
Allocating Public Goods via the Midpoint Rule

Tobias Lindner∗ Klaus Nehring† Clemens Puppe‡

Preliminary draft, February 2008

Abstract

We study the properties of the following midpoint rule for determining discrete
quantities of different public goods under a budget constraint. Each individual submits
a proposal and the feasible allocations are ranked according to the sum of their dis-
tances (in the natural metric) to the individual proposals. One of the allocations with
minimal aggregate distance is chosen. We prove that the midpoint rule is strategy-
proof if all individuals have symmetric single-peaked preferences.

1 Introduction

to be written

2 Basic Notation and Definitions

A society can spend an amount L on the provision of k different public goods in discrete
non-negative quantities. Throughout, we will assume that individuals have monotone
preferences; moreover, for simplicity, we assume that the public goods are measured in
money terms. Together, these assumptions allow us to model the allocation problem as
the choice of an element of the k − 1-dimensional simplex

X := {x ∈ Nk
0 :

k∑
i=1

xi = L},

where xi is the amount of public good i.
By d(x, y) := 1

2

∑
i | xi − yi | we denote the distance between x and y in the simplex.

The set X is naturally endowed with a graph structure such that two points x and y are
connected by an edge if and only if d(x, y) = 1 (see Figure 1 for the case k = 3). The
metric d is then the natural graph distance given by the minimal number of edges needed
to connect two points by a path. A path connecting two points with a minimal number
of edges is called a shortest path; note that shortest paths need not be unique. We write
xNy if x and y are neighbors in the graph, i.e. xNy ⇔ d(x, y) = 1. Furthermore, we write
xNijy if xi = yi + 1, xj = yj − 1 and xl = yl for all l 6= i, j, i.e. if x and y are neighbors in
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the “ij-direction;” note that while the binary relation N is symmetric, the relations Nij

are asymmetric and satisfy xNijy ⇔ yNjix.
The set of all points that lie on some shortest path between x and y is also called the

set of points between x and y and denoted by [x, y]. As is easily verified, we have

[x, y] = {z : zi ∈ [xi, yi] for all i}

(see Figure 1 where [x, y] = {x, y, z, z′}). The set of all points which are closer to x
than to y, i.e. the set of all z such that d(z, x) < d(z, y) will be denoted by 〉x, y〉. Note
that 〉x, y〉 = {z : x ∈ [z, y]}, i.e. a point is closer to x than to y if and only if x lies
on a shortest path between the given point and y. For neighbors, the set 〉x, y〉 has the
following particularly simple description (see Figure 1 in which xN31z),

xNijz ⇒ 〉x, y〉 = {w : wi ≥ xi and wj ≤ xj}. (1)
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Figure 1: Illustrating the sets [x, y], 〉x, z〉 and 〉z, x〉

The midpoint rule is defined as follows: Each individual submits a proposal w ∈ X and
allocations are ranked according to the sum of their respective distances to the individual
proposals.1 Formally, denote by p the distribution of the proposals on X, i.e. for each
w ∈ X, pw is the number of individuals who proposed w. Furthermore, for all x ∈ X,
denote by R(x) :=

∑
pwd(x,w) the remoteness of x given p. An allocation m(p) ∈ X is a

midpoint if

m(p) = argminx∈X
∑
w∈X

pwd(x,w) = argminx∈XR(x),

i.e. a midpoint is a point with minimal remoteness. Let M(p) denote the set of midpoints.
Evidently, M(p) need not be a singleton but it is always non-empty.

1The midpoint rule is related to other well-known aggregation procedures. In median spaces, the
midpoint rules coincides with issue-by-issue majority voting (see Nehring and Puppe, 2007). In particular,
in the classical case of single-peaked preferences on a line the midpoint rule chooses the median of the
individual peaks. Our main theorem below thus entails the classical median voter theorem as a special
case. Also outside median spaces versions of the midpoint rule have been considered in the literature, for
instance by Kemeny (1959) in the context of the aggregation of preference orderings employing a specific
metric on the space of preference relations.
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3 The Structure of the Set of Midpoints

In this section, we prove two important properties of the set of midpoints. First, the
set of midpoints is convex, i.e. all points on a shortest path between two midpoints must
also be midpoints (Proposition 1). Secondly, the set of midpoints is “locally determined,”
i.e. whether an allocation is among the set of midpoints can be decided by comparing it
only to the set of its neighbors (Proposition 2).

In order to prove these results, we need two auxiliary lemmas. For two neighbors x
and y, we write xMy if p(〉x, y〉) > p(〉y, x〉), i.e. if the set of allocations which are closer
to x than to y has more mass than the set of allocations which are closer to y than to
x. Moreover, we write xIy if neither xMy nor yMx. The first lemma shows that the
ranking among neighbors induced by the midpoint rule simply corresponds to majority
voting, where an individual is construed as “voting” for x in a binary comparison with y
if the individual’s proposal is closer to x than to y.

