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1 Introduction

When firms contemplate entering a new geographical market, they typically conduct market

research to learn about the demand and they investigate various production and distribution

alternatives. The final decision of whether to enter the foreign market is only taken after

months of investigation; and it is not uncommon that two rival firms join forces by creating

a joint subsidiary in order to access foreign markets. Similarly, when firms are engaged in

a race to obtain an innovation, they often start building small prototypes, or running small

scale experiments before investing in a large scale research project. Once a firm has started

developing a new product, the race will often be concluded with a merger, with one of the

two firms acquiring the research output of the other before the new product reaches the

market. Sometimes, the investment decision is mediated by an outside agency, like a venture

capitalist or a granting agency.

In this paper, our objective is to better understand the interplay between experimentation

with the goal of acquiring knowledge about the cost of entry and preemption in entry timing

games, and to study collusive mechanisms between two firms engaged in the development

of new products or the access to new markets. The questions we aim at answering are: Do

firms invest too early or too late? How does the fact that signals are public or private affect

the entry timing decisions? When do simple compensating payment allow firms to achieve

the collusive outcome? Which share of the surplus should accrue to the two firms in the

collusive transfer scheme? When is the optimal time to implement cooperation?

To this end, we study investment decisions by two firms which compete to enter a new

market or develop a new product. Ex-ante, the firms are uncertain about the cost of the

investment. They gradually acquire signals about their entry cost through research and

experimentation. (We consider here the case of private values, where the entry costs are

independently distributed across firms.) Upon observing their signals, and forging beliefs

about the signals received by their competitors, firms decide when to enter. If both firms

enter, they collect duopoly profits on the market; if only one firm enters, it will receive

monopoly profits. We suppose that firms make positive profits as duopolists only when their

entry cost is low, and make positive expected profits as monopolists when they have not

yet learned their costs. We compute the cooperative outcome, where the two firms choose

entry timing in order to maximize joint profits, and the outcome of the noncooperative game
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of entry timing played by the two firms both when the signals are public and private. We

analyze how the two firms can implement a collusive transfer scheme by which the firm

which has entered the market compensates the other firm for not entering and under which

conditions they can implement a collusive mechanism, in which an outside party has the

power to determine the firms’ joint investment decisions.

Our first set of results deals with the firms’ incentives to learn their cost of entry in a

non-cooperative setting. We find that competition leads firms to invest excessively early, and

that excess momentum is higher when signals are private than public. We consider situations

of project selection, where it is optimal for the two firms to wait until they learn that one of

the two projects is profitable before entering the market. For sufficiently low expected entry

costs, competition leads the two firms to invest immediately in order to preempt entry by

the rival firm. Furthermore, there exists an intermediate range of the expected entry costs,

for which firms choose to wait when signals are public but preempt at a finite time when

signals are private. With private signals, firms do not observe whether their competitor has

abandoned the race or not. As time passes, firms become more and more convinced that the

other firm has dropped from the race (no news is good news). Hence, at some finite date,

firms become sufficiently confident that the other firm will not enter the market, and choose

to enter before they learn their entry cost. This equilibrium is reminiscent of the preemption

equilibrium in the innovation race studied by Fudenberg and Tirole (1985) and Grossman and

Shapiro (1987). However, in our model, preemption occurs due to the endogenous dynamics

of beliefs, whereas in their model, preemption results from the exogenous dynamics of the

innovation cost.

Our second set of results deals with collusive schemes, which allow the firms to the col-

lusive outcome. Competing firms face three sources of inefficiency: (i) market competition,

(ii) duplication of entry costs and (iii) excess momentum in market entry. We consider two

schemes by which firms can seek to reach the collusive outcome. First, we study compensat-

ing payments which are paid by the investing firm after it has invested to the other firm so

that it stays out of the market. Second, we examine a compensating mechanism where an

outside party simultaneously chooses which firm invests and chooses the transfers to be paid.

With the first scheme, in which the designer cannot determine the investment decisions, we

show that collusion is possible only when a firm enters the market sufficiently early. After

a finite date, collusion becomes impossible as the active firm becomes convinced that its
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rival has dropped from the market and is unwilling to compensate it at a level which would

prevent entry. We also show that in order to achieve efficient entry timing decisions, the

monopoly surplus should be shared between the active and inactive firms in an equitable

fashion. The share of the active firm should be large enough to give it an incentive to invest

immediately after it learns its cost. The share of the inactive firm should be large enough so

that firms have no incentive to enter early in order to preempt their rival. With the second

scheme, in which the designer also determines the investment decisions, we show that it is

possible to implement the collusive outcome at any point in time without payments to the

inactive firm as long as the expected payoff in the outcome in which firms wait to learn their

cost is sufficiently high. If it is not sufficiently high, the implementation of the first best

requires again a sharing of the surplus from collusion between the active and the inactive

firm.

Our analysis thus sheds light on situations of project selection, where two independent

firms run parallel research programs and a third party can enforce a cooperative scheme to

prevent inefficiencies. The third party can for instance be a venture capitalist or a granting

agency running competing research project, the editor of an academic journal or organizer

of a scientific conference who discovers that two teams of scientists are working on the same

problem. Our analysis suggests that selection should neither occur too early (before the

profitabilities of the projects are known), nor too late (when the firms have become very

optimistic about their prospects given that the other firm has not entered). It also shows

that the share of the surplus transferred to the firm which is not selected should neither be

too large (in which case the selected firm may have an incentive to delay the research project)

nor too small (the higher the payoff transferred to the firm which is not selected, the smaller

the gap between the payoffs of the leading and trailing firms, which reduces inefficiencies

due to excess momentum.)

Our analysis is rooted in the literature on patent races in continuous time pioneered

by Reinganum (1982) and Harris and Vickers (1985). The first extensions of patent races

allowing for symmetric uncertainty are due to Spatt and Sterbenz (1985), Harris and Vickers

(1987) and Choi (1991). Models of learning in continuous time with public information have

been studied by Keller and Rady (1999) and Keller, Cripps and Rady (2005) in the more

complex environment of bandit problems. Rosenberg, Solan and Vieille (2007) and Murto

and Välimäki (2011) analyze general stopping games with common values where players’
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payoffs does not depend on the actions of other players. Similarly, Chamley and Gale

(1994), Lambrecht and Perraudin (2003) and Decamps and Mariotti (2004) model market

entry with private information about the common value of market entry within a real options

framework. By contrast, we consider the setting of private values but consider strategic

interaction between the players after entry.

The model of preemption we consider is formally identical to Fudenberg and Tirole’s

(1985) model of technology adoption with preemption. Innovation timing games which can

result either in preemption or in waiting games have been studied by Katz and Shapiro

(1987). Hoppe and Lehmann-Grube (2005) propose a general method for analyzing inno-

vation timing games. Fudenberg and Tirole’s (1985) model has been extended by Weeds

(2002) and Mason and Weeds (2010) to allow for stochastic values of the technology. How-

ever, none of these models allows for private information. The closest papers to ours are

the recent papers by Hopenhayn and Squintani (2011) on preemption games with private

information and Moscarini and Squintani (2010) on patent races with private information.

