If we can repeat this all the way to the root of the tree, then we say that
the game is solvable by within-state dominant-strategy backward induction
(WSDSBI).

We note that the backward induction in perfect-information extensive-form
games is just the special case of WSDSBI where in each state only one player
acts.

Proposition 1 The complete-information sequential voting game with bi-
nary issues (with majority as the local rule everywhere) is solvable by WS-
DSBI, and the outcome is unique.

Proof: The states correspond to the local elections in which an issue is
decided. Suppose that we have managed to apply WSDSBI to solve the last
k stages of the game, thereby replacing the states of the (p− k + 1)th stage
with terminal states. Then, each state in the (p − k)th stage is a majority
election between two alternatives, where each voter has a strict preference
between these two alternatives. Because the rule used is majority, it is weakly
dominant for each voter to vote for her preferred alternative, so we can solve
the (p− k)th stage as well. �

We note that SSP corresponds to a particular balanced voting tree, as
illustrated in Figure 1 for the case p = 3. In this voting tree, in the first round,

2In the extensive-form representation of the game, each state is associated with multiple
nodes, because in the extensive form only one player can move at a node.

3Hence, the only imperfect information in the extensive form of the game is due to
simultaneous moves within states.

14



each alternative is paired up against the alternative that differs only on the
pth issue; each alternative that wins the first round is then paired up with
the unique other remaining alternative that differs only on the (p− 1)th and
possibly the pth issue; etc. This bottom-up procedure corresponds exactly
to the backward induction (WSDSBI) process.

Of course, there are many voting trees that do not correspond to an SSP
election; this is easily seen by observing that there are only p! different SSP
elections (corresponding to the different orders of the issues), but many more
voting trees. The voting tree corresponding to the orderO = x1 > · · · > xp is
defined by the property that for any node v whose depth is i (where the root
has depth 1), the alternative associated with any leaf in the left (respectively,
right) subtree of v gives the value 0i (respectively, 1i) to xi.

000 001 010 011 110 111101100

Figure 1: A voting tree that is equivalent to the strategic sequential voting procedure
(p = 3). 000 is the abbreviation for 010203, etc.

3.2. Strategic Sequential Voting vs. Truthful Sequential Voting

We have seen on Example 1 that even when the profile P is O-legal,
SSPO(P ) can be different from SeqO(maj, . . . , maj)(P ). This means that
even if the profile isO-legal, voters may be better off voting strategically than
truthfully. However, SSPO(P ) and SeqO(maj, . . . , maj)(P ) are guaranteed
to coincide under the further restriction that P is O-lexicographic.

Proposition 2 For any O-lexicographic profile P , SSPO(P ) = SeqO(maj, . . . , maj)(P ).

Proof: We prove the proposition by induction on p. Suppose the propo-
sition is true over D−1 = D2 × · · · × Dp. For any V ∈ P , because V

is O-lexicographic, we have that if 01 �V |x1
11, then for any ~a,~b ∈ X2,

15



(01,~a) �V (11,~b), and vice versa. Therefore, in the first round, it is a domi-
nant strategy for every voter to truthfully submit the restriction of her pref-
erences over x1; hence, by its game-theoretical interpretation, under SSPO,
the first issue is set to the value maj(P |

x1). Then, by the induction hypoth-
esis, the winner over D−1 is the same for both SSP and Seq. Therefore, we
have that SSPO(P ) = Seq(maj, . . . , maj)(P ). �

The intuition for Proposition 2 is as follows: if P is O-lexicographic, then,
as is shown in the proof of the proposition, when voters vote strategically
under sequential voting (the Seq process), they are best off voting according
to their true preferences in each round (their preferences in each round are
well-defined because voters have O-legal preferences in this case). When
voters withO-legal preferences vote truthfully in each round under sequential
voting, the outcome is SeqO(maj, . . . , maj)(P ); when they vote strategically,
the outcome is SSPO(P ); and so, these must be the same when preferences
are O-lexicographic.

Now, there is another interesting domain restriction under which SSPO(P )
and Seq(maj, . . . , maj)(P ) coincide, namely when P is inv(O)- legal, where
inv(O) = (xp > . . . > x1).

Proposition 3 Let inv(O) = xp > . . . > x1. For any inv(O)-legal profile
P , SSPO(P ) = Seqinv(O)(maj, . . . , maj)(P ).

Proof: We prove the proposition by induction on p. Suppose the proposi-
tion is true over D−p = D1×· · ·×Dp−1. We consider the winners in the bot-
tom layer of the voting tree corresponding to SSP. For any ~a ∈ D−p, the voters
are comparing (~a, 0p) and (~a, 1p). Because P is inv(O)-legal, for any ~a ∈ D−p

and any j ≤ n, voter j’s preferences over xp are independent of the other
issues. Thus, she prefers (~a, 0p) to (~a, 1p) if and only if 0p �Vj |xp

1p. There-
fore, the winning value for xp is dp = maj(P |

xp
) everywhere in the first round

of the voting tree, and the corresponding alternatives propagate up to the
next level in the tree. For these remaining alternatives, we only need the re-
stricted preference profile P |

x−p:dp
, which is inv(O−p)-legal (where inv(O−p)

is the order xp−1 > · · · > x1). By the induction hypothesis, the winner for
the rest of the voting tree is the same as Seqinv(O−p)(maj, . . . , maj)(P |

x−p:dp
).

It follows that SSPO(P ) = Seqinv(O)(maj, . . . , maj)(P ). �

As a consequence, when P is separable, it is a fortiori inv(O)-legal, and
therefore, SSPO(P ) = Seqinv(O)(maj, . . . , maj)(P ), which in turn is equal to
SeqO(maj, . . . , maj)(P ) and coincides with seat-by-seat voting [3].
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Corollary 1
If P is separable, then SSPO(P ) = SeqO(maj, . . . , maj)(P ).

3.3. The Winner is Sensitive to the Order Over the Issues

In the definition of SSP, we simply fixed the order O to be x1 > x2 >
· · · > xp. A question worth addressing is, to what extent is the outcome of
SSP sensitive to the variation of the order O? More precisely, given a profile
P , let PW(P ) = |{~d ∈ X | ~d = SSPO′(P ) for some order O′}|. PW(P ) is the
number of different alternatives that can be made SSP winners by choosing
a particular order O′. Then, for a given number of binary issues p, we look
for the maximal value of PW(P ), for all profiles P on X = D1 × . . . × Dp;
we denote this number by MW(p).

A first observation is that there are p! different choices for O′. Therefore,
a trivial upper bound on MW(p) is p!. Since there are 2p alternatives, the
p! upper bound is only interesting when p! < 2p, that is, p ≤ 3. Example 2
shows that when p = 2 or p = 3, this trivial upper bound is actually tight,
i.e. MW(2) = 2! and MW(3) = 3!: there exists a profile such that by changing
the order over the issues, all p! different alternatives can be made winners.
Due to McGarvey’s theorem [18], any complete and asymmetric directed
graph G over the alternatives corresponds to the majority graph of some
profile (we recall that the majority graph of a profile P is the directed graph
whose vertices are the alternatives and containing an edge from c to c′ if and
only if a majority of voters in P prefer c to c′). Therefore, in the example,
we only show the majority graph instead of explicitly constructing the whole
profile.

Example 2 The majority graphs for p = 2 and p = 3 are shown in Figure 2.
Let P (respectively, P ′) denote an arbitrary profile whose majority graph
is the same as Figure 2(a) (respectively, Figure 2(b)). It is not hard to
verify that SSP

x1>x2(P ) = 00 and SSP
x2>x1(P ) = 01. For P ′, the value of

SSPO′(P ′) for the six possible orders is shown on Table 1. Note that 2! = 2
and 3! = 6. It follows that when p = 2 or p = 3, there exists a profile for
which the SSP winners w.r.t. different orders over the issues are all different
from each other.

When p ≥ 4, p! > 2p. However, it is not immediately clear whether
MW(p) = 2p or not, i.e., whether each of the 2p alternatives can be made a
winner by changing the order over the issues. The next theorem shows that
this can actually be done, that is, MW(p) = 2p.
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The order x1 > x2 > x3 x1 > x3 > x2 x2 > x1 > x3

SSP winner 010 011 001
The order x2 > x3 > x1 x3 > x1 > x2 x3 > x2 > x1

SSP winner 100 110 101

Table 1: The SSP winners for P ′ w.r.t. different orders over the issues.

00 01

10 11

000 001

010 011100 101

110 111

(a) (b)

Figure 2: (a) The majority graph for p = 2. (b) The majority graph for p = 3, where four
edges are not shown in the graph: 100→ 000, 101→ 001, 110→ 010, and 111→ 011. The
directions of the other edges are defined arbitrarily. 000 is the abbreviation for 010203,
etc.

Theorem 1 For any p ≥ 4 and any n ≥ 142 + 4p, there exists an n-profile
P such that for every alternative ~d, there exists an order O′ over I such that
SSPO′(P ) = ~d.

Proof: We prove the theorem by induction on the number of issues p.
Surprisingly, the hardest part in the inductive proof is the base case: when
we first show how to construct a desirable majority graphM for p = 4, then
we show how to construct a n-profile that corresponds toM.

To define M when p = 4, we first define a majority graph M3 over
X3 = D2×D3×D4. LetM′ denote the majority graph defined in Example 2
when p = 3. We note thatM′ is defined over D1×D2×D3. The structure of
M3 is exactly the same asM′, except thatM3 is defined over D2×D3×D4.
Formally, let h1 : D1 → D2 be a mapping such that h1(01) = 02 and h1(11) =
12; let h2 : D2 → D3 be a mapping such that h2(02) = 03 and h2(12) = 13;
and let h3 : D3 → D4 be a mapping such that h3(03) = 04 and h3(13) = 14.
Let h : D1 × D2 × D3 → D2 × D3 × D4 be a mapping such that for any
(a2, a3, a4) ∈ {0, 1}, h(a1, a2, a3) = (h1(a1), h2(a2), h3(a3)). For example,
h(011203) = 021304. Then, we let M3 = h(M′).

For any~a = (a2, a3, a4) ∈ X3, let f(~a) = (11,~a) and let g(~a) = (01, a2, a3, a4).
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That is, f concatenates 11 and ~a, and g flips the first two components of f(~a).
For example, f(020304) = 11020304 and g(020304) = 11120304. We define M
as follows.

(1) The subgraph ofM over {11}×X3 is f(M3). That is, for any ~a,~b ∈ X3,

if ~a→ ~b inM′, then f(~a)→ f(~b) inM.

(2) The subgraph ofM over {01} × X3 is g(M3).

