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Abstract

The paper studies the dynamics of housing prices in a pure exchange overlapping gener-
ations framework a la Samuelson (1958) and Gale (1973), which is extended to include
housing as a utility-yielding durable good and a credit sector. We completely characterize
the equilibrium dynamics, which alternates between an expansive regime where leveraged
borrowing increases housing prices, and a contractive regime where these variables de-
crease. Regime switches occur due to small but persistent income changes giving rise to
boom-bust cycles in housing prices. Price deviations from fundamentals are caused by
leveraged borrowing, and turn out to be fully welfare-neutral.

Keywords: Pure exchange OLG, housing prices, credit volume, boom-bust cycles,
regime switching.
JEL: C62, E32, G21.

Introduction

In the absence of financial markets, housing prices are naturally bounded by consumer
incomes which represent the fundamentals of the economy. As mortgage loans are com-
mon means to finance housing purchases, a theoretical framework to study housing prices
should also incorporate a financial sector which supplies loans to finance housing. Sup-
pose a consumer takes a loan to buy a house and uses the revenue from selling the house
to repay his loan in the future. If the housing price increases over time, he may be
able to afford a house whose value exceeds his income. At the aggregate level, housing
prices and mortgage loans may have an off-setting effect such that each of these vari-
ables alone becomes arbitrarily large while the net-payment flow remains bounded by
consumer incomes. In this paper, we develop a model to demonstrate that this simple
idea constitutes a mechanism which generates boom-bust cycles in housing prices, and
why mortgage loans may cause housing prices to permanently exceed their fundamental
value.

∗Corresponding author
Email addresses: marten.hillebrand@kit.edu (Marten Hillebrand), spptk@nus.edu.sg (Tomoo

Kikuchi)
URL: http://www.marten-hillebrand.de (Marten Hillebrand), http://lkyspp.nus.edu.sg/cag/

(Tomoo Kikuchi)

Preprint submitted to Elsevier August 23, 2014



Our model builds on the pure exchange overlapping generations economy with fiat money
a la Samuelson (1958) and Gale (1973). For our purposes, we extend this framework by
including housing as a utility-yielding durable good and focus on equilibria where a bank-
ing sector offers mortgage loans to consumers to finance housing. The housing market
offers a second channel of intergenerational trade by which resources are transferred from
young to old consumers. In the absence of housing, all intergenerational transfers would
take place through the credit market which corresponds to the classical case in Gale
(1973) where a ‘central clearing house’ (p.29) mediates a transfer from old to young con-
sumers. Conversely, in the absence of a financial sector, all intergenerational transfers
would take place through the housing market which corresponds to the Samuelson case
in Gale (1973) where transfers flow from young to old consumers. In both these cases, in-
tergenerational transfers are necessarily bounded by consumer incomes. If both channels
are active, however, the credit volume and the housing price can grow without bound as
long as the net intergenerational transfer remains bounded by consumer incomes.
Suppose that consumer incomes take two values only. Consumption smoothing then im-
plies that when current income is low relative to future income, consumers are willing to
pay a high interest rate. As in Gale (1973) the loan volume supplied by banks evolves
according to a simple rollover condition, and, therefore, expands when the interest rate
is positive. The abundance of credit translates into a higher demand for housing which
increases housing prices. This state is called the expansive regime. Reversing the argu-
ment, the economy enters a contractive regime when the current income is relatively high.
In this case the credit volume shrinks and the housing price decreases to a lower bound,
which we define as the fundamental price. A switch between these two regimes occurs
under a quite moderate income change. If these changes are persistent, the system stays
in one regime for a number of periods generating boom-bust cycles in the housing price
and credit volume. We also show that a large component of the housing price is a pure
bubble defined as a deviation from the fundamental value. The deviation is caused by
leveraged borrowing, and found to have no bearing on consumption decisions which are
exclusively based on the fundamental housing price. Thus, a remarkable consequence is
that housing bubbles in our model are fully welfare-neutral.
There is a recent outburst of literature on housing market dynamics after the financial
crises unfolded in the US in 2007. Studies that extend the pure exchange overlapping
generations framework by including a durable good to study housing market dynamics
include Ortalo-Magné & Rady (2006) and Arce & López-Salido (2011). They share a
common feature with our model in that housing generates utility. The main difference,
however, is that borrowing is limited to meet collateral requirements or down payments in
their models while our model does not assume any kind of financial frictions. Other recent
studies on housing dynamics using different frameworks include Bajari et al. (2010), Chen
& Winter (2011), He et al. (2011) and Burnside et al. (2011) who incorporate various
kinds of financial friction and heterogeneity, each with a different focus on the ingredient
for the driver of housing dynamics. These contributions are helpful in obtaining insights
into different aspects of housing markets and evaluating the quantitative impacts of the
interaction between financial markets, housing price and consumption.
In this paper, our objective is different. Rather than developing a stylized model to match
data, our aim is to show that the pure exchange overlapping generations framework can
be extended in a straightforward way to generate booms and busts in housing prices
accompanied by the expanding and contracting credit volume. This co-movement in the
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time of booms and busts is well-documented (e.g. Chen & Winter (2011) and He et
al. (2011)). However, it is not well understood how it is related to fundamentals in the
economy. Our analysis uncovers a simple mechanism through which small but persistent
income changes generate large movements in housing value and aggregate credit volume.
With rational expectations, no heterogeneity and no financial friction our model can
serve as an analytically tractable benchmark for further studies.
The paper is organized as follows. Section 1 introduces the model. Section 2 derives the
forward-recursive structure of equilibria while Section 3 studies the equilibrium dynamics
under constant incomes. Section 4 generalizes this to the case with time-varying incomes,
and analyzes the scope for boom-bust scenarios to emerge due to persistent income
changes. The theoretical findings are illustrated with a calibrated numerical example in
Section 5. Section 6 concludes. Proofs for all results can be found in the mathematical
appendices.

1. The Model

We extend the pure exchange rate overlapping generation framework a la Samuelson
(1958) and Gale (1973) by including a durable commodity that we refer to as ‘hous-
ing’. The non-durable commodity is called ‘the consumption good’ and is chosen as the
numeraire.

Consumption sector
The consumption sector consists of overlapping generations of homogeneous, two-period
lived consumers who receive an exogenous income stream of the non-durable commodity.
While the non-durable commodity is consumed in both periods, housing consumption
is confined to the second period of life. We denote by ct := (cyt , c

o
t+1) the non-durable

consumption and et := (eyt , e
o
t+1) ≫ 0 the lifetime income of the generation born in t ≥ 0.

The latter takes values in the compact set E = [eymin, e
y
max] × [eomin, e

o
max] ⊂ R2

++ for all
times t ≥ 0.

Housing
Houses are retradable and in constant supply normalized to unity. The young purchase
houses from the old at the end of period t at the price pt > 0, for which they incur a
cost κ > 0 per unit to be paid in the following period t + 1. This parameter can be
interpreted as a proportional cost associated with holding houses such as maintenance
and remodeling costs or insurance payments, and will turn out to be a crucial ingredient
to our model. Housing investment transfers incomes intertemporally and yields utility
in the following period.

Financial sector
The financial sector consists of a large number of banks which offer loans at a riskless
interest factor Rt > 0. Let bt ≥ 0 denote the aggregate credit volume corresponding to
the resource available to the financial sector at time t. This resource corresponds to the
loan repayment of the old and is provided as loans to the young. Thus, the credit volume
evolves according to the rollover condition1

bt = Rt−1bt−1, t ≥ 1. (1)

1Equation (1) may be seen as a reduced-form condition of a financial sector with L ≥ 1 banks which
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The initial value b0 ≥ 0 is historically given. The contracts supplied by banks correspond
to an I.O.U. which allows consumers to transfer wealth from the second to the first
period of life. The role of the financial sector is to enforce the I.O.U. permitting an
intergenerational transfer, which otherwise would never take place simply because the
old are no longer alive when the young make their loan repayment. Conceptually, this
corresponds to inside money in the classical case studied in Gale (1973).