Moscarini and Squintani (2010) analyze a common values problem, where agents learn about

the common arrival rate of the innovation, whereas we analyze a private values problem in

which agents learn their individual market entry cost. Accordingly, our model displays very

different results. Even though Hopenhayn and Squintani’s (2011) model is more general

than ours in many aspects, it only covers situations where agents receive positive informa-

tion over time. In our model, research teams may either receive positive or negative signals

about the profitability of the research project. This impacts the results so that the insights of

Hopenhayn and Squintani (2011) do not directly apply. Cooperation among research teams

with private information has been studied in a mechanism design context by Gandal and

Scotchmer (1993). Goldfain and Kovac (2007) analyze the optimal design of contracts by a

venture capitalist running two parallel projects. Gordon (2011) and Akcigit and Liu (2013)

study patent races with private signals, focussing on the incentives to disclose information to

competitors. More generally, Athey and Segal (2013) study efficient dynamic mechanisms.

Their team mechanism does not apply directly to our framework due to our assumption of

post-entry competition.

The rest of the paper is organized as follows. We introduce the model and describe the

collusive benchmark in Section 2. Section 3 contains our core analysis of entry timing games

with public and private signals. Section 4 discusses the design of schemes that allow the
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firms to attain the collusive outcome. Conclusions and directions for future research are

given in Section 5. All proofs and derivations are collected in the Appendix.

2 The Model

2.1 Firms, new markets and entry costs

The model specification follows closely Murto and Välimäki (2011). We consider a model

with discrete time. We let t = 0, 1, ..,∞ denote the periods in the game. The discount

factor per period is δ = e−r∆ where ∆ is the period length and r > 0 the pure rate of time

preference. At the beginning of the game, nature chooses the entry cost of the two firms,

θi ∈ {θ, θ}, but firms do not know their entry cost. We consider a model of private values

where costs are randomly and independently chosen for the two firms, and for simplicity,

assume that high and low costs are equiprobable.2 The expected value of the entry cost is

thus given by

θ̃ =
θ + θ

2
.

The information about private entry costs arrives gradually through the game. During

the experimentation phase, each firm receives every period a signal ξ ∈ {0, 1, 2}. We assume

that Pr(ξ = 0|θ = θ) = Pr(ξ = 2|θ = θ) = λ∆, Pr(ξ = 1|θ = θ) = Pr(ξ = 1|θ = θ) = 1− λ∆

and Pr(ξ = 2|θ = θ) = Pr(ξ = 0|θ = θ) = 0 where λ > 0 is a commonly known parameter,

and the period length ∆ is small enough so that λ∆ < 1. Hence, with probability 1−λ∆, the

firm does not learn its type during the period, and with probability λ∆, the firm receives a

perfect signal about its entry cost. Signals are independent across periods and across players

(conditional on the types), and are privately observed by each firm. No payoff is collected

by the firms during the experimentation phase.

At each period t, both firms simultaneously make a binary choice, eti ∈ {0, 1}. If eti = 1,

firm i enters the market, pays its entry cost θ, stops the experimentation phase and starts

collecting profits. The profits collected by the firm depends on the entry of the other firm.

When both firms are present on the market, they each collect a duopoly payoff of vd∆ per

period. When a single monopolistic firm operates on the market, it collects the monopoly

profit vm∆ every period. We assume that vm > 2vd.

2The analysis would not change if we assumed different probabilities for the high and low costs.
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We suppose that high cost firms never have an incentive to invest, even if they receive

monopoly profit. Low cost firms always have an incentive to invest even if they receive

duopoly profit. When entry cost remains unknown, firms have an incentive to invest as

monopolists but not as duopolists. Formally, we define the discounted sum of duopoly and

monopoly profits as:

πd =
∆vd

1− e−r∆ , πm =
∆vm

1− e−r∆ ,

and assume:

Assumption 1

θ ≤ πd ≤ θ̃ ≤ πm ≤ θ. (1)

2.2 Entry timing and strategies

In our model, every firm privately observes its signals during the experimentation phase,

and the entry decisions are public. Notice that the profit of a firm only depends on the

entry decision of the other firm (and not on its entry cost), so that, after a firm has entered,

whether or not its entry cost is revealed to the other firm is immaterial. Hence, the model

we consider is in a very strong sense a private values model, where the payoff of a firm does

not depend on the type of the other firm. A firm’s strategy specifies, for any given private

history up to t, its entry decision at period t. We consider perfect equilibrium strategies

which maximize the firm’s expected discounted payoff after every possible history.

Given Assumption 1, it is a dominant strategy for a high cost firm not to invest. In

addition, we show below that it is a dominant strategy for a firm which learns that its cost is

low to invest immediately. Hence, the only relevant decision is whether or not a firm which

has not yet learned its type chooses to invest.

Lemma 1 It is a dominant strategy for a firm which learns that it has a low cost at period

t to invest immediately.

Lemma 1 is a very intuitive result, but still requires a proof. In general, the other firm

may adopt a mixed strategy, choosing to invest with positive probability when it has not yet

learned its cost, or to delay investment after learning that its cost is low. In order to show
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that a firm with a low cost has an incentive to invest immediately, we not only observe that

the firm loses a positive profit of πd − θ (or πm − θ) for one period by delaying investment,

but also note that, by delaying investment, the firm may facilitate the entry of the other

firm, resulting in a loss from monopoly profit to duopoly profit. Given Lemma 1, the only

relevant investment strategy is the strategy chosen by a firm which has not yet learned its

cost. From now on, we will characterize equilibrium by focusing on this strategic choice.

2.3 Collusive benchmark

In this section, we abstract from competition between the two firms and characterize the

optimal investment strategy chosen by a monopolist who has access to both technologies.

Notice that there are three possible strategies:

1. Invest immediately, resulting in a payoff VE0 = πm − θ̃.

2. Experiment with both technologies, and invest after receiving the first low signal. Let

t denote the time at which the first firm learns its type, either the type is θ and the

firm invests or it is θ and the firm continues experimenting with the remaining project.

At time τ ≥ t + 1 it learns the type of the second project and invests if it has cost

θ. Finally, we consider the case where both firms learn the types simultaneously and

invest with probability 3/4. Hence, the expected collusive payoff is given by

VEL =
∞∑

t=1

(1− λ∆)2(t−1)(λ∆(1− λ∆)δt[(πm − θ)

+
∞∑

τ=t+1

(1− λ∆)τ−t−1λ∆

2
δτ−t(πm − θ)] +

3λ2∆2

4
δt(πM − θ))

=
δλ∆(πm − θ)

1− δ(1− λ∆)2
[1− λ∆

4
+

δλ∆

2(1− δ(1− λ∆))
]

3. Experiment with both technologies and invest after receiving the first signal. Following

the same lines as above, we note that investment will occur as soon as one of the firms

learns its type, resulting in a payoff of πm − θ if the project has low cost and πm − θ̃
if it has high cost and the firm invests in the other project. The expected collusive
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parameter region optimal cooperative choice

θ̃ < πm − VE2 invest immediately

πm − VE2 ≤ θ̃ < πm − VE1 invest immediately after receiving the first signal

πm − VE1 ≤ θ̃ invest only after receiving a low-cost signal

Table 1: Optimal collusive choice

payoff is given by

VE2 =
∞∑

t=1

(1− λ∆)2(t−1)δt(1− λ∆)λ∆(2πm − θ − θ̃) +
3(λ∆)2

4
(πm − θ)

=
δλ∆

1− δ(1− λ∆)2
((1− λ∆)(πm − θ̃) + (1− λ∆

4
(πm − θ)).