(3) For any ~a ∈ X3, we have (11,~a)→ (01,~a). For any ~a ∈ X3 and ~a 6= 111,
we have g(~a)→ f(~a).

(4) We then add the following edges to M. 0100 → 1110, 1000 → 0010,
1101→ 0111, 0001→ 1011, 1101→ 0100, 1000→ 0001, 0001→ 1101,
0100→ 1000, 1111→ 0110, 1100→ 0101, 0011→ 1010, 1001→ 0000,
1111→ 0011, 0011→ 1100, 0011→ 1001, 1111→ 0000.

(5) Any other edge that is not defined above is defined arbitrarily.

Let P be an arbitrary profile whose majority graph satisfies conditions (1)
through (4) above. We make the following observations.

• If x1 is the first issue in O′, then the first component of SSPO′(P ) is 11.
Moreover, every alternative whose first component is 11 (except 1111
and 1000) can be made to win by changing the order of x2,x3,x4.

• If x1 is the last issue in O′, then the first component of SSPO′(P ) is 01.
Moreover, every alternative whose first component is 01 (except 0011
and 0100) can be made to win by changing the order of x2,x3,x4.

• Let O′ = x3 > x1 > x2 > x4, we have SSPO′(P ) = 0100; let O′ = x3 >
x1 > x4 > x2, we have SSPO′(P ) = 1000; let O′ = x4 > x1 > x3 > x2,
we have SSPO′(P ) = 0011; let O′ = x2 > x4 > x1 > x3, we have
SSPO′(P ) = 1111.

In summary, every alternative is a winner of SSP w.r.t. at least one order
over the issues. The reader can also check out the java program online at
http://www.cs.duke.edu/elxia/Files/SSP.zip, to verify the cor-
rectness of such a construction. We notice that conditions (1) through (4)
imposes 79 constraints on pairwise comparisons. Therefore, using McGar-
vey’s trick [18], for any n ≥ 2 × 79 = 158, we can construct an n-profile
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whose majority graph satisfies conditions (1) through (4). This means that
the theorem holds for p = 4.

Now, suppose that the theorem holds for p = p′. Let P = (V1, . . . , Vn)
be an n-profile over X ′ = D2 × . . . × Dp′+1 such that n ≥ 142 + 4p′ and
each alternative in X ′ can be made to win in SSP by changing the order over
x2, . . . ,xp′+1. Let X = D1 × · · · × Dp′+1. Let f : X ′ → X be the mapping
defined as follows. For any ~a ∈ X ′, f(~a) = (11,~a). That is, for any ~a ∈ X ′,
f concatenates 11 and ~a. Let g : X ′ → X be the mapping defined as follows.
For any ~a = (a2, . . . , ap′+1) ∈ X ′, g(~a) = (01, a2, a3, . . . , ap′+1). That is, for
any ~a ∈ X ′, g flips the first two components of f(~a). Next, we define an
(n + 4)-profile P ′ = (V ′

1 , . . . , V
′
n+4) as follows.

For any i ≤ 2b(n−1)/2c, we let V ′
i =

{
f(Vi) � g(Vi) if i is odd
g(Vi) � f(Vi) if i is even

. For

any 2b(n− 1)/2c+ 1 ≤ i ≤ n, we let V ′
i = [f(Vi) � g(Vi)]. For any j ≤ 4, we

let

V ′
n+j =







g(02 . . . 0p+1) � f(02 . . . 0p+1) � g(02 . . . 0p1p+1)
� f(02 . . . 0p1p+1) � g(12 . . . 1p+1) � f(12 . . . 1p+1)

if j is odd

g(12 . . . 1p+1) � f(12 . . . 1p+1) � g(12 . . . 1p0p+1)
� f(12 . . . 1p0p+1) � g(02 . . . 0p+1) � f(02 . . . 0p+1)

if j is even

For any pair of alternatives c, c′, and any profile P ∗, we let DP ∗(c, c′)
denote the number of times that c is preferred to c′, minus the number of
times c′ is preferred to c, both in the profile P ∗. That is, DP ∗(c, c′) > 0
if and only if c beats c′ in their pairwise election. We make the following
observations on P ′.

• For any ~a ∈ X ′, DP ′(f(~a), g(~a)) > 0 and DP ′((11,~a), (01,~a)) > 0.

• For any ~a,~b ∈ X ′ (with ~a 6= ~b), DP ′(f(~a), f(~b)) > 0 if and only if

DP (~a,~b) > 0; DP ′(g(~a), g(~b)) > 0 if and only if DP (~a,~b) > 0.

It follows that for any order O′ over {x2, . . . ,xp+1}, we have SSP[x1�O′](P
′) =

f(SSPO′(P )) (because after voting on issue x1, all alternatives whose first
component is 01 are eliminated, then it reduces to SSP over X ′); we also
have that SSP[O′�x1](P

′) = g(SSPO′(P )) (because in the last round, the two
competing alternatives are considering are f(SSPO′(P )) and g(SSPO′(P )),
and the majority of voters prefer the latter). We recall that each alternative
in X ′ can be made to win w.r.t. an order O′ over {x2, . . . ,xp′+1}. It follows
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that each alternative in X can also be made to win w.r.t. an order over
{x1, . . . ,xp′+1}, which means that the theorem holds for p = p′+1. Therefore,
the theorem holds for any p ≥ 4. �

4. Minimax Satisfaction Index

In the rest of this paper, we will show that strategic sequential voting
on multi-issue domains is prone to paradoxes that are almost as severe as
previously studied multiple-election paradoxes under models that are not
game-theoretic [7, 16]. To facilitate the presentation of these results, we
define an index that is intended to measure one aspect of the quality of a
voting rule, called minimax satisfaction index.

Definition 2 For any voting rule r, the minimax satisfaction index (MSI)
of r is defined by

MSIr(m, n) = min
P∈L(X )n

max
V ∈P

(
m + 1− rankV (r(P ))

)

where m is the number of alternatives, n is the number of voters, and rankV (r(P ))
is the position of r(P ) in vote V .

We note that in this paper m = 2p, where p is the number of issues. The
MSI of a voting rule is not the final word on it. For example, the MSI for
dictatorships is m, the maximum possible value, which is not to say that
dictatorships are desirable. However, if the MSI of a voting rule is low, then
this implies the existence of a paradox for it, namely, a profile that results in
a winner that makes all voters unhappy.

Many of the multiple-election paradoxes known so far implicitly refer to
such an index. For example, Lacy and Niou [16] and Benoit and Korn-
hauser [3] showed that for multiple referenda, if voters vote on issues sepa-
rately (under some assumptions on how voters vote), then there exists a pro-
file such that in each vote, the winner is ranked near the bottom–therefore
the rule has a very low MSI.

5. Multiple-Election Paradoxes for Strategic Sequential Voting

In this section, we show that over multi-binary-issue domains, for any
natural number n that is sufficiently large (we will specify the number in our
theorems), there exists an n-profile P such that SSPO(P ) is ranked almost
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in the bottom position in each vote in P . That is, the minimax satisfaction
index is extremely low for the strategic sequential voting procedure.

We first calculate the MSI for SSPO when the winner does not depend
on the tie-breaking mechanism. That is, either n is odd, or n is even and
there is never a tie in any stage of running the election sequentially. This is
our main multiple-election paradox result.

Theorem 2 For any p ∈ N (p ≥ 2) and any n ≥ 2p2 +1, MSISSPO
(m, n) =

bp/2 + 2c.4 Moreover, in the profile P that we use to prove the upper bound,
the winner SSPO(P ) is Pareto-dominated by 2p − (p + 1)p/2 alternatives.

Proof of Theorem 2: The upper bound on MSISSPO
(m, n) is constructive,

that is, we explicitly construct a paradox.
For any n-profile P = (V1, . . . , Vn), we define the mapping fP : X → N

n

as follows: for any c ∈ X , fP (c) = (h1, . . . , hn) such that for any i ≤ n, hi is
the number of alternatives that are ranked below c in Vi. For any l ≤ p, we
denote Xl = Dl × · · · ×Dp and Ol = xl > xl+1 > · · · > xp. For any vector
~h = (h1, . . . , hn) and any l ≤ p, we say that ~h is realizable over Xl (through a
balanced binary tree) if there exists a profile Pl = (V1, . . . , Vn) over Xl such

that fPl
(SSPOl

(Pl)) = ~h. We first prove the following lemma.

Lemma 1 For any l such that 1 ≤ l < p,

~h∗ = (0, . . . , 0
︸ ︷︷ ︸

bn/2c−p+l

, 1, . . . , 1
︸ ︷︷ ︸

p−l+1

, 2p−l+1 − 1, . . . , 2p−l+1 − 1
︸ ︷︷ ︸

dn/2e−1

)

is realizable over Xl.

Proof of Lemma 1: We prove that there exists an n-profile Pl over Xl such
that SSPOl

(Pl) = 1l · · · 1p and ~h∗ is realized by Pl. For any 1 ≤ i ≤ p− l +1,

we let ~bi = 1l · · · 1p−i0p+1−i1p+2−i · · · 1p. That is, ~bi is obtained from 1l · · · 1p

by flipping the value of xp+1−i. We obtain Pl = (V1, . . . , Vn) in the following
steps.

1. Let W1, . . . , Wn be null partial orders over Xl. That is, for any i ≤ n,
the preference relation Wi is empty.

4If n is even, then to prove MSISSPO
(m, n) ≥ bp/2+2c, we restrict attention to profiles

without ties.
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2. For any j ≤ bn/2c − p + l, we put 1l · · · 1p in the bottom position in

Wj; we put {~b1, . . . ,~bp−l+1} in the top positions in Wj .
3. For any j with bn/2c+ 2 ≤ j ≤ n, we put 1l · · · 1p in the top position

of Wj, and we put {~b1, . . . ,~bp−l+1} in the positions directly below the top.
4. For j with bn/2c − p + l + 1 ≤ j ≤ bn/2c+ 1, we define preferences as

follows. For any i ≤ p−l+1, in Wbn/2c−p+l+i, we put~bi in the bottom position,
1l · · · 1p in the second position from the bottom, and all the remaining bj (with
j 6= i) at the very top.

5. Finally, we complete the profile arbitrarily: for any j ≤ n, we let Vj

be an arbitrary extension of Wj .