Consumer demand
The young choose lifetime consumption of non-durables and housing (cy, co, h) to maxi-
mize their lifetime utility function U , which is additively separable over time:

U(cy, co, h) = u(cy) + v(co, h).

The function u is taken to be of the isoelastic form

u(c) =
c1−α

1− α
, α > 0

with the usual interpretation that u(c) = log c if α = 1. Second-period utility v is the
composition of u and an aggregator function g : R2

++ → R+, which aggregates durable
and non-durable consumption in the second period to a composite commodity. Following
Lustig & Nieuwerburgh (2005) and Bajari et al. (2010), we use a CES aggregator

g(c, h) = [βcρ + (1− β)hρ]
1
ρ , 0 < β < 1, ρ < 1.

The young discount second-period utility by γ > 0 and thus v takes the form

v(c, h) = γ u(g(c, h)) = γ
[βcρ + (1− β)hρ]

1−α
ρ

1− α
. (2)

If ρ = 0, second period utility is Cobb-Douglas while it is additively separable in housing
and consumption if ρ = 1 − α. Given incomes et = (eyt , e

o
t+1), the credit return Rt > 0,

and housing prices (pt, pt+1) ≫ 0, the budget constraints are

cy = eyt + b− pt h and co = eot+1 −Rt b+ (pt+1 − κ)h. (3)

Here b and h are the loan demand and housing investment respectively. Note that we
deviate from the traditional sign convention by denoting a positive loan demand by b ≥ 0.
Using (3), the young consumers’ objective function at time t is

Vt(b, h) := U(eyt + b− pt h, e
o
t+1 −Rt b+ h (pt+1 − κ), h).

The consumers’ decision problem reads

max
b,h

{

Vt(b, h) |h ≥ 0, pt h ≤ eyt + b, eot+1 − bRt + h(pt+1 − κ) ≥ 0
}

. (4)

grant loans to consumers at a safe return Rt > 0 and exchange resources in some interbank market at
return R⋆

t > 0. Let blt denote the initial net resources of bank l ∈ {1, . . . , L} which chooses its demand
dl on the interbank market to maximize expected profit Rt(blt + dl)−R⋆

t d
l. This and interbank market

clearing requires R⋆
t = Rt and

∑L
l=1

dlt = 0. Setting bt :=
∑L

l=1
blt then gives (1) at the aggregate level.
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Note that no sign restriction on b is imposed at the individual level.

Equilibrium
The ‘fundamentals’ of the economy are given by the exogenous income sequence {et}t≥0.
The following definition of equilibrium reconciles market clearing and individual opti-
mality under rational expectations.

Definition 1. Given the fundamentals {et}t≥0 and an initial credit volume b0 ≥ 0,
an equilibrium is a sequence {bt, ht, Rt, pt}t≥0, which satisfies pt > 0, Rt > 0 and the
following conditions for each t ≥ 0:

(i) The decision (bt, ht) solves (4) given housing prices and lifetime income.

(ii) Markets clear, i.e., ht = 1 and bt evolves according to (1).

Note that Walras’ law implies consumption good market clearing, i.e, cyt +cot = eyt +eot −κ
for all t ≥ 0.

2. Recursive Equilibrium Structure

Recursive equilibrium
As a first step, we unveil the forward-recursive structure of equilibrium and the state
dynamics of the model. Essentially, we will show that the dynamics is driven by the
evolution of the variable

qt := pt − bt, t ≥ 0. (5)

Below, we will argue that qt can be interpreted as the fundamental housing price. We
focus on equilibria where qt ≥ 0 for all t ≥ 0. Under this restriction, loan repayments must
fully be backed by future housing values in equilibrium, i.e., Rtbt ≤ pt+1. From (1), the
supply of loans is predetermined by the repayments of the old to the financial sector. In
equilibrium, the interest rate and housing prices are determined such that the young are
willing to demand the loans supplied by the financial sector, and purchase the constant
stock of houses from the old. Since no sign-restriction is imposed on loan demand b at
the individual level, the first order conditions of the young consumers’ decision problem
(4) must be satisfied in equilibrium. Hence, the following Euler equations have to hold
for each period t ≥ 0:

u′(eyt − qt) = Rt vc(e
o
t+1 − κ+ qt+1, 1) (6a)

pt u
′(eyt − qt) = (pt+1 − κ) vc(e

o
t+1 − κ+ qt+1, 1) + vh(e

o
t+1 − κ+ qt+1, 1). (6b)

Combining (6a) and (6b) using (1) and (5) gives the following equilibrium condition

F (qt+1, qt; et) := qt u
′(eyt −qt)−vc(e

o
t+1−κ+qt+1, 1) (qt+1−κ)−vh(e

o
t+1−κ+qt+1, 1) = 0

(7)
which has to hold for each t ≥ 0. Condition (7) determines qt+1 implicitly as a function
of qt and et. The following result states necessary and sufficient conditions under which a
unique solution to (7) can be determined. This provides the basis for deriving a dynamical
system.

Lemma 1. Suppose ρ ≥ 0 and α < 1. Then, for each e = (ey, eo) ∈ E and q < ey there
exists a unique value q1 > κ− eo which satisfies F (q1, q; e) = 0 with F defined in (7).
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Lemma 1 permits to define a map f(·; e) : ]−∞, ey[→ ]κ− eo,∞[ which determines the
unique zero of F (·, q; e) for each q < ey.2 Thus, whenever qt < eyt , the unique solution
to (7) can be written as

qt+1 = f(qt; et). (8)

Preview of the equilibrium dynamics
Equation (8) relates the fundamental housing price to its previous value and the ex-
ogenous income sequence which will constitute the driver of our equilibrium dynamics
below. At this stage, however, (8) does not yet define a dynamical system because we
have not provided conditions for a well-defined state space to exist. The latter is given
by a subset Q ⊂ R+ in which the equilibrium sequence {qt}t≥0 remains under arbitrary
values of fundamentals {et}t≥0. Formally, recalling that et ∈ E we require that Q be
self-supporting for the family of mappings (f(·; e))e∈E in the sense that q ∈ Q implies
q′ = f(q; e) ∈ Q for all e ∈ E . The following Sections 3 and 4 establish existence of such
a state space which requires additional restrictions on incomes and the cost parameter.
For the remainder of this section, however, let us simply assume that a state space
Q ⊂ R+ exists. Then, the forward-recursive structure in (8) is generated by mixing the
family of mappings (f ·; e)e∈E . That is, given qt, the income et ∈ E of generation t ‘selects’
a particular map f(·; et) which determines the next value qt+1 = f(qt; et). In this way,
the evolution of the sequence {qt}t≥0 is directly related to the sequence of fundamentals
{et}t≥0. To obtain the evolution of the other equilibrium variables, use (8) in (6a) to
observe that the equilibrium interest factor is given as

Rt = R(qt; et) :=
u′(eyt − qt)

vc(eot+1 − κ+ f(qt; e
y
t ), 1)

. (9)

Equation (9) equates the equilibrium interest factor to the intertemporal marginal rate
of substitution in consumption. Using (9) in (1) and combining (8) with (1) and (5), we
obtain the following three-dimensional dynamical system:

qt+1 = f(qt; et) (10a)

bt+1 = R(qt; et)bt (10b)

pt+1 = f(qt; et) +R(qt; et)bt. (10c)