If a monopolist experiments with a single technology, it obtains an expected payoff

VE1 =
δλ∆(πm − θ)

2(1− δ(1− λ∆))
.

Letting the length of every period ∆ go to zero, we easily compute :

VEL =
λ

2λ+ r
(πm − θ)(1 +

λ

2(λ+ r)
),

VE2 =
2λ

2λ+ r
(πm −

θ + θ̃

2
),

VE1 =
λ

2(λ+ r)
(πm − θ)

Notice that, when ∆→ 0, VEL − VE2 converges to VE1 − (πm − θ̃) and furthermore that

VE2 ≥ VE1. Hence we can summarize the optimal collusive strategy in Table 1, distinguish-

ing different régimes as a function of the average fixed cost θ̃. For low θ̃, it is not worth

experimenting and firms choose one project at random. For intermediate values of θ̃ it is

worth experimenting with two but projects but not with one and the monopolist invests

immediately after receiving the first signal. For high values of θ̃ it is worth experimenting

with only one project and the monopolist only invests after having learned that one of the

technologies has a low cost.
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3 Entry timing

We now analyze the game played by two competing firms. We first compute the profits of

the leader and follower firms. Suppose that one firm (the leader) invests first. The second

firm (the follower) will only follow suit if it learns that its cost is low. Hence the expected

value of the follower is given by

VF =
(πd − θ)δλ∆

2(1− δ(1− λ∆))
,

and the expected value of the leader gross of the fixed cost is given by

VL = πm −
(πm − πd)δλ∆

2(1− δ(1− λ∆))
.

We easily check that

VL − VF = πm − VE1.

and compute the values VF and VL as ∆→ 0 as:

VF =
λ

2(λ+ r)
(πd − θ),

VL = πm −
λ

2(λ+ r)
(πm − πd).

3.1 Entry timing with public signals

In this subsection, we suppose that the signals received by the two firms during the experi-

mentation phase are public. If a firm observes that the other firm has drawn a high cost, it

will either invest immediately, and obtain πm− θ̃ or wait until it observes a signal on its cost

and obtain VE1. The optimal choice depends on the comparison between πm− θ̃ and VE1. If

a firm observes that the other firm has drawn a low cost (and invested along the equilibrium

path by Lemma 1), the optimal strategy is to wait and only invest if the firm receives a

signal that its cost is low. Finally, as long as the other firm has not received the signal about

its cost, the optimal strategy depends on the values of the parameters. If πm− θ̃ > VE1, the

game is a game of preemption and, as ∆ goes to zero, the two firms will rush to invest at the

beginning of the game. If, on the other hand, πm − θ̃ < VE1, the game is a waiting game,

and the firms will wait until they receive a low cost signal before investing. Proposition 1

summarizes this result.
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Proposition 1 In the entry timing game with public information as ∆→ 0, if πm−θ̃ > VE1,

preemption occurs, firms invest immediately after the other firm has dropped out, and invest

with positive probability at every date t = 0, 1, 2, . . .. If πm − θ̃ < VE1, firms do not invest

until they learn that their cost is low.

Comparing the equilibrium behavior of the two firms with the collusive benchmark, we

observe that there is a parameter region (πm − VE2 ≤ θ̃ < πm − VE1) where firms prefer to

wait in the collusive benchmark but invest immediately in the noncooperative game. Hence,

competition results in excess momentum, and the firms invest too early with respect to the

collusive benchmark.

3.2 Entry timing with private signals

When signals are private, firms do not learn the cost of their competitor. Beliefs evolve over

time. At any date, T , we denote by γT (θ) the belief held by a firm about the cost of its

rival, conditional on the event that the rival has not invested. By Lemma 1, in equilibrium,

because firms which learn that their cost is low invest immediately, γT (θ) = 0. We denote

by G(T ) the probability with which a firm, which has not learned its cost, has invested at

or before date T . With these notations in hand, we compute the beliefs

γT (θ) =

∑ T
∆
t=1(1− λ∆)t−1 λ∆

2
[1−G(∆(t− 1))]

∑ T
∆
t=1(1− λ∆)t−1 λ∆

2
[1−G(∆(t− 1))] +

∑ T
∆
t=1(1− λ∆)t[1−G(∆t)]

,

γT (θ̃) =

∑ T
∆
t=1(1− λ∆)t[1−G(∆t)]

∑ T
∆
t=1(1− λ∆)t−1 λ∆

2
[1−G(∆(t− 1))] +

∑ T
∆
t=1(1− λ∆)t[1−G(∆t)]

.

As ∆→ 0, for any T < T ′, if G(T ′) < 1, G(T ) = 0. Hence, as ∆→ 0, beliefs converge to

γT (θ) =
1− e−λT
1 + e−λT

,

γT (θ̃) =
2e−λT

1 + e−λT
.

It is easy to check that the belief that the other firm has learned that it has a high cost,

γT (θ), increases over time. The expected profit of a firm which is the first to invest at date

T now depends on time and is given by

VL(T ) = γT (θ)πm + γT (θ̃)VL.
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Because γT (θ) is increasing over time, the value of the leader is also increasing. No news

is good news: as time passes, each firm becomes more convinced that the other firm has

received a negative signal, and becomes more optimistic about its own prospects. The value

of the leader increases from VL at T = 0 to πm when T goes to infinity. The value of the

follower, VF , remains independent of time. Figures 1, 2 and 3 illustrate the three possible

régimes, ranking the values of the leader and the follower, as a function of the parameters

of the model.

Cases 1 and 3 correspond to the preemption and waiting cases in the timing game with

public signals. Case 2 exploits the fact that beliefs evolve over time, and describes a new

situation where preemption occurs at some finite date T̃ . In this case, the entry timing

game is formally identical to the innovation game studied by Fudenberg and Tirole (1985).

The expected payoff of the leading firm is initially lower than the expected payoff of the

following firm, but is increasing over time and eventually becomes higher than the payoff

of the following firm. As in Fudenberg and Tirole (1985), the unique subgame perfect

equilibrium results in rent equalization: the leader invests exactly at the date where the

expected payoffs of the leader and follower coincide, VL(T̃ )− θ̃ = VF . Formally,

Theorem 1 In the entry timing game with private signals, if πm − θ̃ > VE1, preemption

occurs at the beginning of the game and both firms invest with positive probability at date 0.

If VE1 ≥ πm− θ̃ ≥ VF , in a symmetric equilibrium, rents between the leader and the follower

are equalized and each firm invests with probability 1
2

at date T̃ such that: VL(T̃ )− θ̃ = VF .

If VF > πm − θ̃, firms do not invest unless they learn that their cost is low.

Theorem 1 shows that excess momentum is higher with private signals than with public

signals. In one configuration of the parameters, when VE1 ≥ πm− θ̃ ≥ VF , firms wait to learn

their costs in the collusive benchmark and when signals are public, but invest at finite date T̃

when signals are private. This result stands in contrast to Hopenhayn and Squintani (2011)

who show that preemption is stronger with public signals than with private signals. This

difference is easily explained. In Hopenhayn and Squintani (2011), new information can only

signal an improvement in the competitive situation of the firm, so that competition is fiercer

when information is public. In our model, private information can only signal a degradation
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⇡m � e✓

VL � e✓
VF

T

Figure 1: Case 1: πm − θ̃ > VE1

⇡m � e✓

VL � e✓

VF

eT T

Figure 2: Case 2: VE1 ≥ πm − θ̃ ≥ VF

⇡m � e✓

VL � e✓

VF

T

Figure 3: Case 3: VF > πm − θ̃
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parameter comparative static
πm −
πd +

θ +
θ +
r −
λ +/−

Table 2: Preemption date T̃ – Comparative statics

in the competitive situation of the firm, so that competition is fiercer when information is

private.