Lemma 1 For any distribution p and any two neighbors x and y, p(〉x, y〉)− p(〉y, x〉) =
R(y)−R(x). In particular, xMy if and only if R(y) > R(x).

Proof. The assertions are immediate from the following observations: for all w ∈ 〉x, y〉,
d(x,w)− d(y, w) = −1, for all w ∈ 〉y, x〉, d(x,w)− d(y, w) = 1, and for all other w ∈ X,
d(x,w)− d(y, w) = 0. �

The second lemma establishes a specific relationship in the respective outcomes of the
majority vote among neighbors “in the same direction” (see Figure 2).

Lemma 2 Let x, y be such that xi > yi and yj > xj. If xNijx
′ and y′Nijy, then 〉y′, y〉 ⊇

〉x, x′〉 and 〉y, y′〉 ⊆ 〉x′, x〉. Moreover, xMx′ ⇒ y′My and yMy′ ⇒ x′Mx.

Proof. By (1) we have〉
y′, y

〉
= {w : wi ≥ yi + 1, wj ≤ yj − 1},〉

x, x′
〉

= {w : wi ≥ xi, wj ≤ xj},〉
y, y′

〉
= {w : wj ≥ yj , wi ≤ yi},〉

x′, x
〉

= {w : wj ≥ xj + 1, wi ≤ xi − 1},

which gives the first assertion. From this, we obtain p(〉x, x′〉) ≤ p(〉y′, y〉) and p(〉x′, x〉) ≥
p(〉y, y′〉). Thus, if p(〉x, x′〉) > p(〉x′, x〉), then p(〉y′, y〉) > p(〉y, y′〉), and if p(〉y, y′〉) >
p(〉y′, y〉), then p(〉x′, x〉) > p(〉x, x′〉), which proves the second claim. �
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Figure 2: Illustrating Lemma 2

Proposition 1 The set M(p) of midpoints is convex, i.e. all points on a shortest path
between two midpoints belong to the set of midpoints as well.

Proof. Let x, y be two distinct midpoints and consider a shortest path between them.
Suppose that there exists a point on this shortest path that is not a midpoint, i.e. that
has a strictly larger remoteness than either x and y. Then, there must exist neighbors
z, z′ along this path such that R(z) < R(z′), hence by Lemma 1, zMz′. Say that z and
z′ are neighbors in ij-direction, i.e. zNijz

′. Since z, z′ ∈ [x, y], this implies that either
(xi > yi and xj < yj) or (yi > xi and yj < xj). Without loss of generality assume the
former and choose y′ such that y′Nijy. By Lemma 2 we obtain y′My contradicting the
assumption that y ∈M(p). �

The next result shows that in the context of our public goods allocation problem the set
of midpoints can be determined by “local” majority voting, i.e. by a pairwise comparison
of any given point with all its neighbors.

Proposition 2 An allocation x is among the midpoints if and only if x does not lose in
pairwise comparison against any of its neighbors, i.e. x ∈M(p)⇔ [¬(yMx) for all y such that yNx].

Proof. By definition, a midpoint cannot lose in pairwise comparison against any of its
neighbors. Conversely, let x ∈ X be such that xMx′ or xIx′ for all x′ with xNx′. We will
show that x ∈M(p) by contradiction. Thus, suppose that there is some other point z ∈ X
with a strictly lower remoteness. Choose two neighbors y, y′ on a shortest path from x to
z such that yMy′ and y′ ∈ [x, y], and assume without loss of generality that y′Nijy. Since
y′ is between x and y we must have xi > yi and xj < yj . Now consider x′ with xNijx

′.
By Lemma 2, yMy′ implies x′Mx which contradicts the assumption that x does not lose
against any of its neighbors. �

We conclude this section with the observation that a neighbor of a midpoint is itself a
midpoint if and only if it does not lose against it in pairwise comparison.

Fact 1 Let x ∈M(p) and yNx. Then, y ∈M(p)⇔ xIy.

Proof. By Lemma 1, y has the same remoteness as x if and only if xIy. This proves the
claim. �

4 Limited Manipulability of the Midpoint rule

Can an individual by submitting an appropriate non-truthful proposal influence the out-
come of the midpoint rule to his or her advantage? Whether this will be so depends on the
assumptions on the individuals’ preferences; in general, the answer is, yes, i.e. in general
the midpoint rule is not strategy-proof. However, in this section we prove the following
remarkable property of the midpoint rule in the present context: Suppose that each indi-
vidual has a unique most preferred allocation, his or her “peak.” Then, while individuals
can change the shape of the set of midpoints by unilaterally submitting different proposals,
it is not possible to move this set “closer” to one’s true peak by submitting a non-truthful
proposal, as follows.