Given initial values b0 ≥ 0 and p0 > 0 such that q0 = p0 − b0 ∈ Q, equations (10a–
c) completely describe the equilibrium dynamics. The formal properties of the system
will be studied extensively in the following two sections under different assumptions
on consumer incomes. Even at this stage, however, several qualitative observations can
already be made. First, we observe that (10a) constitutes a sub-system of the equilibrium
dynamics that evolves independently of the other equilibrium variables and is bounded
by consumer incomes. Second, it is obvious from (10b) that the credit volume expands
in periods where Rt > 1 and contracts if Rt < 1. Below we refer to these cases as

2The restrictions ρ ≥ 0 and α < 1 are necessary and sufficient for limc→∞ vc(c, 1) c = ∞ which is
crucial for existence of a solution to (7) for arbitrary qt and et. Further, they imply c vcc(c, 1)/vc(c, 1) ≥
−1 for all c > 0 which is a standard condition to obtain a unique solution, cf. Hillebrand (2014). Although
the restriction α < 1 excludes a logarithmic function u used in Bajari et al. (2010), this case can be
approximated as the limiting case α → 1 in our setup.
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the expansive regime and the contractive regime, respectively. Moreover, by (10c) these
changes in the credit volume translate directly into a corresponding change in housing
prices. Thus, if income changes cause the system to alternate between the expansive and
contractive regime, large movements in housing prices occur. The large movements can
almost exclusively be attributed to movements in the credit volume while the fundamental
price remains uniformly bounded by incomes. This linkage constitutes the key mechanism
of the model studied in this paper.

The role of the cost parameter κ
The dynamic analysis presented in the following sections will reveal that the housing cost
parameter κ is a crucial ingredient to our model. Even at this point, some intuition why
this holds can be developed. Use (6a,b) to write (10c) as

pt+1 = R(qt, et)pt + κ−
vh(e

o
t+1 − κ+ f(qt; et), 1)

vc(eot+1 − κ+ f(qt; et), 1)
. (11)

From (11) we infer that the equilibrium housing return (pt+1−κ)/pt must be smaller than
Rt. This is because the old derive utility from housing—which may be seen as a housing
dividend—and therefore accept a return on housing investment which is lower than on
loans. If κ = 0, then pt+1/pt < bt+1/bt = Rt, i.e., the credit volume (10b) grows faster
than the housing price (10c). As a consequence, loan repayments will asymptotically no
longer backed by housing values which violates our restriction qt > 0. In fact, housing
prices would converge to zero if the returnRt is asymptotically smaller than unity which is
inconsistent with equilibrium even if loans are zero. To avoid these problems, a sufficiently
large housing cost is necessary. A smaller cost would raise the demand for housing,
which must be counteracted by a smaller ratio pt+1/pt to meet the constant housing
supply. Subsequently, loans grow faster than the housing price which is inconsistent with
equilibrium.

3. Housing Price Dynamics

Constant incomes
In this section we characterize the equilibrium dynamics (10a–c) for the case with con-
stant incomes et ≡ e = (ey, eo) ∈ E for all t ≥ 0. For notational convenience, the
dependence of variables and functions on e will be suppressed. In the previous section
we argued that the sign of the interest rate determines whether the economy is in an
expansive or contractive regime. In this section we explore the linkage that relates the
equilibrium interest rate to the fundamentals of the economy. Theorem 1 provides a
complete characterization of equilibria under constant incomes. The insights obtained
will serve as a building block to study the case with time-varying first-period incomes in
the next section.

Steady state analysis
Due to the recursive structure of equilibria uncovered in the previous section, the exis-
tence of equilibrium is essentially equivalent to determining a state space Q on which the
dynamics (8) can live. To establish existence, we seek to determine an interval Q ⊂ [0, ey[
which is self-supporting for the map f = f(·; e), i.e., f(q) ∈ Q for all q ∈ Q. By the
properties of f established in Lemma 5, fixed points of f are natural boundary points
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of such intervals. Thus, as a first step, we study steady states of (10a) corresponding to
fixed points of f and their properties.
Since f maps ]−∞, ey[ into ]κ− eo,∞[, it is clear that any steady state must lie in the
open interval ]κ − eo, ey[. Therefore, a necessary precondition for fixed points to exist
is ey + eo > κ. This condition simply says that the resources available in each period
must be large enough to cover housing costs. In what follows, we impose a stronger
restriction that eo > κ which says that second period income alone is large enough to
cover the housing cost at equilibrium. This condition allows for equilibria to exist even
if no intergenerational transfers through the credit market take place.
It follows from (7) that fixed-points of f are zeros of the map G : ]κ− eo, ey[→ R

G(q) := F (q, q; e). (12)

Formal properties of f and G are stated as Lemmata 5 and 6 in Appendix B. The
qualitative result is illustrated in the following figures which depict the map f and the
fixed point map G. Note that the zeros of G in Figure 1(b) correspond to intersections of
(the graph of) f with the principal diagonal in Figure 1(a). By Lemma 6, G is a strictly

f(q)

q
q̄ ¯̄q

id

(a) The time-one map f

G(q)

q
qminq̄ ¯̄q

(b) The fixed point map G

Figure 1: Time-one map of state dynamics

convex function and there exists a unique value qmin ∈]κ− eo, ey[ at which G′(qmin) = 0
and G attains its global minimum. Combined with the boundary behavior of G and
excluding the case G(qmin) = 0, the requirement G(qmin) < 0 is necessary and sufficient
for fixed points to exist. In this case, f has precisely two fixed points q̄ < ¯̄q. Requiring,
in addition, that G′(0) < 0 < G(0) ensures that q̄ > 0, a fact that can directly be verified
froms Figure 1(b). In this case, both fixed points are necessarily positive. The numerical
simulation of Section 5 shows that all three conditions are satisfied for a broad range of
economically reasonable parameterizations.
The previous insights are stated formally in the following lemma which lists conditions
for positive fixed points to exist and characterizes their stability properties.3

3Qualitatively, the dynamics bear some resemblance to the equilibrium dynamics of real money
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Lemma 2. Suppose ρ ≥ 0 and α < 1 and let e = (ey, e0) ∈ E satisfy eo > κ. In addition,
let the minimum of G defined in (12) satisfy G(qmin) < 0. Then, the following holds:

(i) The time-one map f from (8) has precisely two fixed points q̄ ∈ ]κ − eo, qmin[ and
¯̄q ∈ ]qmin, e

y[. If, in addition, G′(0) < 0 < G(0), then q̄ > 0.

(ii) The fixed point ¯̄q is locally unstable while q̄ is locally asymptotically stable. More-
over, f(q) > q for all q ∈ ]−∞, q̄ [ ∪ ] ¯̄q, ey[ and f(q) < q for all q ∈ ]q̄, ¯̄q[.

Determining a state space
Using Lemma 2 it is now straightforward to determine the desired state space Q for the
dynamics (10a). To ensure that qt ≥ 0 for all t, we assume the additional condition
from Lemma 2(i) such that the fixed points of f satisfy 0 < q̄ < ¯̄q. Then, the interval
Q := [0, ¯̄q[ is self-supporting for the dynamics (8), an insight which is readily confirmed
by Figure 1(a).4 Thus, restricting f to this subset defines a discrete dynamical system
whose long-run behavior is characterized in the next lemma.

Lemma 3. Suppose ρ ≥ 0 and α < 1 and let incomes e = (ey, e0) ∈ E satisfy eo > κ. In
addition, let G defined in (12) satisfy G(qmin) < 0 and G′(0) < 0 < G(0). Then,

(i) The restricted time-one map f : Q → Q has q̄ as its unique fixed point.