We now focus on Case 2 and perform a comparative static analysis of the effect of changes

in the parameters of the model on the preemption date T̃ . The preemption date is implicitly

defined as the unique solution to the equation:

VL (T )− θ̃ − VF = 0. (2)

By implicit differentiation of equation (2) when ∆→ 0, we obtain the comparative statics

displayed in Table 2.

The effects of the model’s parameters on the preemption date, T̃ , are intuitive, except

for the intensity of the arrival of the signal, λ. Changes in the signal arrival rate, λ, have

ambiguous effects. An increase in the arrival rate accelerates the process by which a firm

learns its cost, increasing the value of the follower:

dVF
dλ

=
r

2 (λ+ r)2 (πd − θ) > 0,

and decreasing the value of the leader at time zero

dVL
dλ

= − r

2 (λ+ r)2 (πm − πd) < 0.

In addition, an increase in λ increases the speed at which a firm updates its belief about

its opponent. Hence, the rate at which VL(T ) increases is higher and

dVL(T )

dλ
= (− r

2(λ+ r)2
γT (θ̃)− dγT (θ̃)

dλ

λ

2(λ+ r)
)(πm − πd),
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T

⇡m � e✓

VL � e✓
V 0

L � e✓

VF

V 0
F

Figure 4: Effect of an increase in λ on VL(T ) and VF .

where dγT (θ̃)
dλ

< 0.

Figure 4 shows the effects of an increase in λ on VF and VL(T ). The effect of a change

in λ on the preemption date T̃ is non-monotonic. If λ is low and T̃ is low, an increase in λ

will mostly have the effect of increasing VF and reducing VL, resulting in an increase in the

preemption date. If, on the other hand, λ is high and T̃ is high, an increase in λ will mostly

have the effect of increasing VL(T ), reducing the preemption date. This non-monotonicity is

illustrated in Figure 5 which shows how T̃ varies with λ when πm = 0.7, πd = 0.3, θ = 0.8,

θ = 0.2, and r = 0.05.

3.3 Efficiency comparison

We now compare the joint profits of the two firms in the collusive benchmark, the equilibrium

of the noncooperative game with public signals and with private signals. We distinguish

between four parameter regions, depending on the magnitude of the expected entry cost θ̃:

1. θ̃ < πm − VE2: immediate entry in the cooperative regime, and preemption at zero in

both competitive regimes;
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Figure 5: T̃ as a function of λ for πm = 0.7, πd = 0.3, θ = 0.8, θ = 0.2, and r = 0.05.

2. πm− VE2 ≤ θ̃ < πm− VE1: delayed entry in the cooperative regime (firms wait for one

signal), and preemption at zero in both competitive regimes;

3. πm − VE1 ≤ θ̃ < πm − VF : delayed entry in the cooperative regime (firms wait for up

to two signals) and in the competitive regime with public signals, preemption at finite

time T̃ in the competitive regime with private signals;

4. πm−VF ≤ θ̃: delayed entry in the cooperative regime (firms wait for up to two signals)

and in both competitive regimes.

We focus on the case ∆→ 0 and define the industry profits when both firms delay their

entry until they learn that their cost is low as:

VS =
λ

2λ+ r

[
(πm − θ) +

λ

2(λ+ r)
(2πd − 2θ)

]

and the industry profits with preemption at finite time T̃ as:

VP =
(

1− e−(2λ+r)T̃
) λ

2λ+ r

[
(πm − θ) +

λ

2(λ+ r)
(2πd − 2θ)

]

+ e−(λ+r)T̃
(

1− e−λT̃
) λ

2(λ+ r)
(πm − θ)

+ e−(2λ+r)T̃2
λ

2(λ+ r)
(πd − θ) (3)
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It is easy to check that VE2 > VS > VP > 2VF and πm − θ̃ > 2VF . Table 3 lists the joint

profits under the three regimes in the four configurations of parameters.

parameter region cooperative public private

θ̃ < πm − VE2 πm − θ̃ 2VF 2VF
πm − VE2 ≤ θ̃ < πm − VE1 VEL 2VF 2VF
πm − VE1 ≤ θ̃ < πm − VF VE2 VS VP
πm − VF ≤ θ̃ VE2 VS VS

Table 3: Efficiency comparisons

Table 3 shows that joint profits are always higher when signals are public rather than

private. Simple derivations also show that all values VE1, VE2, VF , VS are strictly increasing

in λ, and numerical computations suggest that VP is increasing in λ as well.

Table 3 illustrates three sources of inefficiency due to competition. First, by competing

on the market, the firms forgo the benefits of market monopolization – the difference between

monopoly profits, πm and the sum of duopoly profits, 2πd. Second the firms pay twice the

entry cost θ, whereas in the collusive benchmark, only one firm invests. Finally competition

results in excess momentum, making firms enter the market before they learn their cost,

whereas in the collusive benchmark, they prefer to wait until they learn their cost before

entering.

4 Collusion and compensating payments

In this section, we analyze the design of schemes which allow the two firms to attain the

collusive outcome. We suppose that signals are private and that excess momentum occurs, i.e.

the parameters satisfy πm−VE2 ≤ θ̃ ≤ πm−VF . We consider two different settings. We first

analyze compensating payments which are paid by the investing firm after it has invested in

order to prevent the other firm from investing. We then consider a collusive mechanism where

an outside party simultaneously makes the investment decision for the two firms and chooses

the transfers to be paid. In both situations, our objective is to characterize conditions under

which the optimal investment decision can be implemented. Notice that, because investment

decisions are not made by the mechanism designer in the compensating payments scheme,
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the compensating payments environment is more constrained than the collusive mechanism

environment, and implementation of the efficient outcome is more difficult.

4.1 Compensating payments

In this subsection, we assume that ∆ → 0, and compute directly the asymptotic values of

profits, when the time steps become negligible. Suppose that the leader invests at date T ,

and considers compensating the follower for not entering the market. As the follower’s type is

unknown to the leader, payments to the followers of types θ̃ and θ must be equal. Let UL(T )

and UL(T ) denote the utilities of the leader and follower after compensation. By individual

rationality, these payoffs must be higher than the payoffs obtained in the non-cooperative

entry game.

UL(T ) ≥ VL(T ), (4)

UF (T ) ≥ VF . (5)

Budget balance implies that the sum of utilities received by the leader and follower are equal

to the monopoly profit:

UL(T ) + UF (T ) = πm. (6)

Given inequalities (4) and (5) and equality (6), a necessary condition for the existence of

a budget balanced, individually rational and incentive compatible transfer scheme is thus

πm ≥ VL(T ) + VF .