Let Pl = (V1, . . . , Vn). We note that for any i ≤ p − l + 1, ~bi beats any

alternative in Xl \ {1l · · · 1p,~b1, . . . ,~bp−l+1} in pairwise elections. Therefore,

for any i ≤ p− l + 1, the ith alternative that meets 1l · · · 1p is ~bi, which loses
to 1l · · · 1p (just barely). It follows that 1l · · · 1p is the winner, and it is easy

to check that fPl
(1l · · ·1p) = ~h∗. This completes the proof of the lemma. �

Because the majority rule is anonymous, for any permutation π over
1, . . . , n and any l < p, if (h1, . . . , hn) is realizable over Xl, then (hπ(1), . . . , hπ(n))

is also realizable over Xl. For any k ∈ N, we define Hk = {~h ∈ {0, 1}n :
∑

j≤n hj ≥ k}. That is, Hk is composed of all n-dimensional binary vectors
in each of which at least k components are 1. We next show a lemma to
derive a realizable vector over Xl−1 from two realizable vectors over Xl.

Lemma 2 Let l < p, and let ~h1, ~h2 be vectors that are realizable over Xl.
For any ~h ∈ Hbn/2c+1, ~h1 + (~h2 + ~1) · ~h is realizable over Xl−1, where ~1 =

(1, . . . , 1), and for any ~a = (a1, . . . , an) and any ~b = (b1, . . . , bn), we have

~a ·~b = (a1b1, . . . , anbn).

Proof of Lemma 2: Without loss of generality, we prove the lemma for
~h = (0, . . . , 0

︸ ︷︷ ︸

dn/2e−1

, 1, . . . , 1
︸ ︷︷ ︸

bn/2c+1

). Let P1, P2 be two profiles over Xl, each of which

is composed of n votes, such that f(P1) = ~h1 and f(P2) = ~h2. Let P1 =

(V 1
1 , . . . , V 1

n ), P2 = (V 2
1 , . . . , V 2

n ), ~a = SSPOl
(P1), ~b = SSPOl

(P2). We define
a profile P = (V1, . . . , Vn) over Xl−1 as follows.

1. Let W1, . . . , Wn be n null partial orders over Xl−1.
2. For any j ≤ n and any ~e1, ~e2 ∈ Xl, we let (1l−1, ~e1) �Wj

(1l−1, ~e2) if
~e1 �V 1

j
~e2; and we let (0l−1, ~e1) �Wj

(0l−1, ~e2) if ~e1 �V 2
j

~e2.

3. For any dn/2e ≤ j ≤ n, we let (1l−1,~a) �Wj
(0l−1,~b).
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4. Finally, we complete the profile arbitrarily: for any j ≤ n, we let Vj be
an (arbitrary) extension of Wj such that (1l−1,~a) is ranked as low as possible.

We note that (1l−1,~a) is the winner of the subtree in which xl−1 = 1l−1,

(0l−1,~b) is the winner of the subtree in which xl−1 = 0l1, and (1l−1,~a) beats

(0l−1,~b) in their pairwise election (because the votes from dn/2e to n rank

(1l−1,~a) above (0l−1,~b)). Therefore, SSPOl−1
(P ) = (1l−1,~a).

Finally, we have that fP ((1l−1,~a)) = ~h1 + (~h2 + ~1) · ~h. This is because
(1l−1,~a) is ranked just as low as in the profile P1 for voters 1 through dn/2e−1;

for any voter j with dn/2e ≤ j ≤ n, additionally, (0l−1,~b) needs to be placed

below (1l−1,~a), which implies that also, all the alternatives (0l−1,~b
′) for which

j ranked ~b′ below ~b in P2 must be below (1l−1,~a) in j’s new vote in P . This
completes the proof of the lemma. �

Now we are ready to prove the main part of the theorem. It suffices to
prove that for any n ≥ 2p2 + 1, there exists a vector ~hp ∈ N

n such that

each component of ~hp is no more than bp/2 + 1c, and ~hp is realizable over
X . We first prove the theorem for the case in which n is odd. We show the
construction by induction in the proof of the following lemma.

Lemma 3 Let n be odd. For any l′ < p (such that l′ is odd),
~hl′ = (bl′/2c, . . . , bl′/2c

︸ ︷︷ ︸

dn/2e−(l′2+1)/2

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

bn/2c+(l′2+1)/2

)

is realizable over Xp−l′+1, and if l′ < p, then

~hl′+1 =(bl′/2c, . . . , bl′/2c
︸ ︷︷ ︸

l′+1

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

n−(l′+5)(l′+1)/2

, dl′/2e+ 1, . . . , dl′/2e+ 1
︸ ︷︷ ︸

(l′+3)(l′+1)/2

)

is realizable over Xp−l′.

Proof of Lemma 3: The base case in which l′ = 1 corresponds to a single-
issue majority election over two alternatives, where dn/2e− 1 voters vote for
one alternative, and bn/2c+ 1 vote for the other, so that only the latter get
their preferred alternative.

Now, suppose the claim holds for some l′ ≤ p − 2; we next show that
the claim also holds for l′ + 2. To this end, we apply Lemma 2 twice. Let
l = p− l′ + 1.

First, let ~h∗ = (1, . . . , 1
︸ ︷︷ ︸

l′

, 2l′ − 1, . . . , 2l′ − 1
︸ ︷︷ ︸

l′+1

, 0, . . . , 0
︸ ︷︷ ︸

bn/2c−l′+1

, 2l′ − 1, . . . , 2l′ − 1
︸ ︷︷ ︸

dn/2e−l′−2

)
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By Lemma 1, ~h∗ is realizable over Xl (via a permutation of the voters).

Let ~h = (1, . . . , 1
︸ ︷︷ ︸

l′

, 0, . . . , 0
︸ ︷︷ ︸

l′+1

, 1, . . . , 1
︸ ︷︷ ︸

bn/2c−l′+1

, 0, . . . , 0
︸ ︷︷ ︸

dn/2e−l′−2

).

Then, by Lemma 2, ~hl′ + (~h∗ +~1) ·~h is realizable over Xl−1. We have the
following calculation.

~hl′ + (~h∗ +~1) · ~h
=(dl′/2e+ 1, . . . , dl′/2e+ 1

︸ ︷︷ ︸

l′

,

bl′/2c, . . . , bl′/2c
︸ ︷︷ ︸

l′+1

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

dn/2e−(l′+3)(l′+1)/2

,

dl′/2e+ 1, . . . , dl′/2e+ 1
︸ ︷︷ ︸

(l′+1)2/2+1

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

bn/2c−l′−1

)

The partition of the set of voters into these five groups uses the fact that
n ≥ 2p2 +1 implies dn/2e− (l′ +3)(l′ +1)/2 ≥ 0. After permuting the voters
in this vector, we obtain the following vector which is realizable over Xl−1:

~hl′+1 =(bl′/2c, . . . , bl′/2c
︸ ︷︷ ︸

l′+1

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

n−(l′+5)(l′+1)/2

, dl′/2e+ 1, . . . , dl′/2e+ 1
︸ ︷︷ ︸

(l′+3)(l′+1)/2

)

We next let ~h′ = (1, . . . , 1
︸ ︷︷ ︸

bn/2c+1

, 0, . . . , 0
︸ ︷︷ ︸

dn/2e−1

) and

~h′
∗ = (1, . . . , 1

︸ ︷︷ ︸

l′+1

, 0, . . . , 0
︸ ︷︷ ︸

bn/2c−l′

, 2l′+1 − 1, . . . , 2l′+1 − 1
︸ ︷︷ ︸

dn/2e−1

)

By Lemma 1, the latter is realizable over Xl−1. Thus, by Lemma 2, ~hl′+1 +
(~h′

∗ + ~1) · ~h′ is realizable over Xl−2. Through a permutation over the voters,
we obtain the desired vector:

~hl′+2 = (bl′/2c+ 1, . . . , bl′/2c+ 1
︸ ︷︷ ︸

dn/2e−(l′+2)(l′+1)/2−1

, dl′/2e+ 1, . . . , dl′/2e+ 1
︸ ︷︷ ︸

bn/2c+(l′+2)(l′+1)/2+1

)

which is realizable over Xl−2. Therefore, the claim holds for l′ + 2. This
completes the proof of the lemma. �
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If p is odd, from Lemma 3 we know that the theorem is true, by setting
l′ = p. If p is even, then we first set l′ = p−1; then, the maximum component
of ~hl′+1 is dl′/2e+ 1 = d(p− 1)/2e+ 1 = p/2 + 1. Thus we have proved the
upper bound in the theorem when n is odd.

When n is even, we have the following lemma (the proof is similar to the
proof of Lemma 3, so we omitted its proof).

Lemma 4 Let n be even. For any l′ < p (such that l′ is odd),

~hl′ = (bl′/2c, . . . , bl′/2c
︸ ︷︷ ︸

n/2−(l′2−l′+1)/2

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

n/2+(l′2−l′+1)/2

)

is realizable over Xp−l′+1, and if l′ + 1 ≤ p, then

~hl′+1 =(bl′/2c, . . . , bl′/2c
︸ ︷︷ ︸

l′+1

, dl′/2e, . . . , dl′/2e
︸ ︷︷ ︸

n−1−(l′+4)(l′+1)/2

, dl′/2e+ 1, . . . , dl′/2e+ 1
︸ ︷︷ ︸

(l′+2)(l′+1)/2+1

)

is realizable over Xp−l′.

The upper bound in the theorem when n is even follows from Lemma 4.
Moreover, we note that in the step from l′ to l′ + 1 (respectively, from l′ + 1
to l′ + 2), no more than l′ new alternatives are ranked lower than the winner

in the profile that realizes ~hl′+1 (respectively, ~hl′+2). It follows that in the

profile that realizes ~hl′+1 (respectively, ~hl′+2) in Lemma 3 or Lemma 4, the
number of alternatives that are ranked lower than the winner by at least one
voter is no more than (l′ + 1)l′/2 + l′ + 1 = (l′ + 1)(l′ + 2)/2 (respectively,
(l′+2)(l′+3)/2), which equals (p+1)p/2 if l′+1 = p (respectively, (p+1)p/2
if l′+2 = p). Therefore, in the profile that we use to obtain the upper bound,
the winner under SSPO is Pareto-dominated by 2p− (p+1)p/2 alternatives.

Finally, we show that bp/2+2c is a lower bound on MSISSPO
(m, n). Let

P be an n-profile; let SSPO(P ) = ~a, and let ~b1, . . . ,~bp be the alternatives
that ~a defeats in pairwise elections in rounds 1, . . . , p. It follows that in round
j, more than half of the voters prefer ~a to ~bj , because we assume that there
are no ties in the election. Therefore, summing over all votes, there are at
least p × (bn/2c + 1) occasions where ~a is preferred to one of ~b1, . . . ,~bp. It
follows that there exists some V ∈ P in which ~a is ranked higher than at
least dp × (bn/2c + 1)/ne ≥ bp/2 + 1c of the alternatives ~b1, . . . ,~bp. Thus
MSISSPO

(m, n) ≥ bp/2 + 2c.
(End of proof for Theorem 2.) �
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We note that the number of alternatives is m = 2p. Therefore, bp/2 + 2c
is exponentially smaller than the number of alternatives, which means that
there exists a profile for which every voter ranks the winner very close to the
bottom. Moreover, (p + 1)p/2 is still exponentially smaller than 2p, which
means that the winner is Pareto-dominated by almost every other alternative.

