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1. Introduction

Does marginal utility account for macro uncertainty? The bond mar-

ket is the natural laboratory for this question, because bond yields and bond

volatilities are deterministic transformations of the investor’s marginal utility.

The answer is yes, it does. Current models with Epstein and Zin (1989) or

Campbell and Cochrane (1999) preferences solve several asset pricing puzzles

through accounting for macro uncertainty via exogenously specified stochas-

tic volatility or volatility-of-volatility processes in GDP growth or inflation.2

Usually, these volatilities must be filtered from financial data, which increases

the complexity of the model implementation.

In this paper, I analyze whether a complementary modeling of uncer-

tainty, with only observable macro variables, helps to explain dynamics of

marginal utility. I model macro uncertainty as macro ambiguity in the sense

of Knight (1921), Hansen and Sargent (2005), Chen and Epstein (2002) and

Epstein and Schneider (2003). One generalization to the successful Bansal

2Recent accounts for long-run risk models are Bansal and Yaron (2004), Bansal et al.
(2007), Bollerslev et al. (2009b), Bansal and Shaliastovich (2006), Bansal and Shalias-
tovich (2009), Bansal and Shaliastovich (2010b), Piazzesi and Schneider (2006), Piazzesi
and Schneider (2010), Drechsler and Yaron (2010) among others. Bekaert et al. (2009)
find evidence that Campbell and Cochrane (1999) preferences and stochastic volatility in
consumption and inflation are able to account for important bond and stock phenomena.
Drechsler and Yaron (2010) show that jumps in volatility and in the predictable long-
run risk component are important to quantitatively match the size, volatility and high
skewness of the variance premium.
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and Yaron (2004) long-run risk literature is that the investor in my model is

uncertain about which data generating process drives the predictable (long-

run risk) component in consumption growth and inflation.3 This uncertainty

makes the equilibrium marginal utility to be heteroscedastic, even if con-

sumption and inflation are conditionally homoscedastic. My findings indi-

cate that accounting for model misspecification of the predictable long-run

risk components explains why bond premiums and option implied volatilities

are unspanned by the yield curve (Cochrane and Piazzesi (2005), Ludvigson

and Ng (2009), and Duffee (2010)).

Patton and Timmermann (2010) provide empirical support for the hy-

pothesis of model uncertainty.4 I build on that empirical evidence and sug-

gest an analytically tractable, and empirically easy to estimate, framework

that allows to capture Knightian uncertainty about GDP growth and infla-

tion. State-of-the art equilibrium models with Knight (1921) uncertainty

focus either on GDP ambiguity or on inflation ambiguity.5 My modeling

3Bansal and Shaliastovich (2009) show that long-run components in consumption
growth and inflation are necessary to model bond markets.

4Early accounts for implementing this into models of ambiguity aversion are Anderson
et al. (2009) and Ulrich (2010). Buraschi et al. (2009), David and Veronesi (2009), Buraschi
and Jiltsov (2006), David and Veronesi (2002), among others, use dispersion in forecasts
as a measure for heterogeneity in beliefs.

5Prominent Knightian uncertainty frameworks, such as the equity model of Cagetti
et al. (2002), or the confidence risk model of Bansal and Shaliastovich (2010a), as well as
the real yield curve models of Gagliardini et al. (2009) and Kleshecheslski and Vincent
(2009) focus on GDP ambiguity as the main uncertainty driver in the agent’s marginal
utility. Note that Bansal and Shaliastovich (2010a) do not assume min-max preferences
but their confidence measure for GDP ambiguity is consistent with the logic of a set of
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framework allows easily to account for both types of uncertainty.

In order to focus on the Knightian uncertainty channel, I focus on a Lucas

(1978) type economy with a log utility agent and conditionally homoscedastic

inflation and consumption processes. The same framework without Knight-

ian uncertainty is known to generate all types of asset pricing puzzles. But

the clear advantage of that framework is that if adding Knightian uncer-

tainty helps to explain part of these asset pricing puzzles, we can be sure

it is because of the proposed uncertainty channel. The tractability of my

framework allows an easy extension to more complex macro processes and

different preference specifications.6 Despite the simplicity of the framework,

the research questions it addresses are complex.

First, does GDP ambiguity or inflation ambiguity dominate variations in

marginal utility? I document that data from the Survey of Professional Fore-

casters reveals a higher amount of GDP ambiguity. This supports Cagetti

et al. (2002), Bansal and Shaliastovich (2010a) and Gagliardini et al. (2009)

who build equilibrium models with GDP ambiguity. On the other hand, the

bond market implications of the model reveal that inflation ambiguity is of

bigger concern to the investor. This supports Ulrich (2010) who finds evi-

models. On the other hand, Ulrich (2010) explains the nominal term spread in Treasury
yields through aversion against inflation uncertainty.

6Drechsler (2009) shows how to extend a Knightian uncertainty set-up to stochastic
volatility, disaster risk and Epstein and Zin (1989) preferences.
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dence that inflation ambiguity can account for the nominal term spread in

U.S. Treasuries.7

Second, my analysis concludes that incorporating macro ambiguity into

an otherwise classical Lucas (1978) model, makes a significant step towards

explaining several daunting bond pricing puzzles. The endogenously deter-

mined equilibrium bond premiums are stochastic, although consumption and

inflation volatility are conditionally homoscedastic. A variance decomposi-

tion of the bond premiums reveals that an econometrician would conclude

that the endogenous bond premiums are unspanned by the yield curve. This

underlines the importance of the equilibrium channel, because Cochrane and

Piazzesi (2005), Ludvigson and Ng (2009), and Duffee (2010) find that bond

premium factors are partly unspanned by the yield curve.

The analysis also finds that observable macro ambiguity helps to generate

time-varying volatility in bond yields. Moreover, the model implied volatility

of bond options exhibits a pronounced Black (1976) implied volatility skew.

That skew is entirely driven by the observable amount of long-run ambiguity

and appears to an econometrician to be unspanned, as well. This is another

promising feature of the proposed mechanism, because Collin-Dufresne and

Goldstein (2002) and Heidari and Wu (2003) find evidence that the volatil-

7Buraschi and Jiltsov (2005), Ang et al. (2008), Piazzesi and Schneider (2006),
Gürkaynak et al. (2005) find further evidence for the importance of inflation risk.
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ity of bond yields and option implied volatilities are unspanned by the yield

curve. The proposed ambiguity channel is different to Bansal and Shalias-

tovich (2009) who generate time-varying volatility in bond yields through

Epstein and Zin (1989) preferences and stochastic volatility in consumption

and inflation. It is also different to Bekaert et al. (2009) who assume Camp-

bell and Cochrane (1999) preferences with stochastic volatility in consump-

tion growth and inflation.

The endogenous uncertainty premiums for long-run ambiguity drive the

Black (1976) implied volatility of bond options. A contemporaneous regres-

sion reveals that the model explains 50% of the variations in the CBOE VIX

and 50% of the volatility of bond options. This high explanatory power for

options supports the usefulness of the proposed model mechanism.

The paper is structured as follows. Section 2 describes the model and

derives equilibrium bond yields, bond premia, yield volatility and specifies

the interest rate option contract of interest. I estimate the model in section

3 with bond yield, bond variance and macro data. Results are explained and

implications for bond premia and bond volatility are visualized in section 3,

as well. Section 4 quantifies the detection error. Section 5 concludes. The

appendix contains derivations and proofs.
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2. Model

I work with an endowment economy. Time is continuous and varies over

t ∈ [0, ...,∞). I assume a complete filtered probability space (Ω,F ,F, Q0),

where Q0 stands for the probability distribution of the investor’s most trust-

worthy macro model (reference model). I denote expectations under Q0 as

E[.] instead of EQ0
[.]. The solution to the dynamic Gilboa and Schmei-

dler (1989) type min-max problem determines endogenously the worst-case

probability measure Qh. For simplicity, all Brownian motions are pairwise

orthogonal.

2.1. Assumptions on the Most Trustworthy Economy

Realized growth of the investor’s endowment follows a homoscedastic pro-

cess with a time-varying trend growth rate z

d ln ct = (c0 + zt)dt+ σcdW
c
t , (1)

with c0 > 0 and σc > 0. The mean zero trend growth rate, z, follows a

continuous-time AR(1) process

dzt = κzztdt+ σ1zdW
r
t + σ2zdW

w
t (2)

with κz < 0, σ1z > 0, and σ2z < 0. I call z the predictable trend component

in expected consumption growth.

7



The exogenous process for inflation, d ln p, follows also a homoscedastic

process

d ln pt = (p0 + wt)dt+ σpdW
p
t , (3)

with p0 > 0 and σp > 0. The mean zero trend growth rate of inflation, w,

follows a continuous-time AR(1) process

dw = κwwdt+ σwdW
w, (4)

with κw < 0 and σw > 0. I call w the predictable trend component in

expected inflation. I account for the negative correlation between z and w

through σ2z < 0. Piazzesi and Schneider (2006) provide macro evidence for

a significant negative correlation between consumption growth and inflation.

This correlation is also negative in the sample that I use. The realized ob-

servable processes z and w are observed in real-time.