As VL(T ) is increasing, VL(0) < πm − VF and VL(∞) > πm − VF , there exists a unique

date T ∗, such that no budget balanced individually rational compensating payments exist if

the first firm enters the market at date T ≥ T ∗. This remark captures the following simple

intuition. As time passes, firms become more optimistic about their prospects. If a firm

enters at a late date, it will expect the other firm to have dropped and will not be willing to

compensate the other firm at the level VF , which is the minimal level that a firm which has

not yet learned its cost is willing to accept to drop from the market. This remark also shows

that there is no efficient, budget balanced and individually rational collusive mechanism. To

see this, consider a realization of the signals where no firm has learned its cost before T ∗.
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Either the mechanism prescribes that one of the firm invests before T ∗, and the mechanism

is inefficient because it will result in a high cost firm investing with positive probability,

or the mechanism prescribes to wait until one of the firm has learned it has a low cost,

and the mechanism is inefficient because there is no budget balanced, individually rational

compensating payment which prevents the other firm from entering the race.

The latest point at which firms can collude, T ∗, is implicitly determined by

πm = VL(T ∗) + VF (7)

Table 4 shows the other comparative statics of changes in parameters on the date T ∗.

Notice that a change in the Poisson arrival rate λ, has a clear negative effect on T ∗. When

firms learn their costs more quickly, beliefs evolve faster, and the last date at which collusion

may occur is reduced.

parameter comparative static
πm +
πd −
θ 0
θ +
r 0
λ −

Table 4: Latest date for cooperation T ∗ – Comparative statics

We now consider the following problem: How should compensating payments be designed

in order to guarantee that, whenever one firm learns that it has a low cost before T ∗, it is

chosen to be the only firm operating on the market?

Proposition 2 A differentiable compensating payment scheme UF (T ) implements the coop-

erative benchmark when a firm learns that it has a low cost before T ∗ if and only if for all

T < T ∗,

πm − θ̃ < 2UF (T ) <
2r + λ

r + λ
πm +

U ′F (T )

r + λ
.
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Proposition 2 shows that efficient compensating payment schemes must be designed to

satisfy two requirements. First, the payment to the follower must be large enough to prevent

early entry by firms which have not yet learned their costs. Second, the payment to the

follower should not be too large, in order to give incentives to a firm which learns that its

cost is low to enter immediately. These two requirements provide an upper and a lower

bound on the expected payoffs of the follower and leader firm and show that the cooperative

surplus must be shared in a balanced way between the two firms.

In order to provide additional intuition, we specialize the model by assuming that the

compensating payment scheme assigns a fixed bargaining power to the leader and the fol-

lower, so that

UL(T ) = VL(T ) + α(πm − VL(T )− VF ), (8)

UF (T ) = VF + (1− α)(πm − VL(T )− VF ). (9)

We observe that UL(T ) is increasing and UF (T ) decreasing over time. Figure 6 displays

these profits for α = 0 and α = 1. It illustrates three aspects of the model. First, it displays

the T ∗, for which πm−VL (T ∗)−VF = 0. Second, Figure 6 shows that payoffs are independent

of time if α = 1, that is, if all of the bargaining power is given to the leader. In this case,

the follower receives his outside utility, UF = VF , and the leader receives all surplus plus his

outside utility, UL(T ) = πm − VF . Third, Figure 6 shows that the gap between the payoff of

the leader and follower is increasing in α.

Using (8) and (9), Proposition 2 imposes two restrictions on the share of the surplus that

accrues to the leader, α. On the one hand, to prevent firms to invest early when they have

not yet learned their cost, α has to be sufficiently low:

α <
πm + θ̃ − VL(T )

2 (πm − VL(T )− VF )
. (10)

On the other hand, to give a firm that learns that it has low cost incentives to enter

immediately, α must be sufficiently high:

2 (πm − VL(T )) +
V ′L(T )

r+λ
− 2r+λ

r+λ
πm

2 (πm − VL(T )− VF ) +
V ′L(T )

r+λ

< α. (11)
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Figure 6: Expected utilities with compensating payments

Define

α ≡ min

{
πm + θ̃ − VL(T )

2 (πm − VL(T )− VF )
, 1

}

and

α ≡ max

{
0,

2 (πm − VL(T )) +
V ′L(T )

r+λ
− 2r+λ

r+λ
πm

2 (πm − VL(T )− VF ) +
V ′L(T )

r+λ

}
.

Corollary 1 A compensating payment scheme that assigns a fixed bargaining power to the

leader and the follower firm, so that a share α of the surplus from cooperation accrues to the

leader, implements the collusive outcome when a firm learns that it has a low cost before T ∗

if and only if for all T < T ∗,α ∈ [α, α].

A necessary condition for implementation of the collusive outcome is that 0 ≤ α ≤ α ≤ 1,

which is guaranteed if the following conditions on the parameters hold:

2VF ≥ πm − θ̃, (12)

2VF + 2(1− α)(πm − VL(0)− VF ) ≤ 2r + λ

r + λ
πm −

V ′L(0)

r + λ
. (13)
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Notice that if condition (12) fails, early preemption will occur before T ∗. However, the

value of α can be designed in order to delay entry of firms which have not yet learned their

costs as far as possible. By reducing α, and giving a larger share of the surplus to the

follower, the mechanism designer reduces incentives to preempt and delays inefficient entry

of firms on the market.3 The optimal compensating payment mechanism is then given by

the lowest value of α for which condition (13) holds.

4.2 Collusive mechanism

We now suppose that the mechanism designer can choose to assign the investment to one

of the two firms, and we analyze collusion as a standard mechanism design problem. As

firms’ types are persistent and are revealed through time, the problem is a problem of

dynamic mechanism design and we consider a dynamic sequence of mechanisms MT , for

T = ∆, 2∆, ..., t∆, .. where at each date T , the planner asks the two firms to report their

types (θ̂1, θ̂2) where θ̂i ∈ {θ, θ̃, θ} for i = 1, 2. Messages sent by firm i are not observed by

firm j and are not revealed by the mechanism designer. At date T , the planner has access

to a history of messages hT = ((θ̂1, θ̂2)1, (θ̂1, θ̂2)2, ..., (θ̂1, θ̂2)T−1). In order to support the

efficient outcome, we assume that the designer chooses to invest as soon as she learns that

one of the firms has a low cost. Hence, the game stops either when the designer learns that

one of the firms has a low cost, or when the two firms have reported high costs.

A history is inconsistent if one of the firms reports θ̂i = θ at a date T and θ̂i = θ̃ or

θ̂i = θ at a date T ′ > T . If the planner observes an inconsistent history, we assume that

she punishes both players by imposing high penalties, so that we can disregard inconsistent

histories. The only public signal is the planner’s decision to invest. Given that we rule

out inconsistent histories, at the time of investment, the only relevant information that the

planner can extract from history hT is calendar time T and the revealed types of the firms at

T , (θ̂1, θ̂2). Hence, without loss of generality, we assume that transfers at T only depend on

T and the types revealed at T and not on the entire history of messages. Notice that, given

our assumptions, if firm j has sent the message θ to the planner, this message will only be

revealed to firm i if it invests later in the game. Formally, at any date T ,

3The fact that giving a prize to the loser of a contest may be efficient, as it reduces the gap between the
winner and the loser and minimizes wasteful expenditures, has long been noted in the literature on contests.
See for example Moldovanu and Sela (2001).
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• If θ̂i 6= θ, θ̂j 6= θ, the planner does not select any firm to invest

• If θ̂i = θ, θ̂j 6= θ at time T , the planner selects firm i to invest. Firm i pays a tax

χT (θ̂j) and firm j receives a subsidy σT (θ̂j).