(ii) This fixed point is globally stable and for each q0 ∈ Q the sequence {qt}t≥0 defined
recursively as qt+1 = f(qt), t ≥ 0 converges monotonically to q̄.

Equilibrium under constant incomes
We are now in a position to characterize the equilibrium dynamics (10a–c) formally
under fixed incomes et ≡ e = (ey, eo) ∈ E . Fix an initial value (p0, b0) which satisfies
b0 ≥ 0, p0 > 0 and q0 = p0 − b0 ∈ Q. Recall that the dynamics (10a) of qt is decoupled
from the other two variables and converge monotonically to a unique steady state q̄ by
Lemma 3. It is evident from (10b) and (10c) that the long-run dynamic behavior of the
credit volume bt and housing prices pt depend on the steady state interest factor R(q̄; e).
If R(q̄; e) < 1, the credit volume asymptotically converges to zero while by (5) prices
converge to p̄ = q̄. Conversely, if R(q̄; e) > 1 and b0 > 0, both credit volume and housing
prices grow without bound and converge to infinity. Notice, however, that the equilibrium
dynamics is well-defined in either case. The following theorem summarizes these insights
and provides a complete characterization of equilibria under constant incomes.

Theorem 1. Let the hypotheses of Lemma 3 be satisfied. Then,

(i) Each p0 > 0 and b0 ≥ 0 for which p0 − b0 ∈ Q defines an equilibrium where the
evolution of the equilibrium variables follows (10a–c) and limt→∞ qt = q̄ holds.

balances in Gale (1973) in that there are two steady states, one of which – the larger one – is unstable
and the other one asymptotically stable. In Gale’s model, the latter corresponds to the non-monetary
steady state in which no intergenerational transfers take place. Precisely this scenario would be recovered
in our setting in the absence of housing. In the presence of housing, however, the analog of real money
balances in Gale’s model is played by the fundamental price of housing which also has an unstable and
a –smaller – stable steady state. Unlike the case in Gale (1973), however, the latter is bounded away
from zero. More importantly, as argued above, even though the qt dynamics is bounded, pt and bt can
grow without bound in our model.

4We will exclude ¯̄q from the state space in order to rule out degenerate equilibria. In the case with
time-varying incomes to be studied in the next section, this imposes no additional restriction regarding
the long run behavior of the system.
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(ii) If b0 = 0 or R(q̄; e) < 1, then limt→∞ pt = q̄ while limt→∞ bt = 0.

(iii) If b0 > 0 and R(q̄; e) > 1, then limt→∞ pt = limt→∞ bt = ∞.

Recall that if b0 = 0, i.e., in the absence of a financial sector, the housing price coincides
with the sequence {qt}t≥0 which is uniformly bounded. Thus, any potential unbounded-
ness of housing prices is exclusively due to the financial sector. If b0 > 0, the equilibrium
properties are determined by the steady state return R(q̄; e) and may either be contrac-
tive or expansive, the case (ii) or (iii) in the above theorem. In case (ii), the credit volume
converges to zero and the housing price coincides with its fundamental value, at least
asymptotically. In case (iii), however, we show below that the housing price pt has a
persistent bubble equal to bt which makes it permanently exceed its fundamental value
qt.
To build some intuition how the emergence of the regimes in Theorem 1 is related to
consumer incomes e, suppose first that the income ey of the young is low relative to
second-period income eo. Then, young consumers have a strong desire to smooth their
consumption and borrow against future income which results in a high interest rate. By
(1), this results in an expansion of loans over time. As the fundamental housing price
is uniformly bounded and converges to a constant value, the increased credit volume
translates directly into an increase in housing prices. In other words, the increased credit
volume is fully used for increased expenditures for housing. Reversing these arguments,
a sufficiently high first-period income ey relative to eo results in a low interest rate which
causes the loan volume to contract and the housing price to converge to its fundamental
value. From this reasoning we propose that suitable income changes provide a simple
way of generating large movements in housing prices. This idea is formally explored in
Section 4.

Bubbles and fundamental housing prices
If houses were absent—or could not be traded between generations—our model would
essentially reduce to a version of Gale (1973) where the credit sector plays a role equiva-
lent to negative money. In that case loans are not backed by any physical resources and
correspond to an intrinsically valueless asset that is traded at a positive price. Thus, the
credit volume is a pure bubble.
The bubbleless equilibrium in our economy corresponds to the initial choice b0 = 0 which
implies bt = 0 and pt = qt for all t. We call qt the fundamental housing price that would
prevail in the absence of mortgage loans. The same state is reached asymptotically in
case (ii) of Theorem 1 where loans vanish over time and the equilibrium is asymptotically
bubbleless.
By contrast, we call the equilibrium scenario from Theorem 1(iii) where R(q̄; e) > 1
and the credit volume is asymptotically non-vanishing a bubbly equilibrium. We now
demonstrate that this is indeed justified and the housing price pt decomposes into a
stationary component (equal to qt) that reflects the fundamental value of housing and a
bubbly component (equal to bt) that captures the deviation from the fundamental value.
Define the variable

dt = D(qt; e) :=
vh(e

0 − κ+ qt, 1)

vc(e0 − κ+ qt, 1)
> 0 (13)

which may be interpreted as the housing dividend corresponding to the marginal utility
earned from consuming an additional unit of housing. Specifically, dt is zero if housing

10



yields no utility, i.e., vh = 0. Using (13) in the Euler equations (6a,b) permits to write

pt =
pt+1+dt+1−κ

Rt
which may be solved forward to obtain

pt =

∞
∑

n=0

(dt+1+n − κ)

n
∏

m=0

R−1
t+m + lim

n→∞
pt+1+n

n
∏

m=0

R−1
t+m. (14)

Using pt+1+n = qt+1+n + bt+1+n by (5) together with limn→∞ qt+1+n = q̄ > 0 and
limn→∞ Rt+n = R(q̄; e) > 1 by Lemma 3 and continuity of R, and bt+1+n

∏n

m=0 R
−1
t+m =

bt for all n ≥ 0 by (1) we can write (14) as5

qt = pt − bt =

∞
∑

n=0

(dt+1+n − κ)

n
∏

m=0

R−1
t+m. (15)

Thus, qt is exclusively determined by the discounted sum of future net dividends justifying
our interpretation as a fundamental price of housing.

Welfare
The fundamental housing price is also a measure for the net intergenerational transfer
of incomes where pt measures the commodity transfer from young to old through the
housing market whereas bt measures that from old to young through the financial sector.
Hence, qt implies a net commodity transfer from young to old. Using (3) the induced
consumption allocation can be written as

cyt = eyt − qt and cot = e0t − κ+ qt. (16)

This shows that the resulting consumption allocation is exclusively determined by the
dynamics of fundamentals (10a). Thus, for a given value q0, any injection of credit b0 > 0
merely increases the bubbly component of the housing price. As a consequence, any price
deviation from the fundamental price is fully neutral with respect to consumer welfare.
These observations also extend to the case with time varying incomes studied in the next
section.
To obtain additional insights into the welfare properties of equilibrium allocations, let
a = (cy, co, h) be any stationary allocation which satisfies the feasibility constraints
cy ≥ 0, co ≥ 0, cy + co + κh ≤ ey + eo and 0 ≤ h ≤ 1. The induced variables R(a) :=
u′(cy)

vc(co,h)
and D(a) := vh(c

o,h)
vc(co,h)

may be interpreted as the supporting return and housing

dividend. Standard arguments imply that a unique stationary allocation a⋆ = (cy⋆, c
o
⋆, h⋆)

exists which maximizes consumer utility and satisfies the classical golden rule condition
R⋆ := R(a⋆) = 1 and D⋆ := D(a⋆) ≥ κ. The latter may be interpreted as an efficiency
condition with respect housing consumption. Specifically, D⋆ = κ if h⋆ = 1.
For a stationary equilibrium allocation aE = (ey − q, eo − κ + q, 1) where q is a steady

5Here we use that Rt+n = R(qt+n, e) and limn→∞ Rt+n = R(q̄; e) > 1 implies that there exists
1 < ∆ < R(q̄; e) and n0 ∈ N such that Rt+n ≥ ∆ > 1 for all n > n0. Therefore,

0 ≤ lim
n→∞

qt+1+n

n∏

m=0

R−1

t+m = q̄
∞∏

m=0

R−1

t+m < q̄∆n0

n0∏

m=0

R−1

t+m

∞∏

m=0

∆−1 = 0.

