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Abstract

We examine how the familiar spurious regression problem can manifest itself in the

context of recently proposed predictability tests. For these tests to provide asymptotically

valid inference, account has to be taken of the degree of persistence of the putative predictors.

Failure to do so can lead to spurious over-rejections of the no predictability null hypothesis.

A number of methods have been developed to achieve this. However, these approaches all

make an underlying assumption that any predictability in the variable of interest is purely

attributable to the predictors under test, rather than to any unobserved persistent latent

variables, themselves uncorrelated with the predictors being tested. We show that where

this assumption is violated, something that could very plausibly happen in practice, sizeable

(spurious) rejections of the null can occur in cases where the variables under test are not valid

predictors. In response, we propose a screening test for predictive regression invalidity based

on a stationarity testing approach. In order to allow for an unknown degree of persistence

in the putative predictors, and for both conditional and unconditional heteroskedasticity in

the data, we implement our proposed test using a fixed regressor wild bootstrap procedure.

We establish the asymptotic validity of this bootstrap test, which entails establishing a

conditional invariance principle along with its bootstrap counterpart, both of which appear

to be new to the literature and are likely to have important applications beyond the present

context. We also show how our bootstrap test can be used, in conjunction with extant

predictability tests, to deliver a two-step feasible procedure. Monte Carlo simulations suggest

that our proposed bootstrap methods work well in finite samples. An illustration employing

U.S. stock returns data demonstrates the practical usefulness of our procedures.
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1 Introduction

Predictive regressions are a widely used tool in applied time series finance and economics,

forming the basis for testing Granger causality where one or more variables can be said to

cause another. A very common application of predictive regression is in the context of testing

the linear rational expectations hypothesis. A core example of this is testing whether future

stock returns can be predicted by current information, such as the dividend yield or the term

structure of interest rates. Often it is found that the posited predictor variable (e.g. the dividend

yield) exhibits persistence behaviour akin to that of a unit root or near unit root autoregressive

process, whilst the variable being predicted (e.g. the stock return) resembles a white noise or

near white noise process.

In its simplest form, a test of predictability involves running an OLS regression of the variable

being predicted, yt say, on the lagged value of a posited predictor variable, xt say, and testing

the significance of the estimated coefficient on xt−1 using a standard regression t-ratio. Here the

null hypothesis being tested is that yt is white noise and, hence, unpredictable; the alternative

is that it is not white noise and is in fact predictable from xt−1. Cavanagh et al. (1995) show

that when the innovation driving the xt process is correlated with yt (as is often thought to be

case in practice; for example, the stock price is a component of both the return and the dividend

yield), then standard t-ratios from a predictive OLS regression of yt on xt−1 which apply critical

values appropriate for the unit root case for xt, will be badly over-sized if in fact xt is a local

to unit root process. This over-size issue can clearly be interpreted as a tendency towards

finding spurious predictability in yt, in that it is incorrectly concluded that xt−1 can be used

to predict yt when in actuality yt is white noise. Attempting to address this issue, Cavanagh

et al. (1995) discuss Bonferroni bound-based procedures that yield conservative tests, while

Campbell and Yogo (2006) consider a point optimal variant of the t-test and employ confidence

belts. Recently, Breitung and Demetrescu (2015) consider variable addition and instrumental

variable (IV) methods to correct test size. Near-optimal predictive regression tests can also be

found in Elliott et al. (2015) and Jansson and Moreira (2006).

Spurious predictability can also arise when there is predictability in yt, not caused by xt−1,

but instead by an unobserved persistent latent variable, zt−1, which itself is uncorrelated with

xt−1. In such cases, regression of yt on the observed, but invalid, potential predictor variable

xt−1 can lead to serious upward size distortions in the standard predictive regression tests,

with the result that the predictability of yt by the unobserved zt−1 is spuriously assigned to

xt−1. This issue was considered by Ferson et al. (2003a,b) and exemplified by means of Monte

Carlo simulation, while Deng (2014) provides a supporting asymptotic analysis of the problem.

This fundamental mis-specification problem is also pertinent to the procedures employed by

Cavanagh et al. (1995), Campbell and Yogo (2006) and Breitung and Demetrescu (2015). In

this paper we demonstrate theoretically the potential for spurious predictive regression to arise

in the context of a model where xt and zt follow similar but uncorrelated persistent processes,

which we model as local-to-unity autoregressions, while modelling the coefficient on zt−1 as
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being local-to-zero. We find that spurious rejections in favour of yt being predicted by xt−1 can

occur frequently. As a consequence, it is important to be able to identify, a priori, whether or

not the predictive regression of yt on xt−1 is mis-specified due to the omission of the relevant

predictor zt−1.

The approach we adopt in this paper involves testing for persistence in the residuals from a

regression of yt on xt−1. Consequently, any effect that xt−1 may have on yt, through the value

of its slope coefficient in the putative predictive regression, is eliminated from the residuals, and

any persistence they display thereafter must be attributable to the unobserved latent variable

zt−1, and this would signal invalidity of a predictive regression that employs xt−1. The test

for predictive regression invalidity that we propose is based on adapting the co-integration

tests of Shin (1994) and Leybourne and McCabe (1994), which are themselves variants of the

stationarity test of Kwiatkowski et al. (1992) test (KPSS).

An issue that arises with our proposed KPSS-type test is that under the null hypothesis for

this test, which is that zt−1 plays no role in the data generating process [DGP] for yt, it has a

limit distribution that depends on the local-to-unity parameter in the process for xt, even though

the residuals used in its construction are invariant to the slope coefficient on xt−1 in the putative

predictive regression. In principle, this makes it very difficult to control the size of the test.

However, we will show how a bootstrap procedure which treats xt−1 as a fixed regressor (i.e. the

observed xt−1 is used in calculating the bootstrap analogues of the KPSS-type statistic) can

be implemented to yield an asymptotically size-controlled testing strategy. This fixed regressor

bootstrap type approach is not new to the literature and has been successfully employed in

the context of other testing applications by, among others, Gonçalves and Kilian (2004, 2007)

and Hansen (2000). Since many financial and economic time series are thought to display

non-stationary volatility and/or conditional heteroskedasticity in their driving innovations, it

is also important for our proposed testing procedure to be (asymptotically) robust to these

effects. In order to achieve this we use a heteroskedasticity-robust variant of the fixed regressor

bootstrap along the lines proposed in Hansen (2000) which uses a wild bootstrap scheme to

generate bootstrap analogues of yt. We show that our proposed fixed regressor wild bootstrap (or

heteroskedastic fixed regressor bootstrap in the terminology of Hansen, 2000) testing procedure

has non-trivial local asymptotic power against the same local alternatives that induce a finding

of spurious predictive regression of yt by xt−1, and is therefore of value as a screening tool for

potential predictive regression invalidity.

Establishing the large sample validity of our proposed bootstrap method is shown, because

of the fixed regressor aspect of its construction, to entail the need to establish a conditional

joint invariance principle for the original data and the bootstrap data, which is to the best

of our knowledge novel in the literature. This result is likely to have wider uses beyond the

specific testing problem considered here, in cases where persistent regressors are used in a fixed

regressor bootstrap scenario.

The remainder of the paper is laid out as follows. In section 2 we give the basic model under
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which we operate and set out the various null and alternative hypotheses regarding the potential

predictability of yt by xt−1 and zt−1. To aid lucidity, we expound our approach through a single

putative predictor variable, xt, and a single unobserved latent variable, zt. For the same reason

we also initially abstract away from weak dependence in the innovations driving xt and zt.

Generalisations to allow for multiple putative predictors, multiple latent variables, and weak

dependence are conceptually straightforward and are discussed at various points within the text.

In section 3 we derive the asymptotic distributions of standard predictive regression statistics

under the various hypotheses, and demonstrate the potential spurious predictive regression

problem. Section 4 introduces our proposed stationarity test for predictive regression invalidity,

detailing its limit distribution and showing the validity of the fixed regressor wild bootstrap

scheme in providing asymptotic size control. The asymptotic power of this procedure is also

examined here, and compared with the degree of size distortions associated with the predictive

regression tests. Section 5 presents the results of a set of finite sample Monte Carlo simulations

which investigate the size and power of our proposed procedure, as well as the size of feasible

predictive regression tests, and also highlights the value of the predictive regression invalidity

test by reporting results where the procedure is used a pre-test prior to application of a predictive

regression test. An empirical illustration of the proposed methods to monthly U.S stock returns

data is presented in Section 7. Some conclusions are offered in section 8. All proofs are contained

in a mathematical appendix.

Before proceeding to the main part of the paper, we first introduce some notation. In what

follows, ‘b·c’ is used to denote the integer part of its argument, ‘I(.)’ denotes the indicator

function, ‘x := y’ (‘x =: y’) indicates that x is defined by y (y is defined by x). The notation

‘ w→’ denotes weak convergence and ‘
p→’ convergence in probability, in each case as the sample

size diverges. For any vector, x, ‖x‖ denotes the usual Euclidean norm, ‖x‖ := (x′x)1/2 Finally,

Dk := Dk[0, 1] denotes the space of right continuous with left limit (càdlàg) Rk-valued functions

on [0, 1], equipped with the Skorokhod topology.

2 The Predictive Regression Model

The basic DGP we consider for observed yt is

yt = αy + βxxt−1 + βzzt−1 + εyt, t = 1, ..., T (1)

where xt is an observed process, while zt is unobserved, with specifications

xt = αx + sx,t, zt = αz + sz,t, t = 0, ..., T (2)

sx,t = ρxsx,t−1 + εxt, sz,t = ρzsz,t−1 + εzt, t = 1, ..., T (3)

where ρx := 1 − cxT
−1 and ρz := 1 − czT

−1, with cx ≥ 0 and cz ≥ 0, so that xt and zt

are persistent unit root or local to unit root autoregressive processes. We let sx,0 and sz,0

be Op(1) variates. Following Cavanagh et al. (1995) and in order to examine the asymptotic

local power of the test procedures we discuss, we parameterise βx and βz as βx = gxT
−1 and
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βz = gzT
−1, respectively, which entails that when gx and/or gz are non-zero, yt is a persistent,

but local-to-noise process.

The innovation vector εt := [εxt, εzt, εyt]′ is taken to satisfy the following conditions:

Assumption 1. The innovation process εt can be written as εt = HDtet where:

(a) H and Dt are the 3× 3 non-stochastic matrices

H :=



h11 0 0

0 h22 0

h31 h32 h33


 , Dt :=



d1t 0 0

0 d2t 0

0 0 d3t




such that

HDt =



h11d1t 0 0

0 h22d2t 0

h31d1t h32d2t h33d3t




with HH ′ strictly positive definite. The volatility terms dit satisfy dit = di (t/T ), where di (·) ∈
D are non-stochastic, strictly positive functions.

(b) et is a 3 × 1 vector martingale difference sequence [m.d.s.] with respect to a filtration

Ft, with conditional covariance matrix σt := E(ete′t|Ft−1) satisfying:

i. T−1
∑T

t=1 σt
p→ E(ete′t) = I3,

ii. suptE‖et‖4+δ <∞ for some δ > 0.

Remark 1. Assumption 1 above essentially coincides with Assumption 2 of Boswijk et al.

(2015), except for the omission of their conditions (b)ii and (b)iii, and the special structure

of the matrix HDt imposed here. Specifically, the structure of H given above imposes zero

correlation between εxt and εzt, while allowing εyt to be potentially correlated with εxt and/or

εzt. Assumption 1 implies that εt is a vector martingale difference sequence relative to Ft,
with conditional variance matrix Ωt|t−1 := E(εtε′t|Ft−1) = (HDt)σt(HDt)′, and time-varying

unconditional variance matrix Ωt := E (εtε′t) = (HDt)(HDt)′ > 0.1 Stationary conditional het-

eroskedasticity and non-stationary unconditional volatility are obtained as special cases with

di(·) = di, i = 1, 2, 3, (constant unconditional variance, hence only conditional heteroskedas-

ticity) and σt = I3 (so Ωt|t−1 = Ωt = Ω(t/T ), only unconditional non-stationary volatility),

respectively.

Remark 2. As discussed in Cavaliere, Rahbek and Taylor (2010), Assumption 1(a) implies

that the elements of Ωt are only required to be bounded and to display a countable number of

jumps, therefore allowing for an extremely wide class of potential models for the behaviour of

the variance matrix of εt (subject to the structure imposed by H), including single or multiple

variance or covariance shifts, variances which follow a broken trend, and smooth transition vari-

ance shifts; see also the discussion following Assumption 1 of Breitung and Demetrescu (2015)
1Notice that the assumption that E(ete

′
t) = I3 made in part (b)i is without loss of generality and is made

only to simplify notation.
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who allow for similar conditions on a version of the model in (1), (2) and (3) that does not

include z. Again for a version of the model in (1), (2) and (3) that omits z, Assumption 2

(b) coincides with the martingale difference conditions stated in Assumption 1 of Breitung and

Demetrescu (2015), except that the cross product moment summability condition given there is

not required in the context of (1), (2) and (3) because we do not allow the innovations driving

xt (or zt) to be serially correlated at this stage. We will discuss extensions to allow for this in

section 4 where a corresponding condition will be introduced. Deo (2000) provides examples of

commonly used stochastic volatility and generalised autoregressive-conditional heteroskedastic-

ity (GARCH) processes that satisfy Assumption 1 (b).

Remark 3. For transparency, the structure in (1), (2) and (3) is exposited in terms of a scalar

latent variable, zt. However, this is without loss of generality as one may consider that zt = γ′z∗t
where z∗t is a p-vector of latent variables, such that zt satisfies the conditions stated above. �

Under Assumption 1, the conditions of Lemma 1 of Boswijk et al. (2015) are satisfied such

that the following weak convergence result holds:
(
T−1/2

bT ·c∑

t=1

εt, T
−1

T∑

t=1

t−1∑

s=1

εsε
′
t

)
w→
(
Mη(·),

∫ 1

0
Mη(s)dMη(s)′

)
(4)

where Mη(·) := [Mηx (·) ,Mηz (·) ,Mηy (·)]′ is a Gaussian martingale satisfying


Mηx(·)
Mηz(·)
Mηy(·)


 := H




∫ ·
0d1(s)dB1(s)∫ ·
0d2(s)dB2(s)∫ ·
0d3(s)dB3(s)




=



h11{

∫ 1
0 d1(s)2}1/2 0 0

0 h22{
∫ 1

0 d2(s)2}1/2 0

h31{
∫ 1

0 d1(s)2}1/2 h32{
∫ 1

0 d2(s)2}1/2 h33{
∫ 1

0 d3(s)2}1/2






Bη1(·)
Bη2(·)
Bη3(·)


 ,

with [B1 (·) , B2(·), B3(·)]′ a 3 × 1 vector of independent standard Brownian motion processes

and

Bηi(·) := {∫ 1
0 di(s)

2}−1/2
∫ ·

0di(s)dBi(s), i = 1, 2, 3.

We can also write Bηi(·) d=
∫ ·

0dBi(ηi(s)), i = 1, 2, 3, where ηi (·) denotes the variance profile

ηi (·) := {∫ 1
0 di(s)

2}−1

∫ ·
0
di(s)2ds, i = 1, 2, 3

such that Bηi(·) is a variance-transformed Brownian motion, i.e. a Brownian motion under

a modification of the time domain; see, for example, Davidson (1994). Notice that under

unconditional homoskedasticity, ηi (s) = s.

In what follows it will also prove convenient to define the two Ornstein-Uhlenbeck-type

processes Bη1,cx(·) and Bη2,cz(·):

Bη1,cx(r) :=
∫ r

0 e
−(r−s)cxdBη1(s)

Bη2,cz(r) :=
∫ r

0 e
−(r−s)czdBη2(s)
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for r ∈ [0, 1], along with

Mηx,cx(·) := h11{
∫ 1

0 d1(s)2ds}1/2Bη1,cx(·)
Mηz,cz(·) := h22{

∫ 1
0 d2(s)2ds}1/2Bη2,cz(·).

In addition, it is useful to define the innovation variance-covariance matrix in the unconditionally

homoskedastic case, setting Dt = I without loss of generality, as follows:

HH ′ =




h2
11 0 h11h31

0 h2
22 h22h32

h11h31 h22h32 h2
31 + h2

32 + h2
33


 =:




σ2
x 0 σxy

0 σ2
z σzy

σxy σzy σ2
y


 =: Ω.

In the context of (1), a number of possibilities exist for the predictability of yt by the

observed xt−1 and the unobserved zt−1. One potential case that has received much attention in

the literature is the predictive regression where yt is predictable only by the observed variable

xt−1, so that βx 6= 0 while βz = 0. This forms the alternative hypothesis in the predictive

regression tests discussed in section 2, where the corresponding null is that βx = 0, and, in

the context of our model, that βz = 0 also so that yt is unpredictable under the predictive

regression null. However, it is also a possibility that yt is predictable only by the unobserved

variable zt−1, with xt−1 playing no role in the predictability of yt. In this case, βx = 0 and

βz 6= 0, and any indication of predictability by xt−1 would be spurious. A final possibility is

that βx 6= 0 and βz 6= 0 so that yt is predictable by both xt−1 and zt−1, although in this context

it is not possible to estimate a correctly specified predictive regression since zt is unobserved.

We summarize these four cases using the following taxonomy of hypotheses:

Hu : βx = 0, βz = 0 yt is unpredictable

Hx : βx 6= 0, βz = 0 yt is predictable by xt−1

Hz : βx = 0, βz 6= 0 yt is predictable by zt−1

Hxz : βx 6= 0, βz 6= 0 yt is predictable by xt−1 and zt−1

In hypothesis testing terms, standard predictive regression tests therefore attempt to distinguish

between the null Hu and the alternative Hx. In this paper we first consider the impact of the

presence of zt−1 in the DGP on such standard predictive regression tests, that is we investigate

the behaviour of predictive regression tests of Hu against Hx when in fact Hz or Hxz is true. In

addition, we propose a test for possible predictive regression invalidity, where the appropriate

composite null is Hu or Hx, and the alternative Hz or Hzx.

3 Asymptotic Behaviour of Predictive Regression Tests

To fix ideas, as in Cavanagh et al. (1995), we first consider the basic predictive regression test

of Hu against Hx, based on the t-ratio for testing βx = 0 in the fitted linear regression

yt = α̂y + β̂xxt−1 + ε̂yt, t = 1, ..., T. (5)
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This test statistic is given by

tu :=
β̂x√

s2
y/
∑T

t=1(xt−1 − x̄−1)2

where

β̂x :=
∑T

t=1(xt−1 − x̄−1)yt∑T
t=1(xt−1 − x̄−1)2

and s2
y := (T − 2)−1

∑T
t=1 ε̂

2
yt , with x̄−1 := T−1

∑T
t=1 xt−1.

The limit distribution of tu under Assumption 1 is shown in the next theorem.

Theorem 1. For the DGP (1), (2), (3) and under Assumption 1,

tu
w→ gx

∫ 1
0 M̄ηx,cx(r)2 + gz

∫ 1
0 M̄ηx,cx(r)Mηz,cz(r) +

∫ 1
0 M̄ηx,cx(r)dMηy(r)√{

h2
31

∫ 1
0 d1(r)2 + h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

}∫ 1
0 M̄ηx,cx(r)2

(6)

where M̄ηx,cx(r) and M̄ηz,cz(r) are the de-meaned versions of Mηx,cx(r) and Mηz,cz(r), respec-

tively; that is,

M̄ηx,cx(r) := Mηx,cx(r)− ∫ 1
0 Mηx,cx(s)ds

M̄ηz,cz(r) := Mηz,cz(r)−
∫ 1

0 Mηz,cz(s)ds.

Remark 4. Disregarding the effects of heteroskedasticity, while it is well known from Cavanagh

et al. (1995) that the limit distribution of tu under Hu depends on the (unknown) value of cx
whenever σxy 6= 0, the limit expression (6) also shows the dependence of tu on gz under Hz

(where gx = 0 but gz 6= 0). Consequently, the use of asymptotic critical values appropriate for

tu (or the feasible versions of the test developed in Cavanagh et al., 1995, and Campbell and

Yogo, 2006) under Hu will not result in a size-controlled procedure under Hz, and raises the

possibility that spurious rejections in favour of predictability of yt by xt−1 will be encountered

when yt is actually predictable by zt−1 (cf. Ferson et al., 2003a,b, and Deng, 2014, for related

results under non-localized βz). Under Hxz, where both gx 6= 0 and gz 6= 0, any rejection by

tu could not uniquely be ascribed to the role of xt−1, potentially suggesting the existence of

a well-specified predictive regression that is in fact under-specified due to the omission of the

unobserved zt. �

In addition to consideration of tu, we also analyze the point optimal variant of this test

introduced by Campbell and Yogo (2006). For a known value of ρx, this (infeasible) statistic

takes the following form:

Q :=
β̂x − (sxy/s2

x)(ρ̂x − ρx)√
s2
y{1− (s2

xy/s
2
ys

2
x)}/∑T

t=1(xt−1 − x̄−1)2
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where β̂x and s2
y are as defined above, sxy := (T −2)−1

∑T
t=1 ε̂xtε̂yt and s2

x := (T −2)−1
∑T

t=1 ε̂
2
xt

with ε̂xt denoting the OLS residuals from regressing xt on a constant and xt−1, and where ρ̂x is

the autoregressive coefficient estimator

ρ̂x :=
∑T

t=1(xt−1 − x̄−1)xt∑T
t=1(xt−1 − x̄−1)2

.

In the case where sxy = 0, Q and tu coincide.

The limit distribution of Q under Assumption 1 is given below.

Theorem 2. For the DGP (1), (2), (3) and under Assumption 1,

Q
w→ gx

∫ 1
0 M̄ηx,cx(r)2 + gz

∫ 1
0 M̄ηx,cx(r)Mηz,cz(r) +

∫ 1
0 M̄ηx,cx(r)dMηy(r)− h31

h11

∫ 1
0 M̄ηx,cx(r)dMηx(r)√{

h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

}∫ 1
0 M̄ηx,cx(r)2

.

(7)

We observe that the limit expressions in (6) and (7) are identical when h31 = 0 (which is

equivalent to σxy = 0 in the unconditionally homoskedastic case). Given the close relationship

between the tu and Q statistics (and their corresponding limit distributions), we would again

anticipate potential asymptotic size distortions under Hz. We will now proceed to investigate

the extent of these distortions. Before doing so, it should be noted that other predictive regres-

sion tests have been proposed in the literature, including the near-optimal tests of Elliott et al.

(2015) and Jansson and Moreira (2006); see the useful recent summaries provided in Breitung

and Demetrescu (2015) and Cai et al. (2015). The issues we discuss in this paper are pertinent

irrespective of which particular predictive regression test one uses, in cases where the putative

predictor is persistent. They are also relevant for the case where a putative predictive regres-

sion contains multiple regressors (multiple predictors), see for example the Wald-based tests

discussed in section 3.3 of Breitung and Demetrescu (2015), or where the putative predictive

regression (and the putative predictors and the latent variables) contains a general deterministic

component of the form considered in section 3.2 of Breitung and Demetrescu (2015). In the

latter case, all of the distributional results given in this paper (which are for the case where

a constant is included in the regression) continue to hold provided the de-meaned and tied-

down Brownian-based processes which appear are appropriately re-defined to the deterministic

component being considered.

3.1 Asymptotic Size of Predictive Regression Tests under Hz

To obtain as transparent as possible a picture of the large sample size properties of tu and Q

under Hz we abstract from any role that non-stationary volatility plays by setting di(·) = 1,

i = 1, 2, 3. We then simulate the limit distributions using 10,000 Monte Carlo replications,

approximating the Brownian motion processes in the limiting functionals for (6) and (7) using

independent N(0, 1) random variates, with the integrals approximated by normalized sums of

2,000 steps. Critical values are obtained by setting gx = gz = 0; for tu these depend on cx and

8



also (it is easily shown) h2
31/(h

2
31 +h2

32 +h2
33) = σ2

xy/σ
2
xσ

2
y, while for Q, these depend on cx alone.

These quantities are assumed known, so we are essentially analyzing the large sample behaviour

of infeasible variants of tu and Q. We graph nominal 0.10-level asymptotic sizes of two-sided

tests under Hz as functions of the parameter gz = {0, 2.5, 5.0, ...50.0} (gz = 0 corresponds to

size) with gx = 0. For each of the four pairings cx = cz = {0, 5, 10, 20}we set σ2
x = σ2

z =

σ2
y = 1, and consider σxy = σzy = 0 plus σxy = −0.70 with σzy = {0,−0.35, 0.35,−0.70, 0.70}.2

Setting cx = cz is not a requirement here, but simply facilitates keeping the observed and latent

predictors balanced in terms of their persistence properties. The results of this asymptotic size

simulation exercise are shown in Figures 1-4.

Results for cx = cz = 0 are shown in Figure 1. We observe that the sizes of tu and Q are

growing monotonically, and quite rapidly, from the baseline level of 0.10 with increasing gz > 0,

thereby giving rise to an ever-increasing likelihood of ascribing spurious predictive ability to

xt−1. Both tests’ sizes are seen throughout to exceed 0.85 for gz = 50, while even a value of

gz as small as gz = 12.5 always produce sizes in excess of 0.50. The size patterns for tu and

Q are also quite similar, which is as we would expect given that gz impacts upon their limit

distributions in a very similar way. Of course, when σxy = 0, the tests have identical limits,

while for σxy = −0.7, there is a general tendency for Q to show slightly more pronounced over-

sizing than tu (possibly reflecting the relatively higher power that this test can achieve under

Hx). Across the sub-figures, the size distortions appear little influenced by the value taken by

σzy.

In Figure 2 the same set of simulations are conducted but now with cx = cz = 5. Qualita-

tively, the same comments apply here as for the case cx = cz = 0. That said, we do observe

that the over-sizing now manifests itself slightly more slowly with increasing gz. Indeed, when

σxy = −0.70 and σzy < 0, some modest under-size is observed for small values of gz. However,

both sizes are still about 0.70 or higher once gz = 50 so spurious predictability remains a serious

issue. Figures 3 and 4 repeat the analyses with cx = cz = 10 and cx = cz = 20, respectively, and

we see the extent of the spurious predictability problem continues to diminish, although it is

always still very much in evidence when we consider the larger values of gz. When σxy = −0.70

and σzy < 0, the non-monotonicity of the size profile is now more pronounced, and it is clear

that, other things equal, the size distortions increase in the value of σzy. Our findings that

the significance of the spurious predictability problem is inversely related to the magnitude of

cx = cz would seem to follow from intuition. As we increase the value of cx = cz, both xt−1

and zt−1 become less persistent processes and (in a very loose sense) start to have features

that are more in common with stationary, rather than integrated, processes. At this point the

model mis-specification begins to have a diminishing effect, being more akin to a classical mis-

specification problem between stationary variables, and less like a Granger-Newbold spurious

regression between (pure or local to) I(1) variates problem.

Certainly then, at least for high-persistence processes, it would be difficult to argue that
2It is a requirement that σ2

xy + σ2
zy < 1 (given σ2

x = σ2
z = σ2

y = 1) in order to ensure Ω is positive definite.
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spurious predictive ability is not a potentially important consideration to take into account

when employing either of the tu and Q tests to infer predictability. Although we have focussed

this analysis on OLS-based predictive regression tests, similar qualitative results will pertain for

other predictive regression tests including the recently proposed IV-based tests of Breitung and

Demetrescu (2015) whenever a high-persistence IV is used. A low-persistence IV test should be

less prone to over-size in the presence of a high-