• If θ̂i = θ̂j = θ, each firm is chosen to invest with probability 1
2
. The firm which invests

pays a tax χT (θ) whereas the firm which does not invest receives a subsidy σT (θ). We

assume that the two firms are treated symmetrically, so that πm−θ−χT (θ) = σT (θ) =
πm−θ

2
.

Individual rationality We denote the expected values from participating in this mech-

anism for a firm of type θ at time T as EVT (θ). The expected utilities are computed as

follows,

EVT (θ) =
λ∆

2

πm − θ
2

+ (1− λ∆

2
)(πm − θ − (γT (θ)χT (θ) + γT (θ̃)χT (θ̃))), (14)

EVT (θ) = γT (θ̃)
∞∑

t=0

(1− λ∆)t−1δt
λ∆

2
σT+∆t(θ), (15)

EVT (θ̃) = γT (θ)
∞∑

t=0

(1− λ∆)2(t−1)δt
λ∆

2
(πm − θ − χT+∆t(θ))

+γT (θ̃)[
∞∑

t=0

(1− λ∆)2(t−1)δt
λ∆

2
(πm − θ − χT+∆t(θ̃) + σT+∆t(θ̃))

+
∞∑

τ=0

(1− λ∆)τ−1δτ
λ∆

2
(πm − θ − χT+∆(t+τ)(θ̃) + σT+∆(t+τ)(θ))]. (16)

Individual rationality is satisfied if, at every date T , every type of firm prefers to abide

by the mechanism than to play the market entry game. In order to compute the expected

payoffs in the market entry game, we need to specify the beliefs that firm i holds on the type

of firm j, given that firm j has chosen not to participate in the mechanism. As we consider

a situation where both firms choose to participate, these beliefs are off the equilibrium path,

and we are free to specify them. We will suppose that, upon observing that a firm refuses

to participate, the other firm initially believes that it is a low cost firm – and hence refrains

from entering the market. However, if a firm has observed the other firm not participating,

and then choosing not to invest, the firm keeps her initial beliefs γT . This assumption

of conservative belief updating, which follows Laffont and Martimort (1997), allows us to
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compute the expected equilibrium payoffs of a firm playing the market entry game at time

T as follows.

By playing the market entry game, a firm with low cost obtains an expected payoff of

EUT (θ) = (
λ∆

2
πd + (1− λ∆

2
)VL(T ))− θ

and a firm with high cost an expected payoff of

EUT (θ) = 0

In order to compute the expected payoff of a firm which has not yet learned its cost, recall

that, at T̃ , one of the firms will invest. Hence, if T < T̃ , the expected profit is is given by:

EUT (θ̃) =

T̃−T
∆∑

t=1

(1− λ∆)2(t−1)δt[
(λ∆)2

4
(πd − θ) + (1− λ∆

2
)
λ∆

2
(VL(T + ∆t)− θ + VF )]

+ (1− λ∆)2 T̃−T
∆ δT̃−TVF .

If T > T̃ , following the proof of Theorem 1, the game becomes a game of preemption, and

both firms invest with positive probability p(T ) in equilibrium, resulting in an equilibrium

payoff

EUT (θ̃) = γT (θ̃)p(T )(πd − θ̃) + γT (θ̃)(1− p(T ))(VL(T )− θ̃) + γT (θ)(πm − θ̃),

where

p(T ) =
VL(T )− VF − θ̃
γT (θ̃)(VL − πd)

.

Hence, we get the individual rationality constraints

EVT (θ) ≥ EUT (θ), (IR(θ))

EVT (θ̃) ≥ EUT (θ̃), (IR(θ̃))

EVT (θ) ≥ EUT (θ). (IR(θ))
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Incentive compatibility High cost firms A high cost firm never has an incentive to report

that its cost is low as πm− θ− χT (θ) ≤ πm− θ < 0. In order to analyze the high cost firm’s

incentive to misreport a type θ̃, we apply the one-step deviation principle, and derive the

condition under which firm θ has no incentive to report θ̃ for one period, and then switch

back to θ. By misreporting its type in that way, the high cost firm can only gain σT (θ̃)−σT (θ)

with probability λ∆
2

in period T (when the other firm reports a low cost), and obtains the

same continuation value EVT+1(θ) from period T + 1 on. Hence, the incentive compatibility

condition is given by:

σT (θ) ≥ σT (θ̃) (IC(θ → θ̃))

Low cost firms If a low cost firm reports that it has a high cost, it will obtain an expected

payoff of EVT (θ), so the first IC constraint is:

EVT (θ) ≥ EVT (θ). (IC(θ → θ))

If a low cost firm pretends it has not yet learned its cost at period T and then reports a low

cost at time T + 1, it will obtain an expected payoff:

λ∆

2

πm − θ
2

+(1− λ∆

2
δ[
λ∆

2
σT+1(θ)+(1− λ∆

2
)πm−θ−(γT+1(θ)χT+1(θ)+γT+1(θ̃)χT+1(θ̃))],

whereas by announcing θ immediately, it obtains an expected payoff of EVT (θ). Hence the

incentive compatibility condition reads:

EVT (θ) ≥λ∆

2
σT (θ̃) + (1− λ∆

2
δ[
λ∆

2
σT+1(θ)

+ (1− λ∆

2
)πm − θ − (γT+1(θ)χT+1(θ) + γT+1(θ̃)χT+1(θ̃))]. (IC(θ → θ̃))

Firms ignoring their costs: If a firm which has not learned its cost reports a high cost θ, it

will obtain a payoff of EVT (θ). Hence, the first incentive compatibility constraint is given

by:

EVT (θ̃) ≥ EVT (θ). (IC(θ̃ → θ))

Similarly, by announcing a low cost, the firm obtains a payoff of EVT (θ) so the second

incentive compatibility constraint is:

EVT (θ̃) ≥ (1− λ∆

2
)[πm − θ̃− (γT (θ)χT (θ) + γT (θ̃)χT (θ̃))] +

λ∆

2
[
πm − θ̃

2
]. (IC(θ̃ → θ))
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Budget balance Ex post budget balance requires that, at any period T and for any type

θ, the transfers add up to zero, so that

σT (θ) = χT (θ) (BB)

Imposing the constraints We now characterize the binding and non-binding constraints

in the mechanism design problem.

Remark 1 The individual rationality constraint for the high cost firm, IR(θ) and incentive

compatibility constraint IC(θ → θ) are not binding. Hence, the only binding constraints for

the high cost firm is IC(θ → θ̃). This implies that we can assume σT (θ) = σT (θ̃) for all T .

Proof: It is easy to check that the constraints IR(θ) and IC(θ → θ) are not binding. But

then the only binding constraint is IC(θ → θ̃), which implies that σT (θ) ≥ σT (θ̃). Now

choosing σT (θ) > σT (θ̃) makes the incentive and individual rationality constraints of agents

of types θ and θ̃ harder to satisfy, and does not relax the problem faced by the high cost

firm, as the constraints are not binding. Hence, we can assume σT (θ) = σT (θ̃) = σT for all

T in order to characterize the efficient mechanism.

Remark 2 If the incentive compatibility constraint IC(θ̃ → θ) is satisfied, so is the incentive

compatibility constraint IC(θ → θ).

Proof: By a repeated application of the incentive compatibility constraint IC(θ → θ̃), we

observe that

EVT (θ) ≥ EVT (θ̃).

Hence, whenever EVT (θ̃) ≥ EVT (θ), we also have EVT (θ) ≥ EVT (θ).