11



state of (10a), the supporting prices satisfy RE := R(aE) = R(q; e) and DE := D(aE) =
D(q; e) with R and D defined by (9) and (13). It follows directly from Theorem 1 that, in
general, equilibrium allocations will not be optimal in the above sense, a typical feature
of OLG models. Moreover, it is straightforward to show that RE T 1 iff DE T κ.6

Therefore, the characterization in Theorem 1 satisfies DE < κ in case (ii) while DE > κ
in case (iii).
Equation (16) resembles the consumption allocation in Gale (1973) along a monetary
equilibrium of the Samuelson type with real monetary transfers qt > 0. In his model, such
equilibria exist whenever the intertemporal return R0 supporting the autarky allocation
satisfies R0 < 1. It turns out that a similar characterization of the above existence
conditions is also possible in our framework.7 To this end, consider the autarky allocation
a0 := (cy0 , c

o
0, h0) = (ey, eo − κ, 1) where generations do not trade. Then, the condition

G(0) > 0 from Lemma 3 holds if and only if a0 is inefficient with respect to housing
consumption, i.e., D0 := D(a0) < κ. Note that this condition can only be satisfied if
κ > 0 reconfirming that the cost parameter is a key ingredient of our model. Similarly,

the condition G′(0) < 0 from Lemma 3 holds, if and only if R0 := R(a0) = u′(ey)
vc(eo−κ,1)

satisfies

R0 < 1 +
vch(e

o − κ, 1) + κ|vcc(e
o − κ, 1)|

vc(eo − κ, 1)
. (17)

If vch ≥ 0, i.e., if consumption and housing are complements—equivalent to ρ ≤ 1−α—a
sufficient condition for (17) to hold is R0 < 1.

4. Boom-Bust Cycles in Housing Prices

Time-varying incomes
We now analyze the case where incomes vary over time. For ease of exposition, we will
confine our attention to changes in first-period incomes while second-period incomes are
constant. Thus, assume as in the previous section that eot ≡ eo > κ while eyt now takes
values in the set Ey := [eymin, e

y
max] ⊂ R++. In the sequel, we will therefore drop the

argument eo writing, e.g., f(q; ey) instead of f(q; ey, eo).

Determining a state space
The existence of equilibrium requires to determine a state space for the equilibrium
dynamics (10a). Formally, we seek to determine an interval Q which is self supporting
under the family (f ·; ey)ey∈Ey in the sense that q ∈ Q implies f(q; ey) ∈ Q for all ey ∈ Ey.
While the underlying construction principle is the same as in the previous section, the
present case must incorporate that the map f and its fixed points vary with consumer
incomes. As any equilibrium sequence {qt}t≥0 satisfies 0 ≤ qt < eyt for all t ≥ 0, it is also
clear that Q must be a subset of [0, eymin].
Let us assume that the hypotheses of Lemma 3 are satisfied for all ey ∈ Ey.8 Then, each
map f(·; ey) has precisely two fixed points in ]0, ey[ which we denote by q̄(ey) and ¯̄q(ey).

6Any equilibrium satisfies Rt = [pt+1 + dt+1 − κ]/pt which implies Rt = [qt+1 + dt+1 − κ]/qt for all
t ≥ 0 by (1) and (5). For stationary equilibria where qt ≡ q > 0, Rt ≡ RE by (9) and dt ≡ DE by (13),
RE = [q +DE − κ]/q.

7We are grateful to an anonymous referee for this observation.
8In fact, it would suffice if they are satisfied at the extreme points ey = ey

min
and ey = eymax.

12



Lemma 7 in Appendix B establishes formally that both fixed points vary smoothly with
incomes and that an increase in ey increases ¯̄q(ey) and decreases q̄(ey). Thus, the values

q̄min := min
ey∈Ey

{

q̄(ey)
}

= q̄(eymax) (18a)

q̄max := max
ey∈Ey

{

q̄(ey)
}

= q̄(eymin) (18b)

¯̄qmin := min
ey∈Ey

{

¯̄q(ey)
}

= ¯̄q(eymin) (18c)

denote the smallest and largest fixed point q̄ and the smallest fixed point ¯̄q of the map-
pings f as incomes vary across the interval Ey = [eymin, e

y
max]. Figure 2 illustrates this

and the following results for two-valued incomes ey ∈ {eymin, e
y
max}.

f(·; ey

min
) f(·; ey

max
)f(·; ey)

q̄min q̄max q¯̄qmin

Figure 2: Time-one maps generating the dynamics under two incomes

The values in (18a–c) are natural bounds for intervals which are self-supporting for the
family of dynamic mappings (f ·; ey)ey∈Ey . Defining the intervals Q̄ := [q̄min, q̄max] and
Q := [0, ¯̄qmin[

9, this is confirmed by the next lemma which essentially extends the result
from Lemma 3 to the present more general case.

Lemma 4. Let the hypotheses of Lemma 3 be satisfied for each ey ∈ Ey. Then,

(i) Both intervals Q̄ and Q are self-supporting for the family (f ·; ey)ey∈Ey .

(ii) For each q0 ∈ Q and any income sequence {eyt }t≥0 where eyt ∈ Ey, the sequence
{qt}t≥0 generated by (10a) converges to the set Q̄.

Equilibrium under time-varying incomes
Based on the previous insights, the next theorem generalizes the existence result from
Theorem 1(i) to the case with time-varying first-period incomes. Note that Theorem 1(i)
obtains as a special case where eymin = eymax = ey.

9Note that 0 < q̄min < q̄max < ¯̄qmin which implies the inclusions ∅ 6= Q̄ $ Q.
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Theorem 2. Let the hypotheses of Lemma 3 be satisfied for each ey ∈ Ey. Then, given
initial values p0 > 0 and b0 ≥ 0 satisfying q0 := p0 − b0 ∈ Q, any income sequence
{eyt }t≥0 where eyt ∈ Ey defines an equilibrium generated by (10a–c).

It follows from Lemma 4 that in order to characterize the long-run properties of equilib-
rium we can confine attention to the set Q̄ . The sign of the interest rate is again crucial
for the long-run behavior of equilibrium housing prices and the credit volume. Lemma 8
in Appendix B establishes that the interest rate determined by the mapping R from (9)
is a smooth function that is increasing in q and decreasing in ey. Thus, the values

Rmin := min{R(q; ey) | q ∈ Q̄, ey ∈ Ey} = R(q̄min; e
y
max)

Rmax := max{R(q; ey) | q ∈ Q̄, ey ∈ Ey} = R(q̄max; e
y
min)

define the maximum and minimum return observed as incomes and fundamental prices
range across the state space Q̄ × Ey. The following theorem generalizes the characteri-
zation of equilibria from Theorem 1(ii) and (iii) to the present case.

Theorem 3. Let the hypotheses of Lemma 3 be satisfied for each ey ∈ Ey. Then, for
any p0 > 0 and b0 ≥ 0 satisfying q0 := p0 − b0 ∈ Q and any income sequence {eyt }t≥0

where eyt ∈ Ey, the equilibrium generated by (10a–c) satisfies the following:

(i) If b0 = 0 or Rmax < 1, then limt→∞ bt = limt→∞ |pt − qt| = 0.