Instead of assuming Epstein and Zin (1989) preferences, as done in the

long-run risk literature (Bansal and Yaron (2004), Piazzesi and Schneider

(2006)), I assume the investor has simple logarithmic utility. This assump-

tion is advantageous for my analysis because it prevents an unwanted am-

plification of the proposed Knight (1921) uncertainty channel that Epstein

and Zin (1989) preferences provide. Of course, the combination of both is
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promising in itself, as shown by Drechsler (2009). I leave it for future research

to extend the model into that direction. Therefore, the expected life-time

utility in period t is Et

[∫∞
t

e−ρs ln csds
]

, where ρ > 0 is the subjective time

discount factor.8

2.2. Assumptions about Macro Uncertainty

The investor is uncertain about whether (2) and (4) are indeed the true

data generating process for z and w. One can say that the investor faces

Knight (1921) uncertainty about the long-run risk dynamics. The investor

believes that equations (2) and (4) are a good approximation for the unknown

data generating process of the long-run risk components. They describe his

benchmark model (reference model). The benchmark model accounts for

short-run inflation non-neutrality, while also ensuring that inflation has no

long-run effect on growth.9

The investor observes in each period t a set of potentially correct long-

run risk models. Different long-run risk models differ in their conditional

expected growth rates and their unconditional variances. After observing zt

and wt, the investor uses likelihood ratio tests to quantify the accuracy of

his trusted benchmark model in comparison to the other models from the

8All model implications hold for more general utility functions. It is an advantage of
log utility that it supports closed form solutions.

9The short-run non-neutrality and long-run neutrality is consistent with Friedman
(1968) and Phelps (1968), among others.
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set. Due to the stochastic nature of z and w, the investor is exposed to

time-varying likelihood ratios and subsequently time-varying trust into the

accuracy of his most trustworthy long-run risk model.10

I define an observed change in the log-likelihood ratio as d ln
dQh

t

dQ0
t
. An

increase in the latter is bad news for the trustworthiness of the benchmark

model, because it implies that the observed realization of dzt and dwt has

probably been generated by the worst-case model Qh and not by the bench-

mark model Q0. While in general, the investor could focus on every poten-

tially correct model, the Gilboa and Schmeidler (1989) type min-max investor

focuses only on the benchmark model and on the worst-case model.

The Gaussian processes z and w imply that the expected instantaneous

change of the log-likelihood ratio, under the worst-case measure, is given by

Eh
t

[

d ln
dQh

t

dQ0
t

]

=
1

2
(hr

t )
2dt+

1

2
(hw

t )
2dt, (5)

where hr
t is a stochastic perturbation of the dW r

t shock, while hw
t is a stochas-

tic perturbation of the dWw
t shock. Said differently, the agent believes that

under the worst-case model, the instantaneous expected growth rate of zt+dt

10Bansal and Shaliastovich (2010a) study confidence risk in a long-run risk model with
Epstein and Zin (1989) preferences and an investor who learns the true data generating
process for consumption growth. The authors do not consider Knight (1921) uncertainty.
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and wt+dt is (κzzt+σ1zh
r
t +σ2zh

w
t )dt and (κwwt+σwh

w
t )dt, respectively. This

means that the investor is uncertain whether the predictable long-run risk

components z and w are contaminated by empirically difficult to identify

stochastic perturbations hr and hw. The magnitude and stochastic charac-

teristics of the perturbations hr and hw are an equilibrium outcome of the

investor’s dynamic min-max problem.

Gagliardini et al. (2009) and Gagliardini et al. (2005) propose to con-

strain the growth rate of the log-likelihood ratio in equation (5) by a joint

entropy bound. I slightly deviate from that suggestion in the sense that I

use independent entropy bounds for each macroeconomic source of Knight

(1921) uncertainty. The separate entropy bounds have two important ad-

vantages over a joint entropy bound. First, each source of uncertainty can

be treated separately. Second, it enhances analytical tractability and ease of

empirical implementation. Mathematically this means that in each period

t, the investor quantifies the size of the set of long-run risk model through

observing the current magnitude of each entropy bound, i.e.

1

2
(hr

t )
2dt ≤ Ar(ηrt )

2dt, Ar > 0 (6)

1

2
(hw

t )
2dt ≤ Aw(ηwt )

2dt, Aw > 0. (7)

The last two equations say that the set of models that characterize the

data generating process for dW r and dWw is time-varying and non-singleton.
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It is non-singleton because of Ar > 0 and Aw > 0. The time-variation in the

size of the set of models is characterized by ηrt and ηwt . An increase in these

processes implies that the set of potentially correct data generating processes

for z and w has increased. In such a scenario, the agent would be exposed

to a higher degree of uncertainty about the true data generating process for

z and w. For simplicity, I assume that both processes follow independent

Feller (1951) processes:

dηrt = (aηr + κηrη
r
t )dt+ σηr

√

ηrt dW
ηr

t , (8)

dηwt = (aηw + κηwη
w
t )dt+ σηw

√

ηwt dW
ηw

t , (9)

with aηr > 0, aηw > 0, κηr < 0, κηw < 0 and σηr > 0, σηw > 0. The assump-

tion of a Feller (1951) dynamic is smoother compared to the jump-diffusion

assumption of Bansal and Shaliastovich (2010a)’s confidence measure. I leave

it to future research to allow η to follow a jump-diffusion.

To sum, the investor is uncertain about the transition density of the long-

run consumption and long-run inflation risk model. Different models can be

characterized by

dzt = κzztdt++σ1z(dW
r,h
t + hr

tdt) + σ2z(dW
w,h
t + hw

t dt) (10)

dwt = κwwtdt+ σw(dW
w,h
t + hw

t dt), (11)
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where hr
t ≡ 0 and hw

t ≡ 0 corresponds to the agent’s most trustworthy macro

model. The magnitude of potential perturbations that the investor considers

reasonable, hr
t and hw

t , will be an equilibrium outcome of the agent’s min-

max problem. In equilibrium they will depend on the observed amount of

macro uncertainty ηrt , η
w
t . Note that h

r
t and hw

t are endogenously determined

stochastic processes who make the transition density of dzt and dwt to be

non-Gaussian.

2.3. Equilibrium: Endogenous Characterization of the Worst-case Model

The investor has min-max preferences. This implies that he wants to

protect himself from the possibility that (2) and (4) are misspecified. The

investor wants to find from the set of potentially correct models the single

model that implies the lowest expected life-time utility. Such a model is

called worst-case model. Formally, the investor solves

min
Z∈Z(ηr,ηw)

EZ

[∫ ∞

t

e−ρ(s−t) ln csds|Ft

]

(12)

s.t.(1), (5), (6), (7), (8), (9), (10), (13)

where Z(ηr, ηw) characterizes the set of potentially correct data generating

processes for both long-run risk components z and w.11 The solution to the

minimization problem follows Chen and Epstein (2002), Sbuelz and Trojani

11For more details on the mathematical characterization of that set, compare Chen and
Epstein (2002).
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(2002), Sbuelz and Trojani (2008) and Ulrich (2010). I summarize it in the

following proposition.

Proposition 1 Given the observed set of potentially correct long-run risk

models, i.e. Z(ηrt , η
w
t ), the solution to (12) tells the investor that the long-run

risk model with the lowest expected life-time utility has an instantaneous drift

of (κzzt + σ1zh
r
t + σ2zh

w
t ) dt < κzztdt, where hr

t and hw
t are endogenous and

deterministic functions of the amount of observed macro uncertainty, i.e.

hr(t) = mrηr(t),mr := −
√
2Ar ∈ R− (14)

hw(t) = mwηw(t),mw :=
√
2Aw ∈ R+. (15)

The proof of Proposition 1 is in the appendix. The proposition implies that

the worst-case long-run consumption risk model has a lower expected instan-

taneous growth rate compared to the forecast from the reference model in

(2). The instantaneous difference is (σ1zm
rηrt + σ2zm

wηwt )dt < 0, ∀t > 0.

The observed size of the set of potentially correct models, i.e. ηrt and ηwt ,

is stochastic. The density of dz is therefore highly non-Gaussian under the

worst-case long-run risk model.
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2.4. Equilibrium: Marginal Rate of Substitution

Consistent with Hansen and Sargent (2008) and Chen and Epstein (2002),

the pricing of assets is done under the most trustworthy reference model Q0.

The key difference to Rational Expectations is that the stochastic discount

factor will depend on the amount of model mistrust. This is very intuitive

because the investor mistrusts his reference model and that mistrust has to

affect his discount factor.

Alternatively, one can re-write the solution to the min-max problem in

equation (12) as

Uh(c0; η
r
0, η

w
0 ) := E0

[∫ ∞

0

e−ρtat ln ctdt

]

(16)

dat
at

= ht · dW z
t (17)

where at is the Radon-Nikodym derivative between the worst-case and the

reference long-run risk model, ht = (hr
t h

w
t )

′ is derived in Proposition 1, and

dW z
t = (dW r

t dW
w
t )

′ are shocks to macro uncertainty. In that specification, at

appears to be a time-varying and endogenously constrained preference shock

(Hansen and Sargent (2008)).