Naturally, we wish to avoid such paradoxes. One may wonder whether the
paradox occurs only if the ordering of the issues is particularly unfortunate
with respect to the preferences of the voters. If not, then, for example,
perhaps a good approach is to randomly choose the ordering of the issues.5

Unfortunately, our next result shows that we can construct a single profile
that results in a paradox for all orderings of the issues. While it works for
all orders, the result is otherwise somewhat weaker than Theorem 2: it does
not show a Pareto-dominance result, it requires a number of voters that is at
least twice the number of alternatives, the upper bound shown on the MSI is
slightly higher than in Theorem 2, and unlike Theorem 2, no matching lower
bound is shown.

Theorem 3 For any p, n ∈ N (with p ≥ 2 and n ≥ 2p+1), there exists an n-
profile P such that for any order O over {x1, . . . ,xp}, SSPO(P ) = 11 · · · 1p,
and any V ∈ P ranks 11 · · ·1p somewhere in the bottom p + 2 positions.

Proof of Theorem 3: We first prove a lemma.

Lemma 5 For any c ∈ X , C ⊂ X such that c 6∈ C, and any n ∈ N (n ≥
2m = 2p+1), there exists an n-profile that satisfies the following conditions.
Let F = X \ (C ∪ {c}).
• For any c′ ∈ C, c defeats c′ in their pairwise election.
• For any c′ ∈ C and d ∈ F , c′ defeats d in their pairwise election.
• For any V ∈ P , c is ranked somewhere in the bottom |C|+ 2 positions.

Proof of Lemma 5: We let P = (V1, . . . , Vn) be the profile defined as
follows. Let F1, . . . , Fbn/2c+1 be a partition of F such that for any j ≤ bn/2c+
1, |Fj| ≤ d2m/ne = 1. For any j ≤ bn/2c + 1, we let Vj = [(F \ Fj) � c �
C � Fj ]. For any bn/2c+ 2 ≤ j ≤ n, we let Vj = [C � F � c]. It is easy to
check that P satisfies all conditions in the lemma. �

5Of course, for any ordering of the issues, there exists a profile that results in the
paradoxes in Theorem 2; but this does not directly imply that there exists a single profile
that works for all orderings over the issues.
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Now, let c = 11 · · · 1p and C = {0112 · · ·1p, 110213 · · · 1p, . . . , 11 · · · 1p−10p}.
By Lemma 5, there exists a profile P such that c beats any alternative in C in
pairwise elections, any alternative in C beats any alternative in X \ (C ∪{c})
in pairwise elections, and c is ranked somewhere in the bottom p+2 positions.
This is the profile that we will use to prove the paradox.

Without loss of generality , we assume that O = x1 > x2 · · · > xp. (This
is without loss of generality because all issues have been treated symmetri-
cally so far.) c beats 11 · · · 1p−10p in the first round; c will meet 11 · · · 1p−20p−11p

in the next pairwise election, because 11 · · ·1p−20p−11p beats every other al-
ternative in that branch (they are all in F ), and c will win; and so on. It
follows that c = SSPO(P ). Moreover, all voters rank c in the bottom p + 2
positions.
(End of proof for Theorem 3.) �

6. Multiple-election Paradoxes for SSP with Restrictions on Pref-
erences

The paradoxes exhibited so far placed no restriction on the voters’ pref-
erences. While SSP is perfectly well defined for any preferences that the
voters may have over the alternatives, we may yet wonder what happens if
the voters’ preferences over alternatives are restricted in a way that is natural
with respect to the multi-issue structure of the setting. In particular, we may
wonder if paradoxes are avoided by such restrictions. It is well known that
natural restrictions on preferences sometimes lead to much more positive
results in social choice and mechanism design—for example, single-peaked
preferences allow for good strategy-proof mechanisms [4, 21].

In this section, we study the MSI for SSPO for the following three
cases: (1) voters’ preferences are separable; (2) voters’ preferences are O-
lexicographic; and (3) voters’ preferences are O-legal. For case (1), we show
a mild paradox (and that this is effectively the strongest paradox that can
be obtained); for case (2), we show a positive result; for case (3), we show a
paradox that is nearly as bad as the unrestricted case. All proofs as well as
the tool we use (called CP-nets [5]) are relegated to the appendix.

Theorem 4 For any n ≥ 2p, when the profile is separable, the MSI for
SSPO is between 2dp/2e and 2bp/2c+1.

That is, the MSI of SSPO when votes are separable is Θ(
√

m). Since
limm→∞ Θ(

√
m)/m = 0, in that sense this is still a paradox. However, its
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convergence rate to 0 is much slower than for Θ(log m)/m, which corresponds
to the convergence rate for the earlier paradoxes.

Theorem 5 For any p ∈ N (p ≥ 2) and any n ≥ 5, when the profile is
O-lexicographic, MSI(SSPO) = 3 · 2p−2 + 1. Moreover, SSPO(P ) is ranked
somewhere in the top 2p−1 positions in at least n/2 votes.

Naturally limm→∞(3m/4+1)/m = 3/4, so in that sense there is no para-
dox when votes are O-lexicographic.

Under the previous two restrictions (separability and O-lexicographicity),
SSPO coincides with Seq(maj, . . . , maj) (by Corollary 1 and Proposition 2,
respectively). Therefore, Theorems 4 and 5 also apply to sequential voting
rules as defined in the work of Lang and Xia [17]; furthermore, Theorem 4
also applies to seat-by-seat voting [3].

Finally, we study the MSI for SSPO when the profile is O-legal. Theo-
rem 7 shows that it is nearly as bad as the unrestricted case (Theorem 2).
The proof of Theorem 7 is the most involved proof in the paper and can
be found in the appendix. The idea of the proof is similar to that of the
proof for Theorem 2, but now we cannot apply Lemma 2, because O-legality
must be preserved. We start with a simpler result for a specific tie-breaking
mechanism.

Theorem 6 There exists a way to break ties in SSPO such that the following
is true. Let SSP ′

O be the rule corresponding to SSPO plus the tie-breaking
mechanism. For any p ∈ N, there exists an O-legal profile that consists of
two votes, such that in one of the two votes, no more than dp/2e alternatives
are ranked lower than the winner SSP ′

O(P ); and in the other vote, no more
than bp/2c alternatives are ranked lower than SSP ′

O(P ).

We emphasize that, unlike any of our other results, Theorem 6 is based
on a specific tie-breaking mechanism. The next theorem studies the more
general and complicated case in which n can be either odd or even, and the
winner does not depend on the tie-breaking mechanism. That is, there are
no ties in the election. The situation is almost the same as in Theorem 2.

Theorem 7 For any p, n ∈ N with n ≥ 2p2 + 2p + 1, there exists an O-legal
profile such that in each vote, no more than dp/2e+4 alternatives are ranked
lower than SSPO(P ). Moreover, SSPO(P ) is Pareto-dominated by at least
2p − 4p2 alternatives.
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Of course, the lower bound on the MSI from Theorem 2 still applies when
the profile is O-legal, so together with Theorem 7 this proves that the MSI
for SSPO when the profile is O-legal is Θ(log m), just as in the unrestricted
case.

7. Minimax Satisfaction Index of Other Common Voting Rules

So far, we have focused strictly on strategic sequential voting (SSP) in
multi-issue domains (and voting trees, but only in the sense of their equiv-
alence to strategic sequential voting). Hence, at this point, it may not be
clear whether the paradoxes (or, in some cases, lack of paradoxes) that we
have shown are due to the sequential, multi-issue nature of the process, or
whether they are due to the strategic behavior, or whether such paradoxes
are prevalent throughout voting settings.

First, let us address the question of to what extent they are due to strate-
gic behavior. To answer this, it is most natural to compare to SeqO(maj, . . . , maj)
(“truthful” sequential voting), which is only well defined when the profile is
O-legal. In fact, as we have already pointed out, our results for separable
and O-lexicographic profiles apply just as well to truthful sequential voting,
because by Corollary 1 and Proposition 2, the strategic aspect makes no dif-
ference here. This only leaves the question of whether there is a paradox
under SeqO(maj, . . . , maj) when the profile is O-legal but not otherwise re-
stricted; in this case, SeqO(maj, . . . , maj) is truly different from SSPO, as
illustrated by Example 1. We answer this question by the following Propo-
sition, which shows a much milder paradox.

Proposition 4 For any n ≥ 2p, when the profile is O-legal, the MSI for
SeqO(maj, . . . , maj) is between 2dp/2e and 2bp/2c+1.

Proof: Let P = (V1, . . . , Vn) be an O-legal profile. Without loss of
generality SeqO(maj, . . . , maj)(P ) = (11, . . . , 1p).

First, we prove the lower bound. Because 11 · · · 1p is the winner, for any
i ≤ p, at least half of the voters prefer 1i to 0i, given that x1, . . . ,xi−1 all take
value 1. Therefore, by a simple counting argument as in the proof of Theo-
rem 4, there exist j ≤ n and a set of issues I ′ ⊆ I that satisfy the following
two conditions. (1) |I ′| ≥ p/2, and (2) for any xi ∈ I ′, 1i �Vj |xi:11···1i−1

0i,
that is, voter j’s preference over xi is 1i � 0i, given that x1, . . . ,xi−1 all take
value 1. For any ~d = (d1, . . . , dp) ∈ X such that ~d only takes value 1 for

issues outside I ′ (and ~d takes value 0 for at least one issue in I ′), we next
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prove that (11, . . . , 1p) �Vj
~d. Let ~d be such an alternative, and xi1 , . . . ,xik

be the issues for which ~d takes value 0 (with k ≥ 1, {xi1 , . . . ,xik} ⊆ I ′, and
i1 < i2 < · · · < ik); that is, for any l ≤ k, we have dil = 0l, and for any
xi ∈ I \ {xi1 , . . . ,xik}, we have di = 1i. We recall that for any xi ∈ I ′,
1i �Vj |xi:11···1i−1

0i. Therefore, for any l ≤ k, we have the following preference
relationship.

(11, . . . , 1il−1, 1il, dil+1, . . . , dp)

�Vj
(11, . . . , 1il−1, 0il, dil+1, . . . , dp)

=(11, . . . , 1il−1, dil, dil+1, . . . , dp)

We obtain the following preference relationship by chaining the above pref-
erence relationships.