(ii) If b0 > 0 and Rmin > 1, then limt→∞ bt = limt→∞ pt = ∞.

The mechanism for boom-bust cycles
Excluding the non-generic cases Rmin = 1 and Rmax = 1, Theorem 3 shows that the
equilibrium is uniformly contractive ifRmax < 1 and expansive if Rmin > 1. Qualitatively,
the resulting dynamics are identical to the case with constant incomes studied in the
previous section. In particular, the hypotheses of Theorem 3(i) and (ii) exclude boom-
bust cycles in housing prices. Thus, we obtain Rmin < 1 < Rmax as a necessary condition
for such cycles to emerge.
Let this condition be satisfied and suppose, in addition, that b0 > 0. To illustrate the
mechanism that generates boom-bust cycles in housing prices, consider the simplest case
where ey takes two values eymin and eymax. Suppose that incomes initially take the lower
value eyt = eymin. Then, the dynamics generated by the map f(·; eymin) start converging to
the associated steady state q̄(eymin) = q̄max and we have Rt > 1 for t sufficiently large as
R(q̄max; e

y
min) = Rmax > 1. By (1), the credit volume starts to expand and so do housing

prices while their difference qt is uniformly bounded.
Now, suppose that at some time t̃ > 0, incomes switch to the higher value eymax. The
corresponding dynamics is now generated by the map f(·; eymax) which has q̄min as its
unique steady state to which the variable qt starts converging. For sufficiently large t > t̃,
we will have Rt < 1 implying that both credit volume and housing price will contract.
Combining these observations, it is clear that under time-varying incomes, the system will
alternate between an expansionary regime and a contractive regime. These changes are
most profound if R(q; eymin) > 1 and R(q; eymax) < 1 for all q ∈ Q̄. The first requirement
is equivalent to R(q̄min; e

y
min) > 1, and implies that the credit volume starts expanding

immediately when et = eymin. The second condition is equivalent to R(q̄max; e
y
max) < 1,

and implies that the credit volume starts contracting immediately when et = eymax. Now
if the income sequence is persistent, then long periods of credit expansion will follow
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long periods of credit contraction. This mechanism offers a potential to generate large
movements in housing prices due to persistent income changes.10

At first sight it may seem puzzling that the collapse of housing prices is consistent with
perfect foresight. The intuition is that the drop in the housing price is accompanied
by a fall in the interest rate which reduces refinancing cost, and therefore consumers
are willing to accept the capital loss. In other words, the economy experiences boom-
bust cycles, along which consumers adjust their behavior perfectly without causing any
bankruptcy problem.

5. A Numerical Example

We employ numerical simulations to demonstrate that the previous boom-bust scenario
is compatible with parameter choices used in recent quantitative studies, and that the
switch between the two regimes is triggered by relatively small income changes.

Parameters
We choose α close to unity to approximate a logarithmic function u used in Bajari
et al. (2010). For simplicity, we follow Li & Yao (2007) by confining ourselves to the
case of unit elasticity of substitution between housing and second-period consumption
setting ρ = 0, which yields a Cobb-Douglas function for second-period utility.11 For this
choice, the parameter 1 − β can be interpreted as the share of housing expenditure in
consumer income, and we choose β = .67.12 As in Hurd (1989), consumers’ annual time
discount is taken to be 1/1.011 implying a discount factor γ = 0.70 ≈ (1/1.011)35. We
normalize incomes setting eo = 1. The sequence {eyt }t≥0 is selected such that incomes
exhibit a high degree of persistence and tend to stay in a given state for several periods.
For this purpose, we generate {eyt }t≥0 as a random draw from a symmetric two-state
Markov process with income values eymin = 1.425 and eymax = 1.5 and a time-invariant
transition probability π = 0.2.13 Finally, our choice for κ = 1/3 implies that housing
costs make up about 10% of consumers’ lifetime income. The initial values are set to
p0 = b0 = 1. Under this parametrization, the hypotheses of Lemma 3 hold for all
ey ∈ Ey. Thus, for each fixed income stream eyt ≡ ey ∈ Ey, the dynamics (10a) converges
to a unique steady state q̄(ey) > 0.14 In particular, the above parametrization implies
that Rmin = R(q̄(eymax), e

y
max) < 1 < R(q̄(eymin), e

y
min) = Rmax such that the necessary

conditions for booms and busts of housing prices to occur are satisfied.

10The mechanism straightforwardly generalizes to the case where incomes take values in the interval
[ey

min
, eymax] as long as the dynamics alternates between the expansive regime {(q, e) ∈ Q̄×Ey | R(q; e) >

1} and the contractive regime {(q, e) ∈ Q̄× Ey |R(q; e) < 1}.
11Bajari et al. (2010) devise an elasticity of substitution slightly larger than unity (about 1.3) corre-

sponding to ρ = 0.24.
12Bajari et al. (2010) choose a value of β ≈ .77. As housing is confined to the second period in our

model, we choose a smaller value.
13The fact that incomes are higher in the first than in the second period seems broadly consistent with

empirical evidence, cf. Table 3 in Bajari et al. (2010). This is also consistent if we were to replace the
pure exchange setting by a production economy where the young earn labor income and the old capital
income. Empirical evidence then suggests that the former is about twice as large as the latter.

14As the simulations serve to illustrate and quantify our mechanism, the parameter values are chosen
such that the hypotheses of Lemma 3 are satisfied for each ey ∈ Ey . We remark that this is a non-trivial
requirement and one can easily construct parameterizations where these hypotheses are not satisfied.
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Simulation results
Figure 3 displays time series’ for T = 300 periods starting in t = 100 to capture the long
run characteristics of the model. The left panel shows a time window of the housing price
pt and the credit volume bt. To relate movements in these variables to the ‘fundamentals’
of the economy we also depict the aggregate net income xt := eyt +eo−κ which represents
the total resources available in period t net of housing costs. The right panel depicts the
fundamental price qt = pt− bt together with the bounds q̄min and q̄max of the ergodic set
Q̄ defined in (18a,b).
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(a) Housing prices, loans, and aggregate incomes
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(b) Fundamental prices and their bounds

Figure 3: A boom-bust scenario

The figures confirm that small but persistent income changes generate large and persis-
tent movements in the housing price and the credit volume. The co-movement of these
two variables is apparent, and in fact they are almost indistinguishable in Figure 3(a). By
contrast, we know from our previous results that their difference qt = pt− bt is uniformly
bounded and remains in a compact set Q̄ = [q̄min, q̄max]. These properties can readily be
inferred from Figure 3(b). Figure 3(a) also confirms that both housing investment and
credit volume increase (decrease) when the aggregate income is high (low), and they may
exceed the aggregate income by an order of magnitude. For example, consider the situa-
tion in period t0 = 251 when the housing market is in a boom phase. In this period, the
young are in the low-income state receiving eyt0 = 1.425 such that aggregate net income
is eyt0 + eo − κ = 2.09. They take a loan bt0 = 3.48 at an interest rate of 2.6% to finance
their housing purchase at the price pt0 = 3.49. This corresponds to a leverage ratio (loans
over discounted lifetime income eyt0 + eoR−1

t ) of 145%. Moreover, the loan repayment
Rt0bt0 = 3.57 is more than three times larger than second-period non-housing income
eo. Nevertheless, according to the mechanism of our model, the next period’s housing
price pt0+1 = 3.58 allows consumers to repay their loan from the revenues of selling their
houses at the end of period t0+1. In fact, the net flow from the young to old consumers,
which is equal to the fundamental price of housing, is only qt0 = pt0 − bt0 = 0.01, and
remains bounded by the income of the young. Conversely, when the housing market is
depressed, the leveraged borrowing declines dramatically while the fundamental price
moves within the tiny range as seen in Figure 3(b).
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6. Conclusions