Equation (17) and Proposition 1 imply that an unpredictable reduction

in dW r, increases the investor’s doubts about whether his most trustworthy
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model (2) is indeed the correct data generating process. This is very intuitive

because since the model for z is not known, a lower than anticipated growth

rate for zt, i.e. zt+dt < Et[dzt], increases the statistical evidence that the

worst-case model (10) generated the data, i.e. Eh
t [dzt] < Et[dzt]. Lower than

expected growth hurts a min-max preference investor twice. First, consump-

tion growth is lower than expected and second, the investor is in a state of

higher model uncertainty.

On the other hand, equation (17) and Proposition 1 show that an unpre-

dictable increase in trend inflation, i.e. dWw > 0, increases the investor’s

fear that the most trustworthy inflation model in equation (4) is misspecified.

This mechanism is intuitive because the worst-case inflation model predicts

higher growth rates for trend inflation, compared to the reference model in

equation (4). This mechanism was first analyzed by Ulrich (2010), who uses

that insight to explain why the nominal term premium is upward sloping. In

contrast to that study, I focus in this paper on bond premiums, bond volatil-

ity, options and the relative importance of GDP vs. inflation ambiguity.

Equation (16) shows that the intertemporal marginal rate of substitution

(MRS) accounts for consumption risk and for model misspecification doubts

about the consumption model. I define the MRS as m. Besides its tractable

shape, I emphasize that m is the endogenous equilibrium outcome of the
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dynamic min-max optimization problem in Proposition 1, i.e.

mt,t+∆ = e−ρ∆

(

ct+∆

ct

)−1
at+∆

at
. (18)

The equilibrium MRS of a min-max agent accounts not only for the standard

consumption risk kernel, but also for a Knightian uncertainty kernel (Chen

and Epstein (2002), Ulrich (2010)). The uncertainty kernel quantifies the

statistical confidence that the investor has in his most trustworthy long-run

risk model, i.e. (2), (4). The uncertainty kernel is driven by shocks to W r

and Ww. Uncertainty about the long-run risk model is therefore a natural

framework for endogenizing that shocks to the long-run risk component are

priced. Interestingly, this result does not require Epstein and Zin (1989)

preferences.

The evolution of the MRS reveals the equilibrium real interest rate and

the equilibrium market prices for risk and uncertainty:

−dmt

mt

=
dct
ct

− dat
at

. (19)

According to the consumption dynamic in equation (1), the market price

of consumption risk is constant and positive, i.e. σc > 0. The endoge-

nous dynamic in (17) reveals that the market price for uncertainty about

the consumption model has two components, i.e. −hr
t ∈ R+, ∀t ≥ 0 and
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−hw
t ∈ R−, ∀t ≥ 0. The first is the market price for uncertainty about

whether dW r
t is misspecified, while the latter is the market price for uncer-

tainty about whether dWw
t is misspecified. The different signs indicate that

uncertainty about real vs. nominal shocks has different economic implica-

tions. I analyze the different implications in the bond section. The real

interest rate coincides with rt = ρ+ c0 − 1
2
σ2
c + zt.

Having derived m allows the determination of the nominal SDF m$, i.e.

m$
t,t+∆ = mt,t+∆

pt
pt+∆

. (20)

The equilibrium nominal short rate coincides with

Rt := −Et

[

dm$
0,t

m$
0,t

]

= rt + w0 −
1

2
σ2
p + wt.

The real and the nominal short-rate do not depend on macro uncertainty,

whereas all interest rates with a non-zero maturity depend on macro uncer-

tainty. This is intuitive because non-zero maturity interest rates are risk and

uncertainty adjusted expectations of future short rates. I use the model in-

sight that interest rate data reveals the characteristics of macro uncertainty

premiums, which would otherwise be hidden in the investor’s marginal utility.
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2.5. Equilibrium: Bond Market

The equilibrium bond market reveals valuable information about the in-

vestor’s marginal utility. Let Bt(τ) be the price at time t of a τ maturity

inflation-indexed bond. Based on a standard Euler equation, its price coin-

cides with the conditional expected growth rate of marginal utility between

t and t + τ . The separate entropy bounds in equation (6) and (6) make

the bond price fall into the class of exponentially affine models (Duffie et al.

(2000)):

Bt(τ) = eA
r(τ)+Br(τ)St , S ≡ (z hw hr)′. (21)

The last equation reveals that the price of a real bond is exponentially affine

in expected consumption growth and in the two market prices for uncer-

tainty about the correctness of the most trustworthy consumption model.

Both uncertainty premiums affect the price of real bonds because they affect

the agent’s trust in the inference of future consumption growth that comes

out of the reference model in equation (2).

The continuously compounded real interest rate is affine in the zt and ht,

i.e.

yrt (τ) = ar(τ) + br(τ)St, (22)
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with ar(τ) := −Ar(τ)/τ and br(τ) := −Br(τ)/τ . The loadings are deter-

ministic functions of the parameters of the economy. The appendix contains

details on the derivation.

I denote the price at time t of a τ maturity nominal Treasury bond as

Nt(τ). Its equilibrium price is exponentially affine in St and in the predictable

component of inflation, i.e. wt:

Nt(τ) = eA
n(τ)+Bn(τ)Xt , X ≡ (wS)′, (23)

with an(τ) := −An(τ)/τ and bn(τ) := −Bn(τ)/τ .

Nominal interest rates are driven by variations in z and w, as well as the

corresponding uncertainty premiums hr
t and hw

t . Mathematically, this means

ynt (τ) = an(τ) + bn(τ)Xt, (24)

with an(τ) := −An(τ)/τ and bn(τ) := −Bn(τ)/τ . The appendix specifies

the factor loadings as functions of the underlying economy.

The slope of the nominal yield curve, measured as the 40-quarter nominal
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yield minus the nominal short-rate, is an affine function in w, z, and ht:

ynt (40)−Rt = (bnw(τ)− 1)wt + (bnz (40)− 1)zt + bnhr(40)hr
t + bnhwhw

t . (25)

The bond loadings indicate how macro risk and uncertainty about the trust-

worthiness of the risk model affects Treasury yields of all maturities.

While the yield curve is affected by macro risk and macro ambiguity, the

model implied instantaneous bond premium depends only on macro uncer-

tainty:

Eh
t

[

dNt(τ)

Nt(τ)
−Rtdt

]

= (σ2zB
n
z (τ) + σwB

n
w(τ))(−hw(t))dt+

+ σ1zB
n
z (τ)(−hr(t))dt. (26)

States of the world in which the agent has more doubts about the accuracy

of the long-run inflation model are states where hw
t increases. This coincides

with an increase in the expected excess return of a nominal bond. On the

other hand, an expected increase in uncertainty about the data generating

process of dW r, lowers hr, which reduces the bond premium across all ma-

turities.

The type of uncertainty matters for the bond premium. While bonds

hedge dW r uncertainty, they do not hedge uncertainty about dWw. This im-
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plies a positive bond premium for inflation uncertainty and a negative bond

premium for consumption uncertainty. The equilibrium bond premium can

have different signs, depending on which type of macro uncertainty domi-

nates.

The volatility of interest rate changes is time-varying as well. If the

dynamics of the underlying macro economy become more uncertain, real and

nominal bond yields exhibit higher heteroscedasticity. My model shows that

this holds even if the underlying inflation and consumption dynamic has not

changed. The time-varying amount of trust in the workhorse model is the

equilibrium channel that my model adds to the literature. The quadratic

variation of changes in yields depends on the heteroscedastic uncertainty

premiums. Mathematically this means

< dynt (τ), dy
n
t (τ) > = (bnhr(τ)mrσηr)

2 ηrt dt+ (bnhw(τ)mwσηw)
2 ηwt dt (27)

< dyrt (τ), dy
r
t (τ) > = (brhr(τ)mrσηr)

2 ηrt dt+ (brhw(τ)mwσηw)
2 ηwt dt (28)

where bhr and bhw are the corresponding yield loadings for hr
t and hw

t .

2.6. Equilibrium: Option Market

Option markets reveal the higher moment properties of marginal utility.

It is natural to anticipate that uncertainty about the reliability of the macro

model manifests itself into the higher moments of marginal utility. In the
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model, bond options contain in equilibrium a time-varying implied volatil-

ity which itself consists of ηrt and ηwt . Changes in option implied volatilities

arise because the investor’s perception about the trustworthiness of the refer-

ence model in (2) and (4) has changed. This implies that variations in macro

uncertainty lead to endogenous fluctuations in the option implied volatilities.

The precise type of the bond option is secondary. I consider an interest

rate option that is traded on the CBOE. Let C be a floor on an interest

rate yn(τ). Being long a floor entitles the owner of the option to receive

at maturity T the maximum of (yT (τ) − K, 0), where K is a fixed interest

rate level. The value of this option depends on the maturity of the contract,

strike, current value of the yield of interest and the current nominal short

rate. I fix the notional of the contract to $100. Its equilibrium price is

C(t, T,K, ynt (τ), Rt) := $100Et

(

m$
t,T (y

n
T (τ)−K)+

)

. (29)

The same model with Rational Expectations implies that the price of the

option follows a Black (1976) type model. The implied volatility would be

constant and the model would fail to reproduce the skewed option smile that

is observed in the data. Accounting for misspecification doubts about the

most trustworthy macro model endogenizes option prices that follow a Hes-

ton (1993) type dynamic. Variations in the trust of whether the benchmark

model is a good description of reality leads to variations in option implied
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volatilities. The model can account for smiles and skews in the option market,

because the size of the set of models is time-varying.12 The casual interpre-

tation of implied volatility as a fear (uncertainty) index is adequate in this

model because implied volatility is an endogenous reaction to uncertainty

about the dynamics of the macro economy.