(11, . . . , 1p)

�Vj
(11, . . . , 1ik−1, 0ik , 1ik+1, . . . , 1p)

= (11, . . . , 1ik−1, dik , dik+1, . . . , dp)

�Vj
(11, . . . , 1ik−1−1, 0ik−1

, 1ik−1+1, . . . , 1ik−1, dik , . . . , dp)

= (11, . . . , 1ik−1−1, dik−1
, dik−1+1, . . . , dp)

...

�Vj
(11, . . . , 1i1−1, 0i1, 1i1+1, . . . , 1i2−1, di2, . . . , dp)

= (d1, . . . , dp) = ~d

Because |I ′| ≥ dp/2e, the number of such ~d’s is at least 2dp/2e − 1. It follows
that the minimax satisfaction index is at least 2dp/2e.

The upper bound follows directly from Theorem 4 and Proposition 3
(when the profile is separable, the SSP winner is the same as the Seq winner,
and any separable profile must be O-legal for any O). �

Having settled the effect of the strategic behavior, we next investigate the
effect of the multi-issue nature of the setting. We do this by studying the
MSI of common voting rules in non-combinatorial settings, where there is a
single issue (but one that can take more than two values). In this context,
studying strategic behavior seems intractable. By the Gibbard-Satterthwaite
theorem [13, 23], without restrictions on preferences, no strategy-proof rules
exist other than dictatorships and rules that exclude certain alternatives ex
ante. Moreover, even with complete information, common voting rules have
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many different equilibria. Hence, we focus on studying the extent to which
paradoxes occur when voters vote truthfully.

Specifically, we investigate the minimax satisfaction indices of positional
scoring rules (including k-approval and Borda), plurality with runoff (P luo),
Copelandα, maximin, ranked pairs, Bucklin, STV, and (not necessarily bal-
anced) voting trees. Of course, these rules can be applied to multi-issue
domains as well as to any other domains, but they do not make use of multi-
issue structure; in general, we just have a set of alternatives C = {c1, . . . , cm}.
Throughout the remainder of this section, we assume that m ≥ 3, and that
ties are broken in the order c1 � c2 � · · · � cm.

First, we prove several easy results.

Proposition 5 Let m, n ∈ N.
• MSIDict(m, n) = m;
• for any k ≤ m, MSIAppk

(m, n) = m + 1− k;
• MSIP luo(m, n) = m;
• MSISTV (m, n) = m;
• MSIBucklin(m, n) ≥ m/2.

Proof:
• Dictatorship. The dictator always gets her most preferred alternative, and
is hence maximally satisfied.
• k-approval. Let P be an arbitrary profile in which c1 is ranked in the
(m + 1− k)th position from the bottom. It follows that the total score of c1

is n. Therefore, Appk(P ) = c1 (we remember that ties are broken in favor of
c1).

Let P be a profile such that Appk(P ) is ranked within m − k positions
from the bottom. It follows that the total score of Appk(P ) is 0, and there
exists c ∈ X such that the total score of c is positive. This contradicts the
assumption that Appk(P ) is the winner.
• Plurality with runoff. We prove that the winner must be ranked in the top
position in at least one vote. Suppose for the sake of contradiction, there
exists a profile P such that P luo(P ) is ranked in the top position in none
of the votes in P . Because P luo(P ) enters the second round, it must be the
case that all the other alternatives are never ranked in the top position, with
exactly one exception, denoted by c. However, c beats P luo(P ) in the second
round, which is a contradiction.
• STV. Suppose for the sake of contradiction, there exists a profile P such
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that c = STV (P ) and c is not ranked in the top position in any vote. Then,
in any round, any alternative that is ranked in the first position in some vote
will not be eliminated (because c is ranked in the top position in no vote).
It follows that c is not the winner, which contradicts the assumption.
• Bucklin. Suppose for the sake of contradiction, there exists a profile P
such that c = Bucklin(P ) and c is ranked within bm/2c positions from the
bottom. Then, in each vote, there are dm/2e alternatives ranked in top
dm/2e positions, which means that there exists an alternative that is ranked
within top dm/2e positions in at least dm/2e × n/(m − 1) > n/2 votes. It
follows that the Bucklin score of that alternative is no more than dm/2e. We
note that the Bucklin score of c is dm/2e+1. This contradicts the assumption
that c is the winner under Bucklin. �

We also obtain bounds on MSI for other common voting rules mentioned
in this paper.

Proposition 6 (Borda) Let m ∈ N. For any n ∈ N such that n is even,
MSIBorda(m, n) = bm/2 + 1c; for any n ∈ N such that n ≥ m, and n is odd,
MSIBorda(m, n) = dm/2 + 1e.
Proof: For any n ∈ N such that n is even, we let P be the profile in
which n/2 votes are c2 � c3 � · · · � cbm/2c � c1 � cbm/2+1c · · · � cm, and
the other n/2 votes are in the reversed order, that is, they are cm � cm−1 �
· · · � cbm/2+1c � c1 �bm/2c� · · · � c2. If m is odd, then the total score of any
alternative is n(m− 1)/2, thus c1 is the winner. If m is even, then the total
score of c1 is nm/2, and the total score of any other alternative is n(m −
1)/2, thus c1 is the winner. It follows that MSIBorda(m, n) ≤ bm/2 + 1c.
We next show that MSIBorda(m, n) ≥ bm/2 + 1c. Suppose for the sake of
contradiction, there exists a profile P that is composed of n voters, such that
Borda(P ) is ranked below the bm/2+1cth position from the bottom. Then,
the total score of Borda(P ) is at most bm/2 − 1cn. However, the average
total score of all alternatives is (m − 1)n/2, which means that there exists
an alternative whose total score is at least (m− 1)n/2 > bm/2− 1cn. This
contradicts with the assumption that Borda(P ) is the winner. It follows that
MSIBorda(m, n) = bm/2 + 1c.

Similarly we can prove that for any n ∈ N such that n ≥ m and n is odd,
MSIBorda(m, n) = dm/2 + 1e. �

Proposition 7 (Copeland) Let m, n ∈ N. If either 0 < α ≤ 1, or n is odd
and α = 0, then MSICopelandα

(m, n) ≥ αm/4. For any n ≥ 2m such that n
is even, MSICopeland0

(m, n) = 2.
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Proof: We first prove the proposition for the case in which 0 < α ≤ 1 or n
is even. Let P be an n-profile and Copelandα(P ) = c. The sum of Copeland
scores of the alternatives in X \ {c} is at least α(m − 1)(m − 2)/2, which
means that the Copeland score of c is at least (α(m−1)(m−2)/2)/(m−1) =
α(m − 2)/2. It follows that the number of draws and wins for c in the
pairwise elections is at least α(m − 2)/2. Therefore, MSICopelandα

(m, n) ≥
(α(m− 2)/2)/2 + 1 ≥ αm/4.

Next, we prove the proposition for the case in which α = 0, n ≥ 2m, and
n is even. Let P be an n-profile, defined as follows.

• For any 3 ≤ i ≤ n/2 + 2, we let Vi−2 = [ci � ci+1 � · · · � ci+m−4 �
c1 � c2 � ci+m−3], where for any j ∈ N, cj = cj+m−2.

• For any 3 ≤ i ≤ n/2 + 1, we let Vn/2+i−2 = [c2 � ci+m−3 � ci+m−4 �
· · · � ci+1 � ci � c1].

• Vn = [cn/2+1 � cn/2 � · · · � cn/2+3 � cn/2+2 � c1 � c2].

We observe that in P , c1 beats c2 in pairwise election; for any 3 ≤ j ≤ m, cj

beats c1 in pairwise election; for any 2 ≤ j1, j2 ≤ m with j1 6= j2, cj1 and cj2

draw in pairwise election. It follows that the Copeland score of c2 is 0, and the
Copeland score of any other alternative is 1. Therefore Copeland0(P ) = c1.
�

Proposition 8 (Maximin) Let m, n ∈ N with n ≥ m−1. MSImaximin(m, n) ≤
3.

Proof: Let M be the cyclic permutation on {c2, . . . , cm} defined as follows.
For any 2 ≤ i ≤ m, M(ci) = ci+1, where ci = ci+m−1. For any j ≤ n, we let
Vj = [M j(c2) � M j(c3) � · · ·M j(cm−2) � c1 � M j(cm−1) � M j(cm)]. We
have that min{N(c1, ci) : i 6= 1} ≥ 2bn/(m − 1)c, and for any 2 ≤ i ≤ m,
min{N(ci, ci′) : i′ 6= i} ≤ dn/(m− 1)e. Because n ≥ m− 1, 2bn/(m− 1)c ≥
dn/(m− 1)e, which means that Maximin(P ) = c1.
(End of proof for Proposition 8.) �

Proposition 9 (Ranked pairs) Let m, n ∈ N with n ≥ √m. MSIrp(m, n) ≥√
m.

Proof: Suppose for the sake of contradiction, there exists a profile P such
that c = RankedPairs(P ) and c is ranked lower than the b√mcth position
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from the bottom. It follows that there exists an alternative c′ such that c′ is
ranked above c in at least (m −√m)n/m = (1− 1/

√
m)n votes. Because c

is the winner, there exists a sequence of alternatives d1, . . . , dk such that c is
ranked above d1 in at least (1 − 1/

√
m)n votes, dk is ranked above c′ in at

least (1− 1/
√

m)n votes, and for any i ≤ k− 1, di is ranked above di+1 in at
least (1 − 1/

√
m)n votes. We let d0 and dk+1 denote c and c′, respectively.

We prove the next claim by induction.

Claim 1 For any 1 ≤ i ≤ k + 1, we have d0 � d1 � · · · � di in at least
n(1− i/

√
m) votes.

Proof: The i = 1 case is trivial. Suppose that the claim holds for some
i ≤ k, we next show that the claim also holds for i + 1. Because at most in
n/
√

m votes di+1 is ranked above di, at least in n(1− i/
√

m)− n/
√

m votes
we have d0 � d1 � · · · � di � di+1. Therefore the claim holds for i + 1. It
follows that the claim holds for any i ≤ k + 1. �

By Claim 1, if k + 1 <
√

m − 1, then in at least n(1 − (k + 1)/
√

m) >
n/
√

m votes we have c � c′, which contradicts the assumption that c′ is
ranked above c in at least (1− 1/

√
m)n votes. Therefore, we must have that

k + 1 ≥ √m − 1, which means that d0 � d1 � · · · � db√mc−1 in at least
(1 − (b√mc − 1)/

√
m)n ≥ 1 votes. This contradicts the assumption that c

is ranked lower than the
√

mth position from the bottom. �

Proposition 10 (Voting trees) Let T be a voting tree; let c be the alter-
native whose corresponding leaf is closest to the root among all leaves in T ,
and let its distance to the root be denoted l. If l = 1, then for any n ≥ 2m,
MSIrT

(m, n) = 3; if l ≥ 2, then for any n ≥ 2m, MSIrT
(m, n) = bl/2 + 2c.