In the absence of a financial sector the only intergenerational transfer of commodities
in our model is from the young to the old through the housing market. Consequently,
housing values are bounded by young consumer incomes. Introducing a financial sector
adds an additional channel of intergenerational trade in the form of a credit market,
which mediates a commodity transfer from the old to the young. The combination
of these channels permits each flow of intergenerational transfers to become arbitrarily
large as long as the net flow remains bounded by consumer incomes. This structure
amplifies small but persistent income changes into large movements of housing prices
and credit volumes which can both grow unboundedly large while a linear combination
of them remains stationary, i.e., uniformly bounded. The presence of such a cointegration
relationship is a testable implication of the model.
In our model, the boom in housing prices occurs accompanied by expanding loan volumes
when the interest rate is positive. Hence, the stationarity of endowments implies that
bubbles emerge when the interest rate is greater than the growth rate of the economy,
a feature of our model shared by Caballero et al. (2006), Arce & López-Salido (2011),
Martin & Ventura (2012), and Ventura (2012). The boom comes to a halt when a higher
income of the young causes the interest rate to become negative. This positive correlation
between the interest rate and the credit volume occurs naturally in a model with inside
money but may be at odds with the empirical observation that the cost of refinancing
is relatively low in many bubble episodes. Note, however, that the required changes
in the interest rate for the economy to switch regimes can be arbitrarily small: the real
interest rate only needs to change its sign. The key prediction of our model is the positive
correlation between the credit volume and the housing price in boom-bust cycles.
The paper opens many avenues for future research. The model presented above was a
baseline model in all dimensions, with rational expectations, no heterogeneity, no ex-
plicit financial friction, no uncertainty, and no government or central bank, and these
assumptions can potentially be weakened. Introducing outside money in our model will
permit us to investigate how monetary policies interact with the financial sector and the
housing market. The assumption of perfect foresight ruled out problems of bankruptcy
and default in our model (no interest rate spread or risk premium). The effects of un-
certainty and a stochastic income process can potentially be investigated under a more
general rational expectations concept. These extensions will affect the relationship be-
tween the interest rate and the credit volume. Whether bubbles in our framework remain
welfare neutral in the presence of capital accumulation is also an interesting question to
be explored.
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Appendix A. Proofs

Proof of Lemma 1

Let e = (ey, eo) ∈ E and q < ey be arbitrary but fixed. For brevity, set q := κ− eo and

H(q1) := vc(q1 − q, 1) (q1 − κ) + vh(q1 − q, 1), q1 > q. (A.1)

Since v in (2) is homogeneous of degree 1−α, Euler’s theorem for homogeneous functions
implies vc(c, 1) c+ vh(c, 1) = (1− α)v(c, 1) for all c > 0 permitting us to write

H(q1) = (1− α) v(q1 − q, 1)− eo vc(q1 − q, 1), q1 > q. (A.2)

Since ρ ≥ 0, the function v satisfies the Inada condition limcց0 vc(c, 1) = ∞. Thus,

lim
q1ցq

H(q1) = (1− α) v(0, 1)− eo lim
q1ցq

vc(q1 − q, 1) = −∞. (A.3)

Furthermore, the restrictions ρ ≥ 0 and α < 1 combined imply limc→∞ c vc(c, 1) = ∞.
Using this in (A.1) yields the right limit as

lim
q1→∞

H(q1) ≥ lim
q1→∞

vc(q1 − q, 1) (q1 − κ) = ∞. (A.4)

Existence of the desired solution thus follows from (A.3), (A.4), and continuity of H .
Uniqueness is a consequence of (A.2) and the concavity of v which give the derivative

H ′(q1) = (1 − α)vc(q1 − q, 1)− eo vcc(q1 − q, 1) > 0. (A.5)

�

Proof of Lemma 2

(i) Using (12) in conjunction with (7), (A.2), and (A.3) a routine calculation shows that
limqրey G(q) = limqցκ−eo G(q) = ∞. Thus, G(qmin) < 0 implies that G has a fixed
point in each of the open intervals ]κ − eo, qmin[ and ]qmin, e

y[. By strict convexity and
the boundary behavior of the first derivative established in Lemma 6, the map G is
strictly decreasing on ]κ− eo, qmin[ and strictly increasing on ]qmin, e

y[. Thus, there can
be at most one fixed point in each of the two intervals. Further, G′(0) < 0 implies
qmin > 0 while G(qmin) < 0 < G(0) ensure that q̄ lies in the interval ]0, qmin[.
(ii) It is obvious from (i) that G′(q̄) < 0 < G′(¯̄q). Using the definitions of H and D
given in the proofs of Lemma 1 and 6, this implies that G′(q̄) = D′(q̄) −H ′(q̄) < 0 and
G′(¯̄q) = D′(¯̄q)−H ′(¯̄q) > 0. Therefore, utilizing the result and proof of Lemma 5

0 < f ′(q̄) =
D′(q̄)

H ′(q̄)
< 1 <

D′(¯̄q)

H ′(¯̄q)
= f ′(¯̄q) (A.6)

which implies the local stability properties asserted. The remaining inequalities follow
from this and the uniqueness of fixed points on the respective intervals. �
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Proof of Lemma 3

Assertion (i) follows immediately from Lemma 2(i). The result in (ii) is a consequence of
local stability of q̄ and Lemma 2(ii). Monotonicity of the sequence {qt}t≥0 follows from
this and the monotonicity property of f established in Lemma 5. �

Proof of Theorem 1

(i) Lemma 3 and q0 ∈ Q imply that qt ∈ Q for all t and limt→∞ qt = q̄. By (1) and (9),
b0 ≥ 0 implies bt ≥ 0 and, by (5) pt > 0 for all t proving (i).
(ii) If b0 = 0, then bt = 0 and qt = pt for all t and the claim is obvious. If b0 > 0 and
R(q̄; e) < 1, there exists t0 ≥ 0 such that R(qt; e) < 1 for all t ≥ t0 by stability of q̄
and continuity of R. In fact, since q 7→ R(q; e) is strictly increasing (cf. Lemma 8) and
{qt}t≥0 converges monotonically, R(qt; e) ≤ Rt0 := R(qt0 ; e) < 1 for all t ≥ t0. Thus,
0 ≤ limt→∞ bt ≤ bt0 limt→∞ Rt−t0

t0
= 0 and limt→∞ pt = limt→∞ qt = q̄.

(iii) If R(q̄; e) > 1, the same arguments as in (ii) yield existence of t0 ≥ 0 such that
R(qt; e) ≥ Rt0 := R(qt0 ; e) > 1 for t ≥ t0. Thus, limt→∞ bt ≥ bt0 limt→∞ Rt−t0

t0
= ∞ and

pt = qt + bt > bt for all t gives limt→∞ pt = ∞. �

Proof of Lemma 4

(i) We first show that Q̄ is self-supporting. Let q ∈ Q̄ be arbitrary. By Lemma 2(ii), the
monotonicity properties of f (cf. Lemmata 5 and 7(i)), and (18a–c), for each ey ∈ E :

q̄min = f(q̄min; e
y
max) ≤ f(q̄min; e

y) ≤ f(q; ey) ≤ f(q̄max; e
y) ≤ f(q̄max; e

y
min)) = q̄max.