In the empirical section, I determine the price of a call option via Monte

Carlo simulation. I use an Euler-Marujuama discretization scheme, and sim-

ulate the system on a daily interval. I plug the resulting call price into Black

(1976) formula to recover the option implied volatility.

3. Empirical Part

The model provides intuition for how uncertainty about the reliability of

the underlying macro model feeds into variations in marginal utility and the

bond market. It is not the goal of the paper to build the most advanced term

structure model that minimizes pricing errors. Instead, the goal is to ana-

lyze how macro uncertainty feeds into bond premiums and bond variances. A

12Recent equilibrium models have exclusively focused on equity options. Liu et al.
(2005) and Drechsler (2009) show that ambiguity about rare events can explain the skewed
volatility smile in equity options. Buraschi et al. (2009), David and Veronesi (2009),
Buraschi and Jiltsov (2006), David and Veronesi (2002) show that learning about the
fundamental processes in the economy helps to explain why dispersion in forecasts explain
equity option prices. Drechsler and Yaron (2010), Bollerslev et al. (2009b), Eraker and
Shaliastovich (2008), Bollerslev et al. (2009a), Shaliastovich (2009) show that stochastic
volatility in consumption growth together with Epstein-Zin preferences can explain equity
option prices.
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more complex model provides a closer fit to data, but makes it less intuitive

to interpret the equilibrium effect of model misspecification doubts.13

I use maximum-likelihood to estimate the model with macro, bond yield,

and bond variance data. The estimation results provide a pedagogical tool

to visualize the effect that model misspecification doubts have on expected

bond returns, as well as the smile and skew of option implied volatilities.

3.1. Data and Estimation

The data is from 1972 to 2009. The data frequency is quarterly. I use

the following data to match the exogenous processes of the economy. First,

d ln c is matched with realized GDP growth. I use GDP data instead of con-

sumption data, because there is no forecast and model disagreement data for

consumption growth available. The intuition for the model are not affected

by that approximation.14 Second, d ln p is matched with realized inflation.

Third, z is matched with the demeaned median forecast of GDP growth over

the next quarter. The forecast is taken from the Survey of Professional Fore-

casters (SPF). Analogously w is matched with the demeaned median SPF

forecast for inflation over the next quarter. Fourth, ηr (ηw) coincides with

the cross-sectional standard deviation of one-quarter ahead SPF GDP (infla-

13Recent examples for successful reduced-form term structure models are Ang et al.
(2010), Chernov and Mueller (2008), Chun (2007), Joslin et al. (2009), ?, among others.

14Moreover, it is a representative agent model, where the investor consumes the entire
output stream. It is standard that these models do not distinguish between output and
consumption.
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tion) forecasts.

Patton and Timmermann (2010) find evidence that the cross-sectional

dispersion in macro forecasts is a reliable proxy for the amount of model

disagreement.15 I remove seasonality in ηwt and ηzt by using a 4-quarter mov-

ing average to construct the non-seasonal t-measure for ηw and ηr.16 The

appendix contains a more detailed description of the macro data.

I match the model output with the following financial data. First, ten

panels of continuously compounded nominal Treasury bond yields of matu-

rity one year to ten years. Second, six panels of continuously compounded

real Treasury bond yields of maturity five years to ten years. Real bond

yields coincide with yields of Treasury Inflation Protected Securities (TIPS).

Third, ten panels of variances of continuously compounded nominal Treasury

yields with maturity of one year to ten years. The quarterly variance within

a quarter is estimated as the sum of quadratic daily yield changes within the

corresponding quarter. The appendix contains details on the exact construc-

tion of the financial data.

15Anderson et al. (2009) and Ulrich (2010) use dispersion data to quantify the amount of
model ambiguity. Research on differences in belief rely also on dispersion data to identify
belief disagreement. Compare Buraschi et al. (2009), Buraschi and Jiltsov (2006), David
and Veronesi (2002), David and Veronesi (2009), among others.

16Results are robust with regard to that smoothing.
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I assume that all measurement errors of the financial variables are or-

thogonal to each other (Chen and Scott (1993), Duarte (2000)). A standard

maximum likelihood approach is applied to estimate the parameters of the

model. A clear advantage of the proposed model mechanism is that GDP

and inflation uncertainties are not treated as latent variables, but instead are

taken to be observable. Filtering of latent processes, as would be required in

a stochastic volatility set-up, is not required.

A first look at the macro data reveals that z and w are unbiased predic-

tors of realized GDP growth and realized inflation, respectively. The former

explains 9% of the variance of realized GDP growth, while the latter explains

65% of the variance of realized inflation.

A first look at the bond data reveals interesting relations between the

macro and the bond market. I denote the principal components of the panel

of nominal yields as PC. PC1 stands for the first principal component, PC2

stands for the second, and so on. First, variations in Xt = (wt zt η
r
t η

w
t ) ex-

plain 63% of PC1 variations, with wt and ηwt having t-stats bigger than 2.

Second, variations in X explain variations in PC2, with wt and ηrt having

t-stats bigger than 2. Third, variations in X explain 19% of PC3, with wt and

ηwt having t-stats bigger than 2. Fourth, variations in X explain 4% of PC4
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variations, while zt has a t-stat of bigger than 2. Fifth, 12% of variations in

PC5 are explained by variations in ηw. Sixth, 23% of variations in the slope

(40-quarter yield minus federal funds rate) are explained by wt and ηrt . The

negative loading on these factors is consistent with the model implied sign

in equation (25).

The data evidence suggests that uncertainty about the inflation model ex-

plains variations in PC1, PC3, and PC5. It further implies that uncertainty

about trend GDP growth explains variations in PC2. Cochrane and Piazzesi

(2005) find that a single factor of forward rates predicts bond returns. This

factor is mostly unrelated to the first three principal components of nominal

yields. Duffee (2010) finds that the fifth principal component is a hidden

factor in the yield curve which has substantial predictive power for bond

returns. My first look at the data reveals that cross-sectional dispersion in

inflation forecasts, which is part of the bond premium in my model, explains

12% of variations in the fifth principal component.

A first look at the volatility of yield changes reveals the following. First,

one factor explains 94% of fluctuations in the variance of bond yields. Second,

regressing this factor on (ηw)2 and (ηr)2 reveals that both factors are highly

significant and they jointly explain 20% of its variations.
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3.2. Empirical Findings

Observable uncertainty about misspecified long-run risk dynam-

ics. Figure 1 plots the four observable macro states of the economy together

with NBER recession dates. The upper panel reveals the negative correlation

between both long-run risk components. Macro risk z and w have moved in

opposite directions, especially during the last six recessions. The uncondi-

tional correlation in the data between z and w has been −0.3231. My model

captures this through a negative estimate of σ2z. The negative correlation

of trend growth and trend inflation is consistent with Piazzesi and Schneider

(2006) who document a similar finding.

The lower panel of Figure 1 plots the annualized cross-sectional standard

deviations of GDP growth and inflation forecasts. This dispersion charac-

terizes time-variation in the set of models, (6) and (7). I document that

the exogenous set of long-run risk models is larger for the GDP component,

whereas inflation uncertainty is more persistent. It is only during the past

financial crisis that the set of long-run inflation models has been as large

as the set of long-run GDP models. Consistent with intuition, uncertainty

spikes during recessions and falls during expansions. The Great Moderation

is also clearly visible in macro uncertainty.17 GDP and inflation uncertainty

have been falling since 1985. Macro uncertainty doubled since early 2005,

17Stock and Watson (2002) document falling volatilities across several macro variables
since the mid 1980s.

29



which is mainly related to the strong increase during the recent financial

crisis.

Effect of z, w and ηr, ηw on bond prices. The model focuses only

on the predictable (and observable) components of GDP growth and infla-

tion, as well as on their measurable amount of model misspecification doubts.

The goal is to derive intuition on how these macro concepts affect marginal

utility and the bond market. Table 2 summarizes the fit to the financial

measurement equations. The estimation procedure matches GDP growth,

inflation, and the four macro states perfectly. The model fits the level and

slope of the nominal yield curve. In a simple log-utility set-up, this relies on

accounting for inflation uncertainty, as explained in Ulrich (2010). Long-run

risk models, such as Piazzesi and Schneider (2006), Piazzesi and Schneider

(2010) and Bansal and Shaliastovich (2009) match the nominal term spread

as well. Their economic mechanism is an inflation risk premium that gets

amplified through Epstein and Zin (1989) preferences.