Proof: We first prove the following claim.

Claim 2 Let T ′ be a voting tree, X ′ be the set of alternatives (leaf nodes) in
T ′, |X ′| = m′.

~h∗ = ( 0, . . . , 0
︸ ︷︷ ︸

bn/2c−m′+1

, 1, . . . , 1
︸ ︷︷ ︸

m′

, m′ − 1, . . . , m′ − 1
︸ ︷︷ ︸

dn/2e−1

)

is realizable over X ′ through T ′.

Proof: The proof is constructive. Without loss of generality, we let
X ′ = {c1, . . . , cm′}. Let P be the profile that is defined as follows.
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• For any i ≤ bn/2c −m′ + 1, let Vi = [cm′ � cm′−1 � · · · � c1].

• For any i ≤ m′, let Vbn/2c−m′+1+i = [X ′ \ ({c1, ci})] � c1 � ci.

• For any bn/2c ≤ i ≤ n, let Vi = [c1 � c2 � · · · � cm′ ].

It is easy to check that fP (rT (P )) = ~h∗. �

Then, following a similar construction as in the proof for Theorem 2,
we can prove that if l ≥ 2, then MSIrT

(m, n) = bl/2 + 2c; if l = 1, then
MSIrT

(m, n) = 3.
�

Proposition 10 implies that among all voting trees for m alternatives,
balanced voting trees have the highest MSI, which in some sense implies
that balanced voting trees are the most resistant voting trees to multiple
election paradoxes.

8. Conclusion and Future Work

Combinatorial voting settings, in which the space of all alternatives is
exponential in size, constitute an important area in which techniques from
computer science can be fruitfully applied. Perhaps the simplest and most
natural combinatorial voting setting is that of multi-issue domains, where
the space of alternatives is the Cartesian product of the local domains. In
practice, common decisions on multiple issues are often reached by voting on
the issues sequentially. In this paper, we considered a complete-information
game-theoretic analysis of sequential voting on binary issues, which we called
strategic sequential voting. Specifically, given that voters have complete
information about each other’s preferences and their preferences are strict,
the game can be solved by a natural backward induction process (WSDSBI),
which leads to a unique solution. We showed that under some conditions
on the preferences, this process leads to the same outcome as the truthful
sequential voting, but in general it can result in very different outcomes. We
analyzed the effect of changing the order over the issues that voters vote on
and showed that, in some elections, every alternative can be made to win by
voting according to an appropriate order over the issues.

Most significantly, we showed that strategic sequential voting is prone to
multiple-election paradoxes; to do so, we introduced a concept called mini-
max satisfaction index, which measures the degree to which at least one voter
is made happy by the outcome of the election. We showed that the minimax
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Voting rule MSI
Dictatorships m (Proposition 5)
Plu w/ runoff m (Proposition 5)

STV m (Proposition 5)
Copelandα (0 < α ≤ 1) Θ(m) (Proposition 7)

Borda (n ≥ m) Θ(m) (Proposition 6)
Bucklin Θ(m) (Proposition 5)

SeqO(maj, . . . , maj)
(O-lexico profiles)

3m/4 + 1 (Theorem 5)

SSPO (O-lexico profiles) 3m/4 + 1 (Theorem 5)
k-Approval

(incl. Plurality and Veto)
m + 1− k (Proposition 5)

Ranked pairs (n ≥ √m) Ω(
√

m) (Proposition 9)
SeqO(maj, . . . , maj)
(separable profiles)

Θ(
√

m) (Theorem 4)

SSPO (separable profiles) Θ(
√

m) (Theorem 4)
SeqO(maj, . . . , maj)

(O-legal profiles)
Θ(
√

m) (Proposition 4)

SSPO (O-legal profiles)
between blog m/2 + 2c

and blog m/2 + 5c (Theorem 7)

SSPO 6 blog m/2 + 2c (Theorem 2)
Voting tree (n ≥ 2m) bl/2 + 2c 7 (Proposition 10)
Maximin (n ≥ m− 1) ≤ 3 (Proposition 8)
Copeland0 (n is even) 2 (Proposition 7)

Table 2: The minimax satisfaction index for strategic sequential voting (SSP), truth-
ful sequential voting (Seq), and common voting rules, ranked roughly from high to low.
(“Roughly” because, for example, k-approval is really a family of voting rules, and plural-
ity (namely, 1-approval) has a high MSI of m, whereas veto (namely, (m − 1)-approval)
has a low MSI of 2.) For multi-issue domains, m = 2p, p ∈ N. A low MSI implies the
existence of a paradox for the rule. Results for SSP (Seq) are highlighted in dark grey
(light grey).
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satisfaction index for strategic sequential voting is exponentially small, which
means that there exists a profile for which the winner is ranked almost in the
bottom positions in all votes; even worse, the winner is Pareto-dominated
by almost every other alternative. We showed that changing the order of
the issues in sequential voting cannot completely avoid the paradoxes. These
negative results indicate that the solution of the sequential game can be ex-
tremely undesirable for every voter. We also showed that multiple-election
paradoxes can be avoided to some extent by restricting voters’ preferences to
be separable or lexicographic, but the paradoxes still exist when the voters’
preferences are O-legal.

For the sake of benchmarking our results, we also study the minimax
satisfaction index for some common voting rules (under truthful voting).
The results are summarized in Table 2. For a voting rule with a low (high)
MSI, we can (cannot) find a paradox that is similar to the first type of
multiple-election paradoxes—that is, a profile for which the winner is ranked
in extremely low positions in all votes.

From this table, we may conclude that: (1) in sequential voting, the
paradoxes are stronger when voting is strategic than when it is truthful,
though of course this is no longer true if we are in a restricted setting where
truthful and strategic voting lead to identical results (that is, when the profile
is separable or lexicographic); (2) the strength of the paradoxes for sequential
voting ranks somewhere in the middle, though perhaps somewhat more on
the strong side, among standard social choice rules (when voters are assumed
to vote truthfully).

There are many topics for future research. For example, given a profile,
can we characterize the set of alternatives that win for some order over the
issues?8 Is there any criterion on the selection of the order over the issues?
Perhaps more importantly, how can we get around the multiple-election para-
doxes in sequential voting games? For example, Theorem 5 shows that if the
voters’ preferences are lexicographic, then we can avoid the paradoxes. It is
not clear if there are other ways to avoid the paradoxes (paradoxes occur even

6Additionally, there exists a profile P such that for any order O over the issues, the
maximum satisfaction index of SSPO for P is no more than log m + 2 (Theorem 3).

7l is the minimum distance from the root to a leaf, l ≤ log m. If l = 1, then
MSIrT

(m, n) = 3.
8This results in a social choice set or correspondence; social choice sets have recently

attracted attention from computer scientists [8].
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if we restrict voters’ preferences to be separable or O-legal, as shown in Theo-
rem 4 and Theorem 7). Another approach is to consider other, non-sequential
voting procedures for multi-issue domains. What are good examples of such
procedures? Will these avoid paradoxes? What is the effect of strategic be-
havior for such procedures? How should we even define “strategic behavior”
for such procedures, or for sequential voting with non-binary issues, or for
voting rules in general? How can we extend these results to incomplete-
information settings?9 Also, beyond proving paradoxes for individual rules,
is it possible to show a general impossibility result that shows that under
certain minimal conditions, paradoxes cannot be avoided?10
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Appendix A. Proofs for Theorems in Section 6

We use Conditional preference networks (CP-nets) [5], to better present
our proofs. CP-nets are a popular language for specifying preferences devel-
oped in the artificial intelligence community. The language is based on the
notion of conditional preferential independence, thus allowing for eliciting
preferences and for storing them as compactly as possible.

Definition 3 (CP-nets [5]) A CP-net N over X is a pair consisting of the
following two parts:

• A directed acyclic11 graph G = (I, E) over the set of issues I. For any
variable xi, let ParG(xi) denote the set of parents of xi in G.

• A collection of conditional preference tables CPT (xi) for each xi ∈ I,
defined as follows: each conditional preference table CPT (xi) associates
a total order �i

~u on Di with each instantiation ~u of xi’s parents in G.

Intuitively, the edges of G represent preferential dependencies: for every
i, xi is preferentially independent from its “non-parents” given its parents.

Example 3 Let N be the following CP-net, whose graph G is depicted in
the left, and the conditional preference tables are in the right.

x1 x2 x3

01 � 11
01 : 02 � 12

11 : 12 � 02

0102 : 03 � 13

0112 : 03 � 13

1102 : 03 � 13

1112 : 13 � 03

CPT (x1) CPT (x2) CPT (x3)

Given a voter’s CP-net, if we take an alternative and change the value
of a single issue to obtain a new alternative, we can determine whether the
voter prefers the old or the new alternative, based on the CPT for that
issue. We can then make further inferences about the voter’s preferences
based on transitivity, although we will in general not be able to infer the
voter’s entire linear order over all alternatives. More precisely, a CP-net N

11The original definition of CP-nets [5] allows G to contain cycles. However, in this
paper we do not need to refer to this more general framework. Note that the assumption
that G is acyclic is usual (see [6, 5]).
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induces the partial order �N , defined as the transitive closure of {(ai, ~u, ~z) �
(bi, ~u, ~z)) | i ≤ p; ~u ∈ DParG(xi); ai, bi ∈ Di s.t. ai �i

~u bi; ~z ∈ DI\(ParG(xi)∪{xi})}.
It is known [5] that if N is acyclic, then �N is transitive and asymmetric,
that is, a strict partial order. (This is not necessarily the case if N is not
acyclic.)

Example 4 The partial order �N of the CP-net N defined in Example 3 is
depicted below, where 000 is the abbreviation for 010203, etc.

�N : 000
↗
↘

010

001

↘
↗ 011→ 111→ 110→ 100→ 101

A linear order V extends a CP-net N , denoted by V ∼ N , if it extends
�N—that is, it is consistent with the preferences implied by the CP-net.
The seperability, O-legality, and O-lexicographicity (defined in Section 2.2)
can be defined equivalently by using CP-nets as follows. A linear order V is
separable if it extends a separable CP-net; V is O-legal if it extends a CP-net
whose graph G is consistent with O, that is, for any i, j ≤ p, xi is a parent
of xj if and only if xi is ranked higher than xj in O; V is O-lexicographic if
it is lexicographic and O-legal. We recall that in this paper, we assume that
O = x1 > x2 > · · · > xp. For any valuation ~u of ParGG(xi), let V |

xi:~u and
N|

xi:~u denote the restriction of V (or equivalently, N ) to xi, given ~u. That
is, V |

xi:~u (or N|
xi:~u) is the linear order �i

~u.