Fix an individual, say individual h with peak x, and denote by M(p) the set of mid-
points given the distribution p of proposals in which individual h submits x. Furthermore,
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denote by p̃ the distribution of proposals that differs from p only in the proposal of indi-
vidual h who proposes, say x̃ 6= x. Then, the element of M(p) that is closest to x is at
least as close to x than the closest element in M(p̃); similarly, the element of M(p) that
is farthest away from x is at least as close to x than the farthest element in M(p̃).

Theorem 1 For all x̃ 6= x, minw∈M(p) d(x,w) ≤ minw∈M(p̃) d(x,w), i.e. non-truthful pro-
posals cannot move the closest midpoint closer to one’s true peak, and maxw∈M(p) d(x,w) ≤
maxw∈M(p̃) d(x,w), i.e. non-truthful proposals cannot move the farthest midpoint closer
to one’s true peak.

Proof. Let z be a midpoint with minimal distance to x, say d(x, z) = r. If r = 0 there
is nothing to show, thus assume r ≥ 1. For any i, j such that zi > xi and zj < xj , let zij
be the neighbor of z in direction of x, i.e. zNijzij . Moreover, denote by Z−x the set of all
such neighbors, i.e.

Z−x = {y ∈ X : yNz and d(x, y) = r − 1}.

Since z is a closest midpoint to x, we have zMy for all y ∈ Z−x under the distribution p,
i.e. provided that the true peak x is reported. Since x already supports any y ∈ Z−x in
the pairwise comparison with z, i.e. since x ∈ 〉y, z〉, we must have zM̃y also under the
distribution p̃, i.e. when x̃ is reported instead of x. By Lemma 2, zM̃zij implies y′M̃y for
all y ∈ 〉zij , z〉, where y′Nijy. This shows that, for any zij , no element of 〉zij , z〉 can be
midpoint under p̃. The proof of the first assertion is completed by noting that

{y ∈ X : d(x, y) < r} ⊆
⋃

zij∈Z−x

〉zij , z〉 .

Let now z be a midpoint with maximal distance to x, say d(x, z) = r. If the maximal
distance of a midpoint to x is to be reduced by non-truthfully reporting x̃, z has to lose
in pairwise comparison to some of its neighbors under p̃ by Proposition 2. Partition the
set of neighbors of z as follows,

Z−x = {y ∈ X : yNz and d(x, y) = r − 1},
Z0
x = {y ∈ X : yNz and d(x, y) = r},

Z+
x = {y ∈ X : yNz and d(x, y) = r + 1}.

Since the truthful report x already supports any element in Z−x in pairwise comparison
against z under p, z cannot lose against such element under p̃. Thus, assume that, by
reporting x̃, z loses against some z′ ∈ Z+

x , say z′M̃z and z′Nijz. Then, by Lemma 2,
any element w ∈ 〉z, z′〉 loses in pairwise comparison against its neighbor in ij-direction,
i.e. w′M̃w if w′Nijw. This shows that no element of 〉z, z′〉 can be midpoint under p̃. Since

{y ∈ X : d(x, y) < r} ⊆
〉
z, z′

〉
,

this shows that any midpoint under p̃ is at least as far away from x than z. Finally, assume
that by reporting x̃, z loses against some z′ ∈ Z0

x. Since x neither supports z nor z′ in
pairwise comparison, z′M̃z is only possible if z′Iz. By Fact 1 above, this implies that z′

was already a midpoint under p. There are now two possible cases. Either z′ remains a
midpoint under p̃ in which case the claim is proved, or z′ loses against one of its neighbors.
In the latter case, repeated application of the arguments just given shows that eventually
a midpoint with distance at least r to x is obtained. �
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5 Strategy-Proofness

The result of the previous section has the immediate implication that the midpoint rule is
strategy-proof provided that all individuals have “symmetric” single-peaked preferences of
the form y � z ⇔ d(x, y) ≤ d(x, z) for some x ∈ X, and provided that strategy-proofness
is defined with respect to any extended preference relation �∗ over subsets of X satisfying

M �∗ M̃ whenever [minM � min M̃ and maxM � max M̃ ].

The midpoint rule is not strategy-proof for larger domains of single-peaked preferences,
as shown by the following examples (see Figures 3, 4 and 5).