The fit to the real yield curve and to the yield volatility has a higher mea-

surement error. The result for the real yield curve is not surprising because

D’Amico et al. (2008) find evidence for a liquidity factor in TIPS which is not

present in my model. Moreover, equilibrium yield curve models in general
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have difficulties explaining the positive slope in TIPS.18 The higher measure-

ment error for the yield volatility has two reasons. First, realized variance

that is constructed from daily data is very noisy. The confidence bounds for

the mean term structure of yield volatility is large. The model estimates fall

within that bound. Second, for simplicity and in order to focus the attention

to model misspecification doubts about the long-run risk components, I have

abstracted from stochastic volatility in consumption growth and inflation.

Adding stochastic volatility as in Drechsler and Yaron (2010) or Bekaert

et al. (2009) would reduce the measurement error but also destroy the sim-

plicity of the model intuition. I therefore regard the measurement error in

bond volatility as a latent volatility factor that is orthogonal to long-run

macro ambiguity and that could be explained by stochastic volatility in con-

sumption growth and inflation.

While Figure 1 documents that the set of long-run GDP models is, rela-

tively speaking, larger than the set of long-run inflation models, I also find

that inflation ambiguity dominates the investor’s marginal utility. Said dif-

ferently, a bond investor is really concerned about slight misspecifications of

dWw.

18The real yield curve in Piazzesi and Schneider (2006), Piazzesi and Schneider (2010)
and Bansal and Shaliastovich (2009) is downward sloping as well.
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What are reasons for this finding? The relative importance of w over z

is one explanation for why bond investors are more concerned about using

the wrong model for w, compared to using the wrong model for z. Panel

A of Table 3 shows that w explains most of the variations in U.S. Treasury

yields. For short maturity bonds (4-quarter), w explains 74% of variations.

Most of the remaining variations are captured by z. The dominance of w is

even stronger for long-term bonds (40-quarter), where w accounts for nearly

all variations. This is consistent with Ang et al. (2008) and Gürkaynak et al.

(2005) who conclude that expected inflation is one of the most important

drivers of long-term yields.

According to (24), macro risk (w, z) and the uncertainty premiums for

model misspecification doubts affects U.S. Treasury yields. The variance de-

composition in the top panel of Table 3 reveals that the uncertainty premiums

appear to be unspanned by the yield curve. These endogenous equilibrium

premiums affect expected bond returns and option volatilities, (26) and (29),

but they virtually do not help to explain variations in bond yields. The equi-

librium mechanism of having model misspecification doubts about the data

generating process of w and z endogenizes two unspanned macro factors that

drive bond returns and bond volatilities. This provides an equilibrium expla-

nation to the challenging empirical findings of Collin-Dufresne and Goldstein

(2002), Joslin et al. (2009), Cochrane and Piazzesi (2005), Duffee (2010), and

Ludvigson and Ng (2009) who find that factors that are unspanned by the
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yield curve drive bond returns and bond volatilities. To the best of my

knowledge, I am not aware of any other equilibrium model that endogenizes

unspanned premiums and unspanned volatilities.

Uncertainty premiums appear unspanned in a variance decomposition,

but they do affect bond prices, but indeed only marginally. Figure 2 sum-

marizes the impulse response of short- and long-term interest rates to a one

percent shock to ηr and ηw. They reveal that ηr affects bond prices very

differently than ηw.

An increase in ηr means the investor has more empirical evidence that

his model for z, i.e. (2), is potentially misspecified. An ambiguity averse

agent worries that future growth might be lower than what the benchmark

model ((2)) predicts. The endogenous response is to become more bearish

about future growth. Bonds are recession hedges and more attractive in such

uncertain states, because their payout is fixed. The impulse response reveals

that a one percent increase in ηr leaves R unchanged and lowers yn(40) by

0.003%. This means long-term bond prices go up in value, because of flight-

to-safety. This economic channel is qualitatively very intuitive and novel to

the literature. The small quantitative effect is a direct consequence of the

unspanned nature of ηr
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An increase in ηw affects the economy very differently. In fact, the in-

vestor has more fear that his most trustworthy forecast for w ((4)) is too

low. This means he has more empirical evidence to fear that future inflation

will be drawn from a distribution with a higher mean and a higher variance

((11)). If this was indeed true, the future real payout of a U.S. Treasury

bond will be lower in a state of higher marginal utility. The attractiveness of

a Treasury bond falls which translates into falling bond prices. The impulse

response of Figure 2 confirms this intuition. A one percent increase in ηw

leaves R unchanged and increases yn(40) by 0.009%. The increase in yields

is a response to falling bond prices. It is the virtually unspanned feature of

ηw that makes the quantitative response small, but economically meaningful.

Effect of z, w and ηr, ηw on bond premiums. The unspanned uncer-

tainty premiums hr, hw drive variations in bond premiums. These premiums

depend linearly on the observed amount of macro uncertainty, ηr and ηw, as

shown in Proposition 1. Figure 3 summarizes that both unspanned uncer-

tainty premiums affect bond returns qualitatively very differently.

A one percent increase in ηw increases the equilibrium bond premium

for a long-term bond (40-quarter) by 1.5%. This 1.5 multiple indicates that

misspecification doubts about dWw has a quantitatively important effect on

equilibrium bond premiums. The reason for the increase is that the investor
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has a stronger concern about the prospect that the future real payout will

be lower than forecasted under the reference model. This lower payout will

happen in a period of higher marginal utility.

On the other hand, a one percent increase in ηr reduces the bond premium

of a long-term bond by 0.025%. The economic reason for the negative bond

premium is that bonds hedge GDP uncertainty. The quantitative impact on

bond premiums is smaller, compared to an increase in ηw. Together with the

lower panel of Figure 1 this shows that investors are really concerned about

working with a misspecified long-run inflation model. This is consistent with

Ang et al. (2008), Gürkaynak et al. (2005) and Ulrich (2010) who document

the importance of inflation for bond markets.

Analyzing Figure 3 and Figure 2 at once, shows that an increase in ηw

increases the slope of the yield curve, as well as the expected bond premium.

This is consistent with the well known empirical phenomenon that a steepen-

ing of the yield curve coincides with higher expected bond returns (Campbell

and Shiller (1991), Cochrane and Piazzesi (2005), among others).

Term structure of unspanned bond premiums. Figure 4 compares

realized annual bond excess returns with the model’s prediction. The bond

data from the sample allows the exact measurement of annual holding period
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returns for all bond maturities. I construct excess returns by subtracting the

federal funds rate.19 As the model counterpart, I use the integrated annual

expected excess return.20

In the data, the term structure of annual excess returns is upward slop-

ing. It is roughly zero for a short-term bond and 2.2% for a long-term bond.

The term structure of annual excess returns is volatile in the data. Three

standard error bounds put the population mean of long-term excess returns

between −0.86% and 5.21%.

The unspanned macro uncertainty premiums in the model explain the

upward sloping bond premiums. In terms of magnitude, it lies in the upper

part of the data implied three standard error confidence bounds. How does

this result compare to competing models? Bond models with Epstein and

19I use the federal funds rate as the risk-free rate and not the four-quarter yield. This
is the closest counterpart to the model implied expected excess return.

20I find no difference between the integrated and the instantaneous expected excess
return. The unconditional correlation between both is higher than 98%. The integrated
annual expected excess return is
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Zin (1989) preferences as in Piazzesi and Schneider (2010) and Bansal and

Shaliastovich (2009) or Campbell and Cochrane (1999) type models as in

Wachter (2006), Bekaert et al. (2009) and Buraschi and Jiltsov (2007) do not

analyze the impact on bond excess returns. I leave it to future research to

compare these models on that dimension.

Panel B of Table 3 presents a variance decomposition of annual bond ex-

cess returns. The unspanned nature of bond premiums is evident. Whereas

variations in long-run inflation and GDP risk (w, z) dominate variations in

bond yields, they have a zero impact on variations in bond premiums. Bond

premiums are exclusively driven by variations in uncertainty about the qual-

ity of the benchmark long-run risk model. More than 90% of variations in

the bond premium are driven by ηw. Only 10% are due to variations in ηr.

This confirms that the investor really dislikes the potential threat of working

with the wrong inflation model. It also confirms standard intuition that pe-

riods of increased doubt about the underlying model are periods where asset

premiums (prices) increase (fall).

Option markets. Collin-Dufresne and Goldstein (2002) and Heidari

and Wu (2003) argue that option implied bond volatilities are driven by a

factor that does not help to explain variations in the yield curve. My model

argues that the unspanned factors ηr and ηw should help to explain part of
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option implied volatilities. Times of increased uncertainty are times where

bond volatilities go up which translates into higher option implied volatilities.

The equilibrium channel in my model has important economic implications.

First, if the agent knew the data generating process of z and w, the equilib-

rium Black (1976) implied bond option volatility would be constant.

Second, concerns about whether (2) and (4) are the true data generating

processes, make the equilibrium bond option volatility to be of Heston (1993)

type. Heston (1993) derives a reduced-form option pricing model that sup-

ports stochastic option implied volatilities. In that model, volatility of the

underlying process is stochastic. Reduced-form option pricing models con-

firm that option implied volatilities are time-varying (Broadie et al., Chernov

and Ghysels (2000), Pan (2002), Trolle and Schwartz (2000), Eraker (2004)),

which falsifies the constant volatility model of Black (1976). Collin-Dufresne

and Goldstein (2002) added an additional puzzle because they found that op-

tion implied volatilities do not depend on the underlying. So far, equilibrium

models have not been able to explain why option implied bond volatilities

are unspanned by the yield curve. My equilibrium model argues that uncer-

tainty about the correctness of the reference model in equation (2) and (10)

induces stochastic volatility that appears to be unspanned by the yield curve.