Proof of Theorem 4 (the profile is separable): Let P = (V1, . . . , Vn).
For any i ≤ p, we let di = maj(P |

xi
). That is, di is the majority winner for

the projection of the profile to the ith issue. Because any separable profile is
compatible with any order over the issues, P is anO−1-legal profile. It follows
from Corollary 1 that SSPO(P ) = (d1, . . . , dp). Without loss of generality
(d1, . . . , dp) = (11, . . . , 1p).

First, we prove the lower bound. Because for any i ≤ p, at least half of
the voters prefer 1i to 0i, the total number of times that a voter prefers 1
to 0 for an issue, counted across all voters and issues, is at least p · (n/2).
Therefore, there exists j ≤ n such that voter j prefers 1 to 0 on at least p/2
issues, otherwise the total number of times that a voter prefers 1 to 0 for an
issue, counted across all voters and issues, is no more than n · (p/2) − 1 <
p · (n/2), which is a contradiction. Formally put, there exists j ≤ n such
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that |{i ≤ p : 1i �Vj
0i}| ≥ p/2. Without loss of generality for every

i ≤ dp/2e, 1i �Vj
0i. It follows that for any ~a ∈ D1 × · · ·Ddp/2e, we have

that (11, . . . , 1p) �Vj
(~a, 1dp/2e+1, . . . , 1p). Therefore, the minimax satisfaction

index is at least 2dp/2e.
Next, we prove the upper bound. We first show that there exists a set of

n CP-nets N1, . . . ,Nn that satisfies the following two conditions.

1. For each j ≤ n, the number of issues on which Nj prefers 1 to 0 is
exactly bp/2c+ 1.

2. For each i ≤ p, maj(N1|xi
, . . . ,Nn|xi

) = 1i.

The proof is by explicitly constructing the profile through the following n-step
process. Informally, we will allocate p(bn/2c+1) CPT entries “1 is preferred
to 0”, bn/2c + 1 entries per issue, to n CP-nets as even as possible. Let
k1 = · · · = kp = bn/2c+1. In the jth step, we let Ij = {i1, . . . , ibp/2c+1} be the
set of indices of the highest k’s. Then, for any i ∈ Ij , we let Nj|xi

= [1i � 0i]
and ki ← ki − 1; for any i 6∈ Ij , we let Nj|xi

= [0i � 1i]. Because of the
assumption that n ≥ 2p, we have that n(bp/2c + 1) ≥ p(bn/2c + 1), which
means that after n steps, for all i ≤ p, ki ≤ 0.

It left to show that there exists extension of N1, . . . ,Nn such that in each
of these extensions, 11 · · · 1p is ranked within bottom 2bp/2c+1 positions. To
show this, we use the following lemma.

Lemma 6 For any partial order W and any alternative c, we let |DownW (c)| =
{~c′ : c �W c′}, that is, |DownW (c)| is the set of all alternatives (including c)
that are less preferred to c in W . There exists a linear order V such that V
extends W and c is ranked in the |DownW (c)|th position from the bottom.

The proof for Lemma 6 is quite straightforward: for every alternative d
such that d 6∈ DownW (c), we put d � c in the partial order. This does not
violates transitivity, which means that the ordering relation obtained in this
way is a partial order, denoted by W ′. Then, let V be an arbitrary linear
order that extends W ′. It follows that c is ranked at the DownW (c)th position
from the bottom in V .

We note that because for any j ≤ n, the number of entries inNj where 1 �
0 is no more than bp/2+1c. Therefore, for any j ≤ n, |Down�Nj

(11 · · ·1p)| ≤
2bp/2+1c (we recall that �Nj

is the partial order that Nj encodes). Let
V1, . . . , Vn be extensions of N1, . . . ,Nn, respectively, where for all j ≤ n,
11 · · ·1p is ranked as low as possible in any Vj. It follows from Lemma 6 that
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for any j ≤ n, 11 · · · 1p is ranked in the 2bp/2+1cth position from the bottom
in Vj. This proves the upper bound.
(End of proof for Theorem 4.) �

Proof of Theorem 5 (the profile is O-lexicographic): The proof is
for profiles without ties. Without loss of generality SSPO(P ) = 11 · · · 1p and
for every j ≤ bn/2c + 1, 11 �Vj |x1

01. It follows that in V1, . . . , Vbn/2c+1,
11 · · ·1p is ranked within top 2p−1 = m/2 positions. Because in at least
bn/2c+ 1 votes 11 : 12 � 02, there exists a vote V ∈ P such that 11 �V |x1

01

and 11 : 12 �V |x2:11
02. It follows that 11 · · · 1p is ranked in the (3 · 2p−2 +

1)th position from the bottom. This proves that when the profile is O-
lexicographic, MSI(SSPO) ≥ 3 · 2p−2 + 1.

We next prove that 3·2p−2+1 is also an upper bound. Consider the profile
P = (V1, . . . , Vn) defined as follows. For any j ≤ bn/2c+ 1, 11 �Vj |x1

01; for
any bn/2c + 2 ≤ j ≤ n, 12 �Vj |x2:11

02; for j = 1, 2, 12 �Vj |x2:11
02; for any

3 ≤ j ≤ n and any 3 ≤ i ≤ p, 1i �Vj |xi:11···1i−1
0j; for any local preferences of

any voter that is not defined above, let 0 be preferred to 1.
We note that for any i ≤ p, more than n/2 votes in P |

xi:11···1i−1
prefer 1i

to 0i, which means that SSPO(P ) = 11 · · · 1p. It is easy to check that in any
vote, 11 · · · 1p is ranked somewhere within bottom 3 · 2p−2 + 1 positions.
(End of proof for Theorem 5.) �

Proof of Theorem 6 (the profile is O-legal, for a specific tie-breaking
mechanism): The proof is by induction on p. When p = 2, let the CPT of
N1 be 01 � 11, 01 : 12 � 02, 11 : 12 � 02; let the CPT of N2 be 11 � 01, 01 :
02 � 12, 11 : 02 � 12; V1 = [0112 � 0102 � 1112 � 1102]; V2 = [1102 � 0102 �
1112 � 0112]. In the first step, ties are broken in favor of 1112. Given 11, ties
are broken in favor of 12; given 01, ties are broken in favor of 12.

Suppose the claim is true for p = l. Next we construct N1 and N2 for
p = l+1. LetN ′

1,N ′
2, V ′

1 , V ′
2 be the CP-nets and the votes for the case of p = l,

where the multi-issue domain is D2 × · · · ×Dl+1. Without loss of generality
|DownV1(12 · · · 1l+1)| ≤ dl/2e and |DownV2(12 · · · 1l+1)| ≤ bl/2c. We recall
that for any vote V and any alternative c, DownV (c) (defined in Lemma 6)
is the set of all alternatives that are ranked below c in V , including c. Let
~e ∈ D2 × · · · × Dl+1 be an arbitrary alternative such that 12 · · · 1l+1 �V2 ~e.
Such ~e always exists, because if on the contrary 12 · · ·1l+1 is in the bottom of

45



V2, it must be ranked higher than at least l other alternatives in V1 to win the
election, which contradicts the assumption that |DownV1(12 · · · 1l+1)| ≤ dl/2e.
We will explain later why we choose ~e in such a way.

Let N ∗
1 (respectively, N ∗

2 ) be the separable CP-net (we recall that a CP-
net is separable if its graph has no edges) D2 × · · · × Dl+1 in which ~e is in
the top (respectively, bottom) position. For i = 1, 2, we let Ni be a CP-net
over D1 × · · · ×Dl+1, defined as follows:

• 01 �Ni
11.

• The sub-CP-net of Ni restricted on x1 = 11 is N ′
i ;

• The sub-CP-net of Ni restricted on x1 = 01 is N ∗
i ;

Let V1, V2 be the extension of N1 and N2 respectively, that satisfy the fol-
lowing conditions:

• For any ~b, ~d ∈ D2 × · · · × Dl+1 such that ~b 6= ~e, and any i = 1, 2, we
have (01,~b) �Vi

(11, ~d). This condition can be satisfied, because we
have 01 �Ni

11.

• For any~b, ~d ∈ D2×· · ·×Dl+1, and any i = 1, 2, we have that (11,~b) �Vi

(11, ~d) if and only if ~b �V ′
i

~d. This condition says that if we focus on
the order of the alternatives whose x1 component is 11 in Vi, then it is
the same as in V ′

i .

• For any ~d ∈ D2 × · · · ×Dl+1, we have that (01, ~e) �V1 (11, ~d).

• (11, . . . , 1l+1) �V2 (01, ~e) �V2 (11, ~e).

We let the tie-breaking mechanism be defined as follows: in the first step,
ties are broken in favor of 11; in the subgame in which x1 = 11, ties are
broken in the same way as for the profile (V ′

1 , V
′
2) (such that 12 · · · 1l1 is the

winner for the profile); in the subgame in which x1 = 01, ties are broken in
such a way that ~e is the winner (because ~e is ranked in the top position in
one vote, and in the bottom position in the other, there exists a tie-breaking
mechanism under which ~e is the winner).

We note that 11 · · · 1p �V1
~d if and only if ~d = (11, ~d′) for some ~d′ ∈ D2 ×

· · · × Dl+1 such that 12 · · · 1p �V ′
1

~d′. It follows that |DownV1(11 · · · 1l+1)| =
|DownV ′

1
(12 · · · 1l+1)|. We also note that 11 · · ·1l+1 �V2

~b if and only if ~b =
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(01, ~e) or ~b = (11,~b
′) for some ~b′ ∈ D2 × · · · ×Dl+1 such that 12 · · · 1p �V ′

2

~b′.
It follows that |DownV2(11 · · · 1l+1)| = |DownV ′

2
(12 · · · 1l+1)| + 1. Therefore,

|DownV1(11 · · · 1l+1)| ≤ b(l + 1)/2c and |DownV2(11 · · ·1p)| ≤ bl/2c + 1 ≤
d(l + 1)/2e.