(A.7)
Thus, f(q; ey) ∈ Q̄. To prove that Q is self-supporting, let q ∈ Q and ey ∈ Ey be
arbitrary. The case q ∈ Q̄ is evident, so suppose first that q ∈]q̄max, ¯̄qmin[. Then, by (18a–
c), q̄(ey) ≤ q̄max < q < ¯̄qmin ≤ ¯̄q(ey) which implies, by Lemma 2(ii) and monotonicity
of f that q̄(ey) < f(q; ey) < q. Thus, f(q; ey) ∈ Q. Conversely, let q ∈ [0, q̄min[. By
(18a–c), 0 ≤ q < q̄min ≤ q̄(ey) which implies q < f(q; ey) < q̄(ey) by Lemma 2(ii) and
monotonicity of f . Thus, f(q; ey) ∈ Q again.
(ii) Let q0 ∈ Q be arbitrary. Define the sequences {qt}t≥0 and {q

t
}t≥0 by setting q0 =

q
0
= q0 and qt+1 := f(qt; e

y
min) and q

t+1
:= f(q

t
; eymax) for each t ≥ 0. Then, by the

monotonicity properties of f , q
t
≤ qt ≤ qt for all t ≥ 0 and the claim follows from

limt→∞ q
t
= q̄(eymax) = q̄min and limt→∞ qt = q̄(eymin) = q̄max. �

Proof of Theorem 2

Lemma 4 ensures that qt ∈ Q for all t ≥ 0. By (1) and (9), b0 ≥ 0 implies bt ≥ 0 and, by
(5), pt ≥ qt > 0 for all t ≥ 0. �

Proof of Theorem 3

(i) Suppose Rmax < 1. Then, R(q; e) ≤ Rmax < 1 for all q ∈ Q̄ and e ∈ Ey. Let R̂max be
a number between Rmax and 1. By continuity of R, we can choose an open neighborhood
Q̂ ⊂ Q of Q̄ such that R(q; e) < R̂max for all q ∈ Q̂ and e ∈ Ey. Let q0 ∈ Q be arbitrary.

By Lemma 4(ii), there exists t0 > 0 such that qt ∈ Q̂ for all t > t0. Hence, Rt < R̂max < 1

for all t > t0 and it follows that 0 ≤ limt→∞ bt ≤ limt→∞ bt0
(

R̂max

)t−t0
= 0. This and

(5) imply limt→∞ |pt − qt| = limt→∞ |bt| = 0.
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(ii) Suppose Rmin > 1. Similar to the previous part, choose a number R̂min between 1

and Rmin and an open neighborhood Q̂ ⊂ Q of Q̄ such that R(q; e) > R̂min > 1 for all

q ∈ Q̂ and e ∈ Ey. Let q0 ∈ Q be arbitrary. By Lemma 4(ii), there exists t0 > 0 such

that qt ∈ Q̂ for all t > t0. Hence, Rt > R̂min > 1 for all t > t0 and it follows from (1)

that limt→∞ bt ≥ limt→∞ bt0
(

R̂min

)t−t0
= ∞. Since qt remains uniformly bounded, the

limit of the sequence {pt}t≥0 follows from (5). �

Appendix B. Technical results

Properties of the time-one map f

Lemma 5. Suppose ρ ≥ 0 and α < 1. Then, for each e = (ey, e0) ∈ E the map f = f(·; e)
defined above is continuously differentiable with derivative f ′(q) > 0 for all q < ey.

Proof: Since Fq1(q1, q; e) = −H ′(q1) < 0 by (7) and (A.5) and F is continuously differ-
entiable, so is the implicit function f by the Implicit Function Theorem. The partial
derivative of (7) with respect to q computes

Fq(q1, q; e) = u′(ey − q)− qu′′(ey − q) = (ey − q)−α e
y − (1 − α)q

ey − q
> 0. (B.1)

By the implicit function theorem f ′(q) = −
Fq(q1,q;e)
Fq1

(q1,q;e)
> 0 where q1 = f(q; e). �

Properties of the fixed-point map G

Lemma 6. Suppose ρ ≥ 0 and α < 1. Then, for each e = (ey, e0) ∈ E satisfying
ey + eo > κ the map G = G(·; e) defined in (12) is a strictly convex function and the
derivative satisfies the boundary behavior limqրey G

′(q) = − limqցκ−eo G
′(q) = ∞.

Proof: By (12), the function G can be written as G(q) = D(q) − H(q) with H being
defined as in (A.2) and D(q) := qu′(ey − q) = q(ey − q)−α, q < ey.
Consider first the behavior of the function D whose derivatives satisfy

D′(q) =
ey − (1 − α)q

(ey − q)1+α
> (1− α)

ey − q

(ey − q)1+α
=

1− α

(ey − q)α
> 0 (B.2)

D′′(q) =
α

(ey − q)2+α

(

2ey − (1 − α)q
)

>
α(1 − α)

(ey − q)2+α

(

ey − q
)

> 0. (B.3)

The second inequality shows that D is a strictly convex function while the first one
implies that D is strictly increasing with boundary behavior limqրey D

′(q) = ∞.
As shown in the proof of Lemma 1, the derivative of H is given by (A.5) and, therefore,
satisfies H ′(q) > 0 and limqցκ−eo H

′(q) ≥ (1 − α) limqցκ−eo vc(e
o − κ+ q, 1) = ∞. We

claim that H ′ is a strictly decreasing function implying that −H is strictly convex. The
first term in (A.5) is strictly decreasing by strict concavity of v. It therefore suffices
to show that c 7→ −vcc(c, 1), c > 0 is decreasing as well. Defining g as in (1), direct
calculations reveal that the second derivative of v can be written as

−vcc(c, 1) =
vc(c, 1)

c

[

1− ρ− (1− ρ− α)
βcρ

g(c, 1)ρ

]

= vc(c, 1)

[

α

c1−ρ

β

g(c, 1)ρ
+

1− ρ

c
·
(1− β)

g(c, 1)ρ

]

. (B.4)
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Recalling that 1− ρ ≥ 0, all terms in (B.4) are positive and strictly decreasing functions
of c which implies that c 7→ −vcc(c, 1) is decreasing as claimed.
Thus, −H is strictly convex and so is G being the sum of two (strictly) convex functions.
The boundary behavior of G′ follows directly from the limits computed above and the
monotonicity properties of D and −H . �
Lemma 7. Let the hypotheses of Lemma 3 be satisfied for each ey ∈ Ey. Then,

(i) The map ey 7→ f(q; ey) is continuously differentiable and strictly decreasing at each
interior point ey ∈ Ey where 0 < q < ey.

(ii) The fixed point maps ey 7→ q̄(ey) and ey 7→ ¯̄q(ey) are both continuously differen-
tiable. Moreover, q̄(·) is strictly decreasing while ¯̄q(·) is strictly increasing.

Proof: (i) The proof of Lemma 5 revealed that Fq1 (q1, q; e) < 0 with F defined in (7).
Since Fey (q1, q; e) = q u′′(ey − q) < 0, 0 < q < ey, the claim follows from the Implicit
Function Theorem.
(ii) Recall that fixed points are solutions to G(q; e) = F (q, q; e) = 0. By (i), Gey (q; e) < 0.
As Gq(q̄; e) < 0 < Gq(¯̄q; e) (cf. the proof of Lemma 2(ii)), the claim follows again from
the Implicit Function Theorem. �
Lemma 8. Let the hypotheses of Lemma 3 be satisfied for each ey ∈ Ey. Then, the map
R defined in (9) is continuously differentiable with partial derivatives Rey (q; e

y) < 0 <
Rq(q; e

y) for all interior points ey ∈ Ey and 0 < q < ey.

Proof: The claim follows directly by taking the partial derivatives of (9) and using
Lemmata 5 and 7(i). �
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