How could I test my model on that dimension? The Chicago Board
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Option’s Exchange’s (CBOE) VIX index is a summary statistic for several

short-term S&P500 options. It is usually referred to as the ’fear index’.

In addition, Bloomberg offers historical data on the implied volatility from

options on the 10-year T-note futures contract.21 A correctly specified equi-

librium model should be able to explain part of the variations in TIV and

maybe even in the VIX.

Implied volatility in my model depends on the unspanned factors ηr and

ηw. I combine their information by constructing

θt :=

√

(ηrt )
2 + (ηwt )

2, (30)

because implied volatility is only one process which is an aggregate of both

contributors.

I take quarterly data on the TIV for 1994:Q1 to 2009:Q2.22 I regress it

on θt and find that the model implied measure for macro uncertainty helps

a great deal to explain variations in the TIV

TIVt = 0.0084 + 8.1507 θt + ǫt, R2 = 45.63%.

(2.26) (7.06)
(31)

21In Bloomberg this corresponds to the TY1 series.
22The data is not available before 1993:Q3.
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Roughly half of variations in bond options are related to changes in uncer-

tainty about the data generating process that drives the trend component

in GDP growth and in inflation. This confirms the prediction of my model.

The t-stats in parentheses show that an increase in macro uncertainty leads

to a significant increase in option implied volatilities. My simple equilibrium

model helps to understand variations in the option markets.

I repeat the exercise for the VIX for 1994:Q1 to 2009:Q2. The regression

output reveals that unspanned macro uncertainty explains roughly 50% of

variations in the VIX

V IXt = -0.0123 + 37.0 θt + ǫt, R2 = 45.75%.

(-0.07295) (7.11)
(32)

The high explanatory power of macro uncertainty for equity options and

bond options is consistent with the notion that option volatilities depend

on factors that do not help to explain variations in the underlying. It is

also consistent with the popular interpretation that an increase in VIX or

TIV happens because investor’s fear has gone up. My model argues that in

states where the investor becomes more uncertain about whether his most

trustworthy macro model might be misspecified are states where VIX and

TIV increase. This equilibrium channel is new to the literature and adds

an alternative perspective to existing equilibrium models (Drechsler (2009),

Drechsler and Yaron (2010), David and Veronesi (2002), Buraschi and Jiltsov
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(2006), David and Veronesi (2009), Benzoni et al. (2011), Tauchen (2005)).

Option smile Predictions. Figure 8 confirms that my simple model can

indeed generate a Black (1976) implied volatility smile and smirk. The model

argues that options on a short-term bond have a higher and more skewed im-

plied volatility than the same option on a long-term bond. In order to con-

struct the picture, I have priced calls on Treasury yields. The calls have a ma-

turity of three months and are priced as $100Et

[

m$
t+1 max(ynt+1(τ)−K, 0)

]

.

The maturity of the bond, τ , varies from 8 quarters to 20 quarters. I de-

termine the model implied equilibrium price of the call for different strikes.

This means that the discount factor m$ is the nominal equilibrium SDF from

equation (20).

4. How much Uncertainty is Necessary

If the worst-case ((10), (11)) and the reference model ((2), (4)) are in a

statistical sense far apart from each other, it becomes easy for an econome-

trician to tell which model generated the data. The amount of model uncer-

tainty would be low in such a scenario. I therefore, determine the detection

error probability (DEP), evaluated at the ML estimates. This probability de-

notes the likelihood, that a likelihood ratio test favors one model, although

the data has been generated by the other model. Ulrich (2010) explains in

detail how to derive DEPs in macro-finance models, and how they relate to
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Hansen and Sargent (2008).

The time-varying log-likelihood ratio between the worst-case model and

the benchmark model is

ln

(

dQh
T

dQ0
T

)

= −1

2

∫ T

0

((mr)2(ηrt )
2 + (mw)2(ηwt )

2)dt+

∫ T

0

(mrηrt dW
r
t +mwηwt dW

w
t ).

(33)

The detection error probability depends on the market price of uncertainty

and the realization of shocks to both long-run risk components. The ap-

pendix provides details on the derivation of the DEP.

The DEP, evaluated at the ML estimates is 23.5%. This says that after

seeing the data, if the investor was to choose whether the data has been

generated by the worst-case ((10), (11)) or the reference model ((2), (4)), the

likelihood ratio test would fool the investor in 23.5% of all cases. Hansen

and Sargent (2008) argue that difficult to distinguish models should have a

DEP of at least 10%.

My model mechanism reveals that being exposed to uncertainty about

the data generating process of the long-run risk components helps to explain

why bond premiums and bond option implied volatilities are time-varying

and unspanned. In a bigger context this reveals that accounting for model
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misspecification doubts helps to explain higher moments of the investor’s

marginal utility.

5. Conclusion

We know from Campbell and Cochrane (1999) that stochastic risk aver-

sion can explain a counter cyclical equity premium, while the conditional

volatility of consumption is constant. I extend this reasoning and show that

stochastic uncertainty aversion (Knight (1921)) is an alternative channel for

the bond market. In the model, the equilibrium bond premium, volatility,

and option implied volatility are counter cyclical, while conditional volatility

of consumption and inflation is constant. The reason are time-varying mis-

specification doubts about the statistical reliability of the underlying macro

model. These misspecification doubts induce endogenous uncertainty premi-

ums.

The analysis concludes that the yield curve does not span the uncer-

tainty premiums. At the same, these premiums are of first-order importance

for understanding bond returns and option markets in this model. The model

provides a general equilibrium rationale for the empirical findings that un-

spanned factors drive bond premiums, bond volatilities, and option implied

volatilities (Collin-Dufresne and Goldstein (2002), Cochrane and Piazzesi

(2005), Ludvigson and Ng (2009)). I further document that the model ac-

counts for 50% of the variations in the VIX and the TIV.
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My equilibrium model shows that accounting for Knight (1921) uncer-

tainty about the data generating process of the predictable components in

GDP growth and inflation is helpful for generating highly non-Gaussian re-

turn distributions, even if the fundamentals are smooth processes. My en-

dogenous equilibrium result is promising because reduced-form option pricing

models find strong skewness in option contracts.23 The proposed equilibrium

channel and bond market focus adds to existing models, who exclusively fo-

cus on equity options (David and Veronesi (2002),Liu et al. (2005), Benzoni

et al. (2011), Drechsler and Yaron (2010), Drechsler (2009) and Shaliastovich

(2009), David and Veronesi (2011), among others).

I conclude that the introduced small deviation from an otherwise condi-

tionally homoscedastic consumption based asset pricing model has important

and realistic implications for bond and bond option markets. For future re-

search it is promising to study stochastic risk aversion, stochastic uncertainty

aversion and Epstein and Zin (1989) preferences in a unified model.

23Compare Chernov and Ghysels (2000), Pan (2002), Broadie et al., among others.
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Appendices

A. Data

Macro data:

The Survey of Professional Forecasters (SPF) does not publish forecasts on
consumption growth. I use forecasts and dispersion on GDP growth instead.
Real GDP growth, GDP implicit price deflator, federal funds rate are from
the St. Louis Fed database (FRED). The quarterly forecast on GDP growth
and inflation coincide with the corresponding median forecast from the SPF.
For each quarter, I determine the amount of ambiguity, η2, as the cross-
sectional variance of SPF’s inflation and GDP growth forecasts. To remove
seasonality I use a 4-quarter moving average. All data is from first quarter
1972 to second quarter 2009.

Bond data:

Nominal yields: continuously compounded U.S. government bond yields of
maturities 1,2,3,4,5,6,7,8,9,10 years. Data is from first quarter 1972 to second
quarter 2009.
Real yields: continuously compounded yields from U.S. Treasury Inflation
Protected Securities (TIPS) with maturities of 5,6,7,8,9,10 years. Data is
from first quarter 2003 to second quarter 2009.
All bond data is from the Board of Governors of the Federal Reserve System.

Volatility data:

Realized volatility of changes in nominal yields: I use daily squared differ-
ences in continuously compounded U.S. government bond yields of maturities
1,2,3,4,5,6,7,8,9,10 years to construct a quarterly measure of realized volatil-
ity. Data is from first quarter 1972 to second quarter 2009.

B. Proof of Proposition 1

Rewrite the constrained minimization in (12) as a relative entropy con-
strained HJB. J denotes the value function. It depends on J = J(ln c, ηw, ηr, zt).
The time varying Lagrange multipliers for the entropy constraints are θrt and
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θwt .