Here the trick to choose ~e such that 12 · · · 1l+1 �V ′
2

~e is crucial, be-
cause we force 01 �N2 11 and 11 · · · 1l+1 �V2 (01, ~e), which implies that
11 · · ·1l+1 �V2 (01, ~e) �V2 (11, ~e) (since V2 extends N2). If we chose ~e
such that ~e �V ′

2
12 · · · 1l+1, then we would have that |DownV2(11 · · · 1l+1)| =

|DownV ′
2
(12 · · · 1l+1)|+ 2, which does not prove the claim for p = l + 1.

Next, we verify that SSPO(V1, V2) = 11 · · ·1l+1. We note that (01, ~e) �V1

11 · · ·1l+1. Therefore, in the first step voter 1 will vote for 01. Meanwhile,
11 · · ·1l+1 �V2 (01, ~e), which means that in the first step voter 2 will vote for
11. Because ties are broken in favor of 11 in the first step, we will fix x1 = 11.
Then, in the following steps (step 2, . . . , l+1), 12, . . . , 1l+1 will be the winners
by induction hypothesis, which means that SSPO(V1, V2) = 11 · · · 1l+1.

Therefore, the claim is true for p = l + 1. This means that the claim is
true for any p ∈ N.

Example 5 Let us show an example of the above construction from p = 2
to p = 3. In N1, we have 01 � 11, 11 : N ∗

1 , and 01 : N ′
1, where N ′

1 is
02 � 12, 02 : 13 � 03, 12 : 13 � 03. (We note that N ′

1 is defined over D2×D3.)
V1 restricted to 11 is V ′

1 = [0213 � 0203 � 1213 � 1203] (which is, again, over
D2 ×D3). Let ~e = 0213. Therefore, we have the following construction:

V1 = 010213 � 011213 � 010203 � 011203 � 110213 � 110203 � 111213 �
111203

V2 = 011203 � 010203 � 011213 � 111203 � 110203 � 111213 � 010213 �
110213

Ties are broken in a way such that if we are in the branch in which
x1 = 11, then 1213 is the winner; and if we are in the branch in which
x1 = 01, then ~e = 0213 is the winner. In the first step, ties are broken in
favor of 11. Then, the sub-game winners are 111213 and 010213. Since exactly
one vote (V1) prefers 010213 to 111213, and the other vote V2 prefers 111213

to 010213, the winner is 111213.

(End of proof for Theorem 6.) �

Proof of Theorem 7 (the profile is O-legal, for arbitrary tie-breaking
mechanism): For simplicity, we prove the theorem for the case in which
n = 2p2 + 2p + 1. The proof for the case in which n > 2p2 + 2p + 1 is
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similar. For any l ≤ p, we let Xl = {0l, 1l} × {0l+1, 1l+1} × · · · × {0p, 1p}; let
Ol = xl > xl+1 > · · · > xp. We first prove the following claim by induction.

Claim 3 For any l ≤ p, there exists a Ol-legal profile Pl = Al∪Bl∪Âl∪B̂l∪
{cl} over Xl, where Al = {al

1, . . . , a
l
p2}, Bl = {bl

1, . . . , b
l
p2}, Âl = {âl

1, . . . , â
l
p},

B̂l = {b̂l
1, . . . , b̂

l
p}, that satisfies the following conditions.

• SSPOl
(Pl) = 1l · · · 1p.

• For any V ∈ Pl, |DownV (1l · · · 1p)| ≤ d(p− l + 1)/2e+ 5.

• For any (p − l)p ≤ j ≤ p2, |Downal
j
(1l · · · 1p)| ≤ d(p − l + 1)/2e + 3,

|Downbl
j
(1l · · · 1p)| ≤ d(p− l + 1)/2e+ 3.

• For any p − l ≤ j ≤ p, |Downâl
j
(1l · · · 1p)| ≤ d(p − l + 1)/2e + 3,

|Downb̂l
j
(1l · · · 1p)| ≤ d(p− l + 1)/2e+ 3.

• If p− l + 1 is odd, then

– for any VB ∈ B, |DownVB
(1l · · · 1p)| ≤ d(p− l + 1)/2e+ 4;

– for any (p− l)p ≤ j ≤ p2, |Downbl
j
(1l · · · 1p)| ≤ d(p− l+1)/2e+2;

– and for any p− l ≤ j ≤ p, |Downb̂l
j
(1l · · · 1p)| ≤ d(p− l+1)/2e+2.

• 1l · · · 1p is ranked higher than 1l · · · 1p−20p−10p in all votes in Pl.

Proof of Claim 3: We prove the claim by induction on l. When l = p− 1,
we let all votes in Pp−1 be 1p−11p � 1p−10p � 0p−11p � 0p−10p. It is easy to
check that Pp−1 satisfies all the conditions in the claim. Suppose the claim
is true for l ≤ p, we next prove that the claim is also true for l− 1. We show
the existence of Pl−1 by construction for the following two cases.

Case 1: p− l + 1 is even.
We let N l

1, . . . ,N l
p−l+1,N l

A,N l
B be separable CP-nets over Xl, defined as

follows.

• Let 1l · · · 1p−20p−10p be in the bottom position ofN l
A; let 1l · · · 1p−20p−10p

be in the top position of N l
B.

• For any 1 ≤ i ≤ p − l − 1, let 1l · · · 1l+i−20l+i−11l+i · · · 1p−20p−10p be
in the top position of N l

i ; let 1l · · · 1p−21p−10p be in the top position of
N l

p−l; let 1l · · · 1p−20p−11p be in the top position of N l
p−l+1.
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For any linear order V over Xl, we let the composition of V and N (where
N ∈ {N l

1, . . . ,N l
p−l+1,N l

A,N l
B}) be a partial order Ol−1 over Xl−1, defined as

follows.

• The restriction of Ol−1 on xl−1 = 1l−1 is V . That is, for any ~d1, ~d2 ∈ Xl

such that ~d1 �V
~d2, we let (1l−1, ~d1) �Ol−1 (1l−1, ~d2).

• The restriction of Ol−1 on xl−1 = 0l−1 is the partial order encoded byN .
That is, for any ~d1, ~d2 ∈ Xl such that ~d1 �N ~d2, we let (0l−1, ~d1) �Ol−1

(0l−1, ~d2).

• For any ~d ∈ Xl, we let (0l−1, ~d) �Ol−1 (1l−1, ~d).

• IfN ∈ {N l
1, . . . ,N l

p−l+1,N l
A}, we let 1l−11l · · · 1p �Ol−1 0l−11l · · ·1p−20p−10p.

We are now ready to define Pl−1. Any V ∈ Pl−1 has a counterpart in Pl.
For example, the counterpart of âl−1

1 is âl
1. For any V ∈ Pl−1, V is defined

to be the extension of the composition of V ’s counterpart in Pl and some N
(where N ∈ {N l

1, . . . ,N l
p−l+1,N l

A,N l
B}), in which 1l−1 · · · 1p is ranked as low

as possible. Next we specify which N that each V ∈ Pl−1 corresponds to in
the following table.

for all votes in Pl−1 is composed of

1 ≤ j ≤ p âl−1
j âl

j N l
A

j ≤ (p− l)p al−1
j al

j N l
A

(p− l)p + 1 ≤ j ≤ (p− l + 1)p al−1
j al

j N l
j−(p−l)p

(p− l + 1)p + 1 ≤ j ≤ p2 al−1
j al

j N l
A

b̂l−1
p−l+2 b̂l

p−l+2 N l
A

j 6= p− l + 2 b̂l−1
j b̂l

j N l
B

j ≤ p2 bl−1
j bl

j N l
B

cl−1 cl N l
B

Table A.3: From Pl to Pl−1.

It follows that Pl−1 is Ol−1-legal. By Lemma 6, we have the following
calculation.
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• For any 1 ≤ j ≤ p, |Downâl−1
j

(1l−1 · · · 1p)| = |Downâl
j
(1l · · · 1p)| +

1. This is because for any ~d ∈ Xl such that ~d ∈ Downâl
j
(1l · · · 1p),

1l−1 · · · 1p is ranked higher than (1l−1, ~d) in âl−1
j ; and moreover, 1l−1 · · · 1p

is ranked higher than 0l−11l · · ·1p−20p−10p in âl−1
j .

• For any 1 ≤ j ≤ p, |Downal−1
(p−l)p+j

(1l−1 · · · 1p)| = |Downal
(p−l)p+j

(1l · · · 1p)|+
3. This is because for any ~d ∈ Xl such that ~d ∈ Downa(p−l)p+j

(1l · · · 1p),

1l−1 · · · 1p is ranked higher than (1l−1, ~d) in a(p−l)p+j; and moreover,
1l−1 · · · 1p is ranked higher than 0l−11l · · · 1p−20p−10p in a(p−l)p+j.

• For any j ≤ (p−l)p or (p−l+1)p+1 ≤ j ≤ p2, |Downal−1
j

(1l−1 · · · 1p)| =
|Downal

j
(1l · · · 1p)|+ 1.

• |Downb̂l−1
p−l+2

(1l−1 · · ·1p)| = |Downb̂l
p−l+2

(1l · · · 1p)|+ 1.

• For any VB ∈ (Bl−1 ∪ B̂l−1 ∪ {c}) \ {b̂p−l+2}, |DownVB
(1l−1 · · · 1p)| =

|DownV l
B
(1l · · · 1p)|, where V l

B is the counterpart of VB in Pl.

We next prove that SSPOl−1
(Pl−1) = 1l−1 · · · lp. We note that Pl−1|xl−1=1l−1

=
Pl. Therefore, if in the first step 1l−1 is chosen, then the winner is 1l−1 · · · 1p.
We also note that Pl−1|xl−1=0l−1

is separable (and the CP-nets areN l
1, . . . ,N l

p−l+1,

p2+p copies of N l
A and p2+p copies ofN l

B). Therefore, if in the first step 0l−1

is chosen, then the winner is 0l−11l · · · 1p−21p−11p. Because exactly p2 + p− 1
votes in Pl−1 prefer 0l−11l · · · 1p−21p−11p to 1l−1 · · · 1p (those votes corresponds
to N l

B in the construction), we have that 1l−1 is the winner in the first step.
Therefore, SSPOl−1

(Pl−1) = 1l−1 · · · lp. It is also easy to verify that Pl−1

satisfies all conditions in the claim.
Case 2: p− l + 1 is odd. The construction is similar as in the even case.

The only difference is that we switch the role of Al and Bl (also Âl and B̂l).
�

The theorem follows from Claim 3 by letting l = 1, and it is easy to
check that in P1 in Claim 3 (l = 1), no more than 4p2 alternatives has been
ranked lower than SSPO(P1) in any vote, which means that SSPO(P1) is
Pareto-dominated by at least 2p − 4p2 alternatives.
(End of proof for Theorem 7.) �
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