Remark 3 Suppose that the mechanism does not extract resources from the firms, i.e.

σT (θ) ≥ χT (θ) for all T . Then the individual rationality constraint IR(θ̃) is not binding.

25



Proof: Because the mechanism selects the efficient outcome x, for any pair (θi, θj) at date

T , and the sum of transfers is positive, we have:

V T
i (x, θi, θj) + V T

j (x, θi, θj) ≥ V T
i (y, θi, θj) + V T

j (y, θi, θj)

for any other investment choice y. When θi = θj = θ̃, the two firms have identical information

about their types and the type of their competitor. Hence, integrating over time and taking

expectations with respect to the same distribution, we have

EV T
i (θ̃) + EV T

j (θ̃) ≥ EUT
i (θ̃) + EUT

j (θ̃),

so that EVT (θ̃) ≥ EUT (θ̃).

We can thus focus on the following five constraints: IR(θ), IC(θ → θ̃), IC(θ̃ → θ), IC(θ →
θ̃), IC(θ̃ → θ). Taking ∆ → 0,4 and using IC(θ → θ̃), that is, σT (θ) = σT (θ̃) = σT , these

constraints can be written as

πm − σT ≥ VL(T ), (IR(θ))

γT (θ)

∫ ∞

T

λ

2
e−(λ+r)t−T (πm − θ − σt)dt+ γT (θ̃)(πm − θ)

λ

2(2λ+ r)
[1 +

λ

2(λ+ r)
]

≥ γT (θ̃)

∫ ∞

T

λ

2
e−(λ+r)(t−T )σtdt, (IC(θ̃ → θ))

r(πm − θ − σT ) ≥ λ

2
(2σT − πm − θ) (IC(θ → θ̃))

γT (θ)

∫ ∞

T

λ

2
e−(λ+r)t−T (πm − θ − σt)dt+ γT (θ̃)(πm − θ)

λ

2(2λ+ r)
[1 +

λ

2(λ+ r)
]

≥ πm − θ̃ − σT , (IC(θ̃ → θ))

Using these inequalities, we characterize conditions under which the efficient outcome

can be achieved without subsidies:

Proposition 3 The efficient outcome can be supported by the compensating mechanism

without subsidies if and only if λ(πm−θ)
2(2λ+r)

[1 + λ
2(λ+r)

] ≥ πm − θ̃.

4The details of the computation can be found in the appendix

26



Proposition 3 shows that it is possible to implement the first best outcome without any

subsidies, i.e., without any payments to the inactive firm, when VEL, the expected payoff

obtained in the collusive benchmark when the firms wait to learn that the cost is low, exceeds

2(πm − θ̃), twice the expected payoff of a monopolist firm which invests immediately. This

result stands in sharp contrast to the results obtained in the preceding subsection, when

firms can only choose compensating payments ex post, after one of the firms has invested.

The mechanism designer’s ability to assign investment decisions allows him to reach the first

best outcome, even without compensating payments, by using the fact that a firm which

has not learned its cost may be unwilling to imitate a low cost firm and to invest. If the

condition VEL > 2(πm− θ̃) is not satisfied, the implementation of the first best requires the

use of subsidies.

5 Conclusion

This paper analyzes a model of entry with learning. Two firms contemplate entry into a new

market, or the development of a new product and gradually learn about their private entry

costs. We show that when signals are public, the model either results in a preemption game

or a waiting game, and when signals are private, firms which have not learned their cost yet

may choose to enter at a finite time, resulting in the same rent equalization phenomenon as

in Fudenberg and Tirole (1985). As opposed to Hopenhayn and Squintani (2011), we find

that preemption is greater when signals are private, because firms do not know whether the

other firm has given up on entering the market. As compared to the collusive outcome, the

equilibrium of the entry timing game exhibits three sources of inefficiencies: dissipation of

the monopoly rent, duplication of entry costs and excess momentum.

We analyze how collusive schemes by which one firm pays the other firm to prevent

it from entering the market can be implemented. We observe that, with compensating

payments alone, collusion can only be effective if the first firm enters sufficiently early, and

that these payments must allocate a significant share of the surplus to the excluded firm. We

further analyze how such payments can be implemented if a third party, such as a venture

capitalist or a granting agency, makes the joint investment decision. Here, we observe that

collusion can be effective at any point in time without payments to the inactive firm as long

as the expected benefits of learning the cost of entry are sufficiently high. If they are not
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sufficiently large, then the implementation of the collusive outcome requires again a sharing

of the surplus between the active and the inactive firm.

We have framed our study as a market entry game. However, our model also covers two-

stage R&D games, where firms first experiment to learn their cost in the research project,

and then enter into a stochastic innovation race.

Our analysis belongs to an emerging literature on innovation races and timing games with

private signals. It leaves a number of questions unanswered. What happens if signals are

not perfect, and what is the effect of changes in the precision of the signals on preemption?

What happens when uncertainty pertains to the common value of the innovation rather than

the private value entry cost? What if firms can control the acquisition of information by

choosing their level of (costly) experimentation? What happens if the two firms, rather than

being independent agents, are two teams in an organization contracting with a principal?

We plan to tackle these problems in future research.
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A Proofs

A.1 Proof of Lemma 1

Clearly, if the other firm has already entered, it is a dominant strategy to enter immediately

as πd > θ. Suppose that the other firm has not entered yet, and consider a firm which learns

that its cost is low at date T . By delaying investment to date T + ∆, the firm loses the

positive profit made between T and T + ∆, equal to (1 − d)πd or (1 − δ)πm, depending on

whether the other firm invests at period T or not. In addition, let ∆g(T ) be the probability

that a firm which did not learn its cost invests between T and T + ∆. By investing at date

T a low cost firm will block the entry of the competitor which has not yet learned its cost,

resulting in an expected payoff of

∞∑

t= T
∆

+1

(1− λ∆)t−1− T
∆
λ∆

2
(πm− θ) +

∞∑

t= T
∆

+1

(1− λ∆)t−1− T
∆
λ∆

2
(πm(1− δt− T

∆ ) + πdδ
t− T

∆ − θ)
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By contrast, if the firm waits until T +∆, and the competitor invests, it will get an expected

payoff of πd − θ. Hence, by delaying investment, the firm loses an expected payoff of

∆g(T )(πm − πd)[1−
∞∑

t= T
∆

+1

(1− λ∆)t−1− T
∆
λ∆

2
δt−

T
∆ ].

A.2 Proof of Proposition 1

We focus attention on the optimal strategy of a firm when the other firm has not received

any signal yet. For ∆→ 0, the probability that the other firm has received a signal between

period t − 1 and period t goes to 0. In that case, the investment game played by the two

firms is given by the following bi-matrix game, where W (t + 1) denotes the continuation

value for both players of entering into period t+ 1.

invest not invest

invest (πd − θ̃, πd − θ̃) (VL − θ̃, VF )

not invest (VF , VL − θ̃) (W (t+ ∆),W (t+ ∆))

Table 5: Investment game played by the two firms is none of them has invested
up to date t and costs are not known.

We first consider a symmetric equilibrium where both firms invest with positive proba-

bility p ∈ (0, 1). In that equilibrium,

W (t) = p(πd) + (1− p)VL − θ̃,

and

W (t) = pVF + (1− p)W (t+ 1).