ρJ(ln ct, η
w, ηr, zt) = min

hr
t ,h

w
t

ln ct + θrt

(

(hr
t )

2

2
− Ar(ηrt )

2

)

+ θwt

(

(hw
t )

2

2
− Aw(ηwt )

2

)

+

+AhJ(ln ct, η
w, ηr, zt), (34)

where Ah is the second order differential operator (under the ambiguity ad-
justed measure) applied to the value function J. Guess the value function is
linear in the states, i.e. J = δ0 + δzzt + δηwη

w
t + δηrη

r
t . The second order

differential operator applied to the value function is

Ah J = δz(κz + σ1zh
r
t + σ2zh

w
t ) + δηr(aηr + κηrη

r
t ) + δηw(aηw + κηwη

w
t ) (35)

First-order conditions with regard to hr
t and θrt reveal

θrt =
−σ1zδz

±
√
2Arηrt

(36)

hr
t = ±

√
2Arηrt . (37)

Note (δz > 0, σ1z > 0), the robust HJB is minimized at

hr
t = −

√
2Arηrt ≡ mrηrt , mr ∈ R− (38)

θrt =
−σ1zδz

−
√
2Arηrt

≡ b0
ηrt
, b0 ∈ R+, (39)

where we defined mr ≡ −
√
2Ar < 0 and b0 ≡ −σ1zδz

−
√
2Ar

> 0. This proofs the
first part of the proposition.
First-order conditions with regard to hw

t and θwt reveal

θwt =
−σ2zδz

±
√
2Awηwt

(40)

hw
t = ±

√
2Awηwt . (41)
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Note (δz > 0, σ2z < 0), the robust HJB is minimized at

hw
t =

√
2Awηwt ≡ mwη

w
t , mw ∈ R+ (42)

θwt = − σ2zδz√
2Awηwt

≡ b1
ηwt

, b1 ∈ R+, (43)

where we defined mw ≡
√
2Aw < 0 and b1 ≡ −σ2zδz√

2Aw
> 0. This proofs the

remaining part of the proposition. Plug the solution to the robust HJB and
verify that the guess of the linearized value function was correct.

C. Derivation of Real Bond Yields

Let F r = F r
t (τ) be the price of a real bond. In the economy this price

is exponentially affine F r = eA
r(τ)+Br(τ)S where S denotes the state vector

St = (zt h
r
t h

w
t )

′. F r solves the following PDE

r · F r = AHF r + F r
t , F r

t = −F r
τ (44)

where r is the real risk free rate, AH is the second order differential operator
and F r

τ is the first derivative of F r with regard to τ . Using the equilibrium
real interest rate and the exogenous dynamics of S reveals that the bond
loadings solve simple ordinary differential equations. The solution for Br

z(τ)
is Br

z(τ) =
1
κz (1− eκzτ ). The corresponding ode for Br

hw and Br
hw solve

d

dτ
Br

hw(τ) = κηwB
r
hw(τ) +

1

2
σ2
ηwm

w (Br
hw(τ))

2 + σ2zB
r
z(τ), B

r
hw(0) = 0 (45)

d

dτ
Br

hr(τ) = κηrB
r
hr(τ) +

1

2
σ2
ηrm

r (Br
hr(τ))

2 + σ1zB
r
z(τ), B

r
hr(0) = 0 (46)

(47)
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The analytic solution to the Riccati equations (approximating Br
z(τ) at its

steady state value Br
z(∞)) is

Br
hr(τ) =

(−β1 + d)(1− edτ )

2β2(1− gedτ )
(48)

g :=
−β1 + d

−β1 − d
(49)

d :=
√

β2
1 − 4β0β2 (50)

β0 :=
σ1z

κz

(51)

β1 := κηr (52)

β2 := 0.5mrσ2
ηr (53)

and

Br
hw(τ) =

(−β1 + d)(1− edτ )

2β2(1− gedτ )
(54)

g :=
−β1 + d

−β1 − d
(55)

d :=
√

β2
1 − 4β0β2 (56)

β0 :=
σ2z

κz

(57)

β1 := κηw (58)

β2 := 0.5mwσ2
ηw . (59)

Function Ar(τ) follows from direct integration.

D. Derivation of Nominal Bond Yields

Let F = Ft(τ) be the price of a nominal bond. In the economy this price
is exponentially affine F = eA

n(τ)+Bn(τ)X where X denotes the state vector
Xt = (wt St)

′. F solves the following PDE

R · F = AHF + Ft, Ft = −Fτ (60)

where R is the nominal short rate, AH is the second order differential operator
and Fτ is the first derivative of F with regard to τ . Using the equilibrium
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nominal short rate and the exogenous dynamics of X reveals that the bond
loadings solve simple ordinary differential equations. The solution to the
loadings is as follows: Bn

z (τ) = Br
z(τ), B

n
hr(τ) = Br

hr(τ), Bn
w(τ) = 1

κw
(1 −

eκwτ ). The analytical solution to Bn
hw(τ) (approximated Bn

w(τ) at its steady
state value Bn

w(τ)) is

Bn
hw(τ) =

(−β1 + d)(1− edτ )

2β2(1− gedτ )
(61)

g :=
−β1 + d

−β1 − d
(62)

d :=
√

β2
1 − 4β0β2 (63)

β0 :=
σ2z

κz

+
σw

κw

(64)

β1 := κηw (65)

β2 := 0.5mwσ2
ηw . (66)

Function An(τ) follows from direct integration.

E. Derivation of Detection Error Probability

The derivation of the detection-error probabilities pT (m
r,mw) follows di-

rectly from Maenhout (2006):

pT (m
r,mw) =

1

2

(

Pr

(

ln
dQh

T

dQ0
T

> 0|dQ0,F0

)

+ Pr

(

ln
dQ0

T

dQh
T

> 0|dQh,F0

))

(67)

=
1

2

(

Pr

(

−1

2

∫ T

0

h′
mhmdm+

∫ T

0

hm · dW z
m > 0|dQ0,F0

))

+
1

2

(

Pr

(

−1

2

∫ T

0

h′
mhmdm−

∫ T

0

hm · dW z,h
m > 0|dQh,F0

))

(68)
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where ht = (mwηwt mrηrt )
′ is the endogenous distortion to trend GDP growth.

The last equation coincides with

pT (m
r,mw) =

1

2
− 1

2π

∫ ∞

0

(

Re

(

φh(k, 0, T )

ik

)

−Re

(

φ(k, 0, T )

ik

))

dk

(69)

where i =
√
−1, φ(.) is defined as φ(k, 0, T ) := E

[

ei·k·ξ1,T |F0

]

and φh(.) is

defined as φh(k, 0, T ) := Eh
[

ei·k·ξ1,T |F0

]

and ξ1,T = ln
dQh

T

dQ0
T

.

Applying Feynman-Kac theorem to φh and φ reveals that they are an
exponentially quadratic function in the amount of inflation distortion ht:

φh(k, t, T ) = zik+1
t eG(τ,k)+

∑
j∈{w,r} Ej(τ,k)hj(t)+

∑
j∈{w,r}

Fj(τ,k)

2
h2
j (t) (70)

φ(k, t, T ) = zikt eĜ(τ,k)+
∑

j∈{w,r} Êj(τ,k)hj(t)+
∑

j∈{w,r}

F̂j(τ,k)

2
h2
j (t) (71)

zT := eξ1,T , (72)

whereG(τ, k), Ej(τ, k), Fj(τ, k), Ĝ(τ, k), Êj(τ, k), F̂j(τ, k) are deterministic so-
lutions to standard complex valued Riccati equations. I provide details on
the derivation of the Riccati equations for φh. The derivation of φ is analo-
gous.
In order to get an analytical solution, I approximate the conditional volatility
of the uncertainty premium by its steady state value, i.e.

dht = (aηm+ κηht)dt+ ση

√
m
√

htdW
η
t (73)

≈ (aηm+ κηht)dt+ ση

√
m
√

maη/(−κη)dW
η
t (74)

For ease of notation I define b :=
√
m
√

maη/(−κη), where more specifically
br refers to the conditional steady state volatility of dhr and bw is the analog
for dhw.
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φh(k, t, T ) solves φh
τ = Aφh where τ = T − t and φh

τ stands for ∂φh

∂τ
.

φh
τ = φh



Ġ(τ, k) +
∑

j∈{w,r}
Ėj(τ, k)hj(t) +

1

2

∑

j∈{w,r}
Ḟj(τ, k)h

2
j(t)



 (75)

Aφh

φh
=

∑

j∈{w,r}

[

(Ej(τ, k) + Fj(τ, k)hj(t))
(

aηjm
j + κηjhj(t)

)]

+ 0.5ik(k + 1)
(

h2
w(t) + h2

r(t)
)

+
1

2

∑

j∈{w,r}

(

E2
j (τ, k) + F 2

j (τ, k)h
2
j(t) + 2Ej(τ, k)Fj(τ, k)hj(t)

)

b2j (76)

Set φh
τ = Aφh and match coefficients:

Fj(τ, k) = F r
j (τ, k) + F c

j (τ, k) (77)

F c
j (τ, k) = k · τ (78)

F r
j (τ, k) =

(aj + dj)(1− edjτ )

2br2j(1− gjedjτ )
(79)

where F r is the real part of F and F c is the complex part and

aj = −br1j; dj =
√

a2j − 4br0jb
r
2j; gj =

aj + dj
aj − dj

; br0j = −k2 (80)

br1j = 2κηj ; br2j = b2j (81)

where j ∈ {w, r}. The stable steady state solution of F is

Fj(∞, k) = −
br1j + dj

2br2j
. (82)

The loadings Ej(τ, k), j ∈ {f, w, r} solve the following ode

d

dτ
Ej(τ, k) = κηjEj(τ, k) +mjaηjFj(τ, k) + Ej(τ, k)Fj(τ, k)b

2
j . (83)

We obtain an analytical approximation by approximating Fj(τ, k) around its
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steady state value Fj(∞, k).