(0, 0, L)

(L, 0, 0) (0, L, 0)�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

A
A
A

z •
z′
•

y
•

x̃ •

x•

A
A
A
A�

�
�
�

A
A
A
A�
�
�
�

Figure 3: Manipulating the set of midpoints

Suppose that in Figure 3, two individuals have their peak at y, one individual at z, one
individual at z′ and another individual, say h, at x. The resulting set of midpoints the
diamond-shaped set [y, z′]. By non-truthfully reporting x̃ instead of x individual h removes
z′ from the set of midpoints, changing it to the points in the dashed triangle shown in
Figure 3 (consisting of y, x̃ and their joint neighbor in direction of z). Whether this will
be to the advantage of h depends on h’s preferences over sets of allocations. For instance,
it could be that h has (generalized) single-peaked preferences over allocations (i.e. prefers
allocations closer to her peak x, see Nehring and Puppe, 2007) and furthermore prefers
x̃ to the equally distant z′. In that case, h might prefer excluding z′ from the set of
midpoints (even if this does neither change the best nor the worst allocation among the
midpoints).

A similar example of a possible violation of strategy-proofness of the midpoint rule
is shown in Figure 4. Again suppose that two individuals have their peak at y, one
individual at z, one individual at z′ and another individual, say h, at x. The resulting
set of midpoints is the quasi-diamond-shaped set indicated in Figure 4. By non-truthfully
reporting x̃ instead of x individual h changes the set of midpoints to the dashed figure.
Again, it is easily verified that this yields a possible violation of strategy-proofness for
appropriately specified preferences over sets of outcomes. Note that, in contrast, to the
example shown in Figure 3, the manipulated set of midpoints (i.e. the dashed set) is not
a proper subset of the set of truthful midpoints.
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Figure 4: Another manipulation of the set of midpoints

The possible violations of strategy-proofness shown in Figures 3 and 4 hinge on an
appropriate specification of preferences over sets of outcomes, and in particular on the
impact of potential outcomes that are intermediate in preference between the best and
worst elements. The following example represents a more robust violation of strategy-
proofness. Consider the situation depicted in Figure 5. If two voters have their peak at
y, and one voter at x and x̃, respectively, the unique truthful midpoint is y. However, if
the voter with peak x, say individual h, strictly prefers x̃ to y, it seems safe to assume
that h would strictly prefer to report x̃ instead of x, because this would change the set of
midpoints from {y} to {x̃, y}.
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Figure 5: A more robust violation of strategy-proofness

6 More on the Structure of the Set of Midpoints

The set of midpoints has further interesting properties summarized in this section. First,
we show that allocations strictly between two midpoints can have no mass, i.e. no indi-
vidual can have proposed them.

Fact 2 Suppose that x, z ∈M(p), y ∈ [x, z] and y 6∈ {x, y}, then py = 0.

Proof. Without loss of generality assume that xNyNz, xi > zi, zj > xj and xNijy. Let z′

be the element in X such that z′Nijz (z′ may be equal to y). By Proposition 1, z′ ∈M(p).
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By Lemma 2, 〉x, z′〉 ⊂ 〉y, z〉 and 〉z′, x〉 ⊃ 〉z, y〉. Suppose, by contradiction, that py > 0.
Then p(〉y, z〉) > p(〉x, z′〉) and p(〉z, y〉) < p(〉z′, x〉) which implies yMz, contradicting the
fact that z is a midpoint. �

Next, we give a sufficient condition for the set of midpoints to be “small” in the sense that
all midpoints have distance of at most 1 to each other. Let diamM(p) := maxx,y∈M(p) d(x, y)
denote the diameter of the set of midpoints, and say that a subset Y ⊆ X is connected if,
for each pair x, y ∈ Y , there is a path connecting x and y that lies entirely in Y .

Fact 3 If supp(p) is connected, then diamM(p) ≤ 1.

Proof. Suppose diamM(p) ≥ 2. Then, there exist x, y, z ∈ M(p) with xNy, yNz,
xi > zi, zj > xj and xNijy. Denote by z′ the point in X with z′Nijz. By Proposition 1
z′ ∈M(p). By Lemma 2 we have 〉x, y〉 ⊂ 〉z′, z〉. Since all these points are midpoints one
obtains xIy, z′Iz. Because a midpoint strictly wins against neighbors which are not in the
set of midpoints and (by Fact 2) there cannot be any mass on allocations which are on a
shortest path between midpoints, one can easily show that p(〉x, y〉) > 0 and p(〉z, z′〉) > 0.
Since supp(p) is connected there exists a path from 〉x, y〉 to 〉z, z′〉 in X\ {〉x, y〉 ∪ 〉z, z′〉}
which is in supp(p). As in Fact 2, one obtains p(〉z′, z〉) > p(〉z, z′〉) which contradicts the
assumption. �
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