Solving this equation and letting the time between two successive periods go to 0, we find

p =
VL − θ̃ − VF
VL − πd

,
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showing that an equilibrium with preemption exists if and only if VL − VF = πm − VE1 ≥ θ̃.

Next, suppose that VL − VF = πm − VE1 < θ̃. We construct a symmetric equilibrium

where both firms choose to delay investment. By delaying investment by one period when

the other firm does not invest, a firm obtains an expected payoff of:

W (t+ 1) = exp−r∆[(
λ∆

2
)2(πd − θ) +

λ∆

2
(1− λ∆)(VL − θ) + (

λ∆

2
)2(πm − θ)

+
λ∆

2
(1− λ∆)VF +

λ∆

2
(1− λ∆)VE1 + (1− λ∆)2(VL − θ̃)]

Letting ∆→ 0,

W (t+ 1) = VL − θ̃ +
λ∆

2
(VL − VF − θ + VE1)− (r + 2λ)∆(VL − θ̃) +O(∆2).

Now compute

VL − VF − θ + VE1 = πm − θ
> 2πd − θ
> 2(πd − θ)

and, as VF > VL − θ̃,

VL − θ̃ < VF

<
λ

2(λ+ r)
(πd − θ),

establishing that, as ∆ → 0, λ∆
2

(VL − VF − θ + VE1) − (r + 2λ)∆(VL − θ̃) < 0 and hence

W (t+ ∆) > VL − θ̃, so that firms always have an incentive to wait.

A.3 Proof of Theorem 1

As in the proof of Proposition 1, we first consider a symmetric equilibrium where both firms

invest with positive probability p(T ) ∈ [0, 1] at time T . Taking ∆→ 0, the probability that

the rival firm has received a low cost signal between T −∆ and T goes to 0, and we compute

the expected value of a firm which invests as:

U(1) = γT (θ̃)p(T )(πd − θ̃) + γT (θ̃)(1− p(T ))(VL − θ̃) + γT (θ)(πm − θ̃),
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and the expected value of a firm which does not invest as

U(0) = γT (θ̃)p(T )VF + (γT (θ̃)(1− p(T )) + γT (θ))W (T + ∆).

In a symmetric equilibrium with positive exit probabilities, W (T ) = U(0) = U(1) and as

∆→ 0, W (T + ∆)→ W (T ), resulting in

p(T ) =
VL(T )− VF − θ̃
γT (θ̃)(VL − πd)

.

so that, this equilibrium exists if and only if VL(T ) ≥ VF − θ̃. This shows that in case (i)

preemption arises at time zero, and in case (ii), firms rush to invest at time T̃ . We now

consider a situation where VL(T ) < VF − θ̃ and show that firms have an incentive to wait.

Suppose that the other firm does not invest and compute the expected utility of waiting one

period before investing:

W (T + ∆) = exp−r∆[(
λ∆

2
)2(πd − θ) +

λ∆

2
[γT+∆(θ̃)(VL − θ) + γT+∆(θ)(πm − θ)

+
λ∆

2
(1− λ∆)VF + (1− λ∆

2
)(1− λ∆)(VL(T + ∆)− θ̃)] +O(∆2)

As ∆→ 0,

W (T + ∆) =
λ

2
(VF + θ̃ − θ)− (r + λ)(VL(T )− θ̃) + (VL(T )− θ̃).

Next,

2(r + λ)

λ
(VL(T )− θ̃) ≤ 2(r + λ)

λ
VF ,

= (πd − θ),
< VF + θ̃ − θ,

so that W (T + ∆) > VL(T )− θ̃, implying that the firm has an incentive to wait.

A.4 Proof of Proposition 2

In order to implement the cooperative benchmark, two conditions must be satisfied: (i) no

firm must be willing to enter the market at t < t∗ if it has not learned its cost and (ii) a firm
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which learns that it has a low cost must be willing to enter the market immediately. The

first condition will hold as long as:

UF (t) > UL(t)− θ̃.

As UL(t) = πm − UF (t), this results in

2UF (t) > πm − θ̃.

For the second condition to hold, we characterize the conditions under which an equilibrium

where a firm immediately invests after it observes that its cost is low exists. The discounted

expected payoff of investing at period t when the other firm does not invest is:

W (t) = UL(t)− θ,

whereas by waiting one period the firm will obtain a discounted expected payoff of

W (t+ ∆) = e−r∆[(1− e−µ∆

2
)UF (t+ ∆) +

e−µ∆

2
UL(t+ ∆)].

For ∆ small enough and assuming that utilities are differentiable,

W (t+ ∆)−W (t) = ∆[(−2r − µ)UL(t) + µUF (t) + U ′L(t)]

so that the firm has an incentive to enter immediately if and only if:

2UF (t) <
2r + µ

r + µ
πm +

U ′F (t)

r + µ
.

A.5 Derivation of expected payoffs when ∆→ 0

Recall that, as ∆ goes to 0,

(1− λ∆)
1
∆ → e−λ,

and that the instantaneous probability that the signal is received between two periods t∆

and (t + 1)∆ converges to λ. Hence, we compute the expected payoff of a firm with high

cost as

EVT (θ) = γT (θ̃)

∫ ∞

T

λ

2
e−(λ+r)(t−T )σtdt.
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Similarly,

EVT (θ̃) = γT (θ)

∫ ∞

T

λ

2
e−(λ+r)(t−T )(πm − θ − σt)dt

+ γT (θ̃)

∫ ∞

T

λ

2
e−(2λ+r)(t−T )[πm − θ +

∫ ∞

t

λ

2
e−(λ+r)(τ−t)(πm − θ)dτ ]dt,

= γT (θ)

∫ ∞

T

λ

2
e−(λ+r)(t−T )(πm − θ − σt)dt+ γT (θ̃)(πm − θ)

λ

2(2λ+ r)
[1 +

λ

2(λ+ r)
].

Finally, we compute IC(θ → θ̃) as ∆ → 0 using the fact that σT+1 → σT and δ = e−r∆ ≡
1− r∆,

λ∆

2

πm − θ
2

+ (1− λ∆

2
(πm − θ − σT ) ≥ λ∆

2
σT

+(1− λ∆

2
)(1− r∆)[

λ∆

2

πm − θ
2

+ (1− λ∆

2
)(πm − θ − σT )].

Focusing on the terms in the first order in ∆, this inequality becomes

λ

2
(
πm − θ

2
− σT )− λ

2
(πm − θ − σT )− λ

2

πm − θ
2

+r(πm − θ − σT ) +
λ

2
(πm − θ − σT ) ≥ 0,

resulting in

r(πm − θ − σT ) ≥ λ

2
(2σT − πm − θ).

A.6 Proof of Proposition 3

When σT = 0 for all T , the only binding constraint is the constraint IC(θ̃ → θ) which reads:

γT (θ)(πm − θ)
λ

2(λ+ r)
+ γT (θ̃)(πm − θ)

λ

2(2λ+ r)
[1 +

λ

2(λ+ r)
] ≥ πm − θ̃.

As

λ

2(λ+ r)
>

λ

2(2λ+ r)
[1 +

λ

2(λ+ r)
],

this condition is hardest to satisfy at T = 0 when γT (θ̃) = 1, so that the incentive condition

is satisfied for all T if and only if

λ(πm − θ)
2(2λ+ r)

[1 +
λ

2(λ+ r)
] ≥ πm − θ̃.
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