Ej(τ, k) = − âj

b̂j
(1− eb̂jτ ) (84)

âj = Fj(∞, k)mjaηj (85)

b̂j = Fj(∞, k)b2j + κηj . (86)

The loading G(τ, k) is obtained through straightforward integration

G(τ, k) =
∑

j∈{f,w,r}

(

mjaηj

∫ τ

0

Ej(u, k)du

)

+
1

2

∑

j∈{w,r}
b2j

∫ τ

0

E2
j (u, k)du.

(87)

The required expression φh(k, 0, T ) is therefore

φh(k, 0, T ) = eG(T,k)+
∑

j∈{w,r} Ej(T,k)hj(∞)+ 1
2

∑
j∈{w,r} Fj(T,k)h

2
j (∞), (88)

where we assumed that hj(0) started in its steady state hj(∞) =
mjaηj

−κ
ηj
.
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Table 1: PARAMETER ESTIMATES (Standard Errors)

Panel A: State Variables

Drift, Volatility

κ σ a

w -0.049 (0.0004 ) 0.0023 (0.00002) 0 (fixed)
z -0.27 (0.002 ) 0.0078 (0.00039) -0.0018 (0.00005) 0 (fixed)
ηw -0.49 (0.007) 0.78 (0.16) 0.0015 (0.00025)
ηz -0.22 (0.002) 0.50 (0.95) 0.0017(0.00075)

Panel B: Growth and Inflation

c0 0.0065 (fixed)
p0 0.0096 (fixed)
σc 8.8e-5 (4e-5)
σp 5.4e-5 (4e-5)
ρ 0.001 (fixed)
mw 40.97 (0.496)
mr -0.93 (0.042)

Note: The table presents ML parameter estimates and their standard error
(in parenthesis). The asymptotic standard errors are determined based on
the score of the log likelihood. The ML estimation uses bond yield, bond
volatility and macro data from 1972.I to 2009.II.
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Table 2: Yield Curve, in %, per quarter

Panel A: Nominal Yields

yn

maturity R 4 8 12 16 20 24 28 32 36 40
data 1.6 1.5822 1.6391 1.6819 1.7159 1.7453 1.7717 1.795 1.8154 1.8327 1.8484
model 1.5991 1.5577 1.5915 1.6354 1.6797 1.7215 1.7601 1.7952 1.8270 1.8558 1.8817

Panel B: Real Yields

yr

maturity 20 24 28 32 36 40
data 0.3782 0.4109 0.4400 0.4650 0.4859 0.5014
model 0.5274 0.5233 0.5204 0.5181 0.5164 0.5150

Panel C: Volatility of Nominal Yields

maturity 4 8 12 16 20 24 28 32 36 40
data 0.1221 0.1321 0.1344 0.1326 0.1298 0.1269 0.1245 0.1226 0.1214 0.1206
model 0.4050 0.2060 0.1385 0.1041 0.0834 0.0695 0.0596 0.0521 0.0464 0.0417

Note: Panel A compares model implied nominal bond yields with the data
counterpart. R stands for the nominal short rate (federal funds rate),
while the other maturities refer to quarters. The yields are in quarterly
percentage units. Panel B compares model implied real bond yields with the
data counterpart. Maturity is in quarterly units, and interest rates are in
quarterly percentage units. Panel C compares the model implied volatility
of nominal yields with the data counterpart. Volatilities are in quarterly
units and in percent. The MLE estimation uses bond yield, bond volatility
and macro data from 1972.I to 2009.II.
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Table 3: Variance Decomposition

Panel A: Nominal Yields

yn

maturity total w z hw hr

4 1.0000 0.7358 0.2637 0.0004 0.0000
8 1.0000 0.8397 0.1602 0.0001 0.0000
12 1.0000 0.8937 0.1062 0.0001 0.0000
16 1.0000 0.9228 0.0771 0.0001 0.0000
20 1.0000 0.9395 0.0604 0.0000 0.0000
24 1.0000 0.9498 0.0502 0.0000 0.0000
28 1.0000 0.9565 0.0435 0.0000 0.0000
32 1.0000 0.9611 0.0389 0.0000 0.0000
36 1.0000 0.9643 0.0356 0.0000 0.0000
40 1.0000 0.9667 0.0333 0.0000 0.0000

Panel B: Annual Bond Premiums

BondPremium

maturity total w z hw hr

4 1.0000 0 0 0.9313 0.0687
8 1.0000 0 0 0.9769 0.0231
12 1.0000 0 0 0.9886 0.0114
16 1.0000 0 0 0.9929 0.0071
20 1.0000 0 0 0.9950 0.0050
24 1.0000 0 0 0.9961 0.0039
28 1.0000 0 0 0.9967 0.0033
32 1.0000 0 0 0.9972 0.0028
36 1.0000 0 0 0.9975 0.0025
40 1.0000 0 0 0.9977 0.0023

Note: This table summarizes several variance decompositions. Panel A
depicts variance decompositions for nominal bond yields. Panel B presents
variance decompositions for the 4-quarter model implied expected excess
return of holding a nominal bond with different maturities. The ML
estimation uses bond yield, bond volatility and macro data from 1972.I to
2009.II.
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Table 4: Variance Decomposition

Panel A: Implied Volatility

Black Implied Volatilities

maturity total w z hw hr

4 1.0000 0 0 0.9982 0.0018
8 1.0000 0 0 0.9933 0.0067
12 1.0000 0 0 0.9901 0.0099
16 1.0000 0 0 0.9886 0.0114
20 1.0000 0 0 0.9880 0.0120
24 1.0000 0 0 0.9878 0.0122
28 1.0000 0 0 0.9878 0.0122
32 1.0000 0 0 0.9877 0.0123
36 1.0000 0 0 0.9878 0.0122
40 1.0000 0 0 0.9877 0.0123

Note: This table shows variance decompositions for the Black implied
volatility for a three month call on several interest rates. The MLE uses
bond yield, bond volatility and macro data from 1972.I to 2009.II.
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Figure 1: Observable Long-Run Risk and Long-Run Ambiguity

This figure shows the four state variables of the economy. The upper panel
plots the predictable components in GDP growth and in inflation, z and w,
respectively. The lower panel plots the amount of model misspecification
doubts about the data generating process that drives z and w. All states are
observed in real-time, annualized and in %. The sample is from 1972.I to
2009.II. The data is from the Survey of Professional Forecasters.

1975 1980 1985 1990 1995 2000 2005 2010

6

4

2

0

2

4

6

 

 

z

w

1975 1980 1985 1990 1995 2000 2005 2010
0

0.5

1

1.5

2

 

 

r

w

63



Figure 2: Impulse Responses: Yield Curve

This figure presents impulse responses of the yield curve for a one percent
increase in ηr and ηw. The x-axis is in quarters, the y-axis is in percent. The
model is estimated with ML and uses data from 1972.I to 2009.II.
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Figure 3: Impulse Responses: Bond Premium

This figure presents impulse responses for a one percent increase in ηr (lower
panel) and ηw (upper panel) on itself and on bond premiums. The x-axis is
in quarterly units, while the y-axis is in percentage units. The upper panel,
from left to right, shows the response to the bond premium of a 4-quarter
and a 40-quarter bond. These premiums are denoted Bond Premium(4) and
Bond Premium(40). The model is estimated with yield and macro data and
uses a one step MLE with data from 1972.I to 2009.II.
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Figure 4: Term Structure of Bond Premiums

This figure presents the cross-section of bond premiums in the data and in
the model. The bond premium is calculated as the 4-quarter holding period
return of all nominal bonds minus the nominal short rate (federal funds
rate). The x-axis is in quarterly units and corresponds to the maturity of the
nominal bond. The y-axis is in percent. The premiums are annualized. The
dotted line corresponds to the realized sample average. The solid line stands
for the model implied expected excess bond return. The −. line stands for
the empirical 3 standard deviation confidence interval around the realized
sample average return. The confidence interval is determined as the realized
sample average plus and minus three times the sample standard deviation
divided by the square-root of the sample size. It represents the data estimate
for the expected excess bond return in population. The model is estimated
with yields and macro data in a one step MLE. The data length is 1972.I to
2009.II.
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Figure 5: Option Implied Volatilities

This figure presents Black (1976) implied volatilities of a three month call
on several Treasury bond yields. The panels from left to right represent the
Black implied volatilities for the 8-quarter, 12-quarter, 16-quarter, and 20-
quarter yield. The x-axis shows the moneyness, i.e. ln K

yt(τ)
. The y-axis is

in percent. The ML estimates and sample mean of the states are used to
construct the pictures. The model is estimated with yield and macro data
and uses a one step ML estimation with data from 1972.I to 2009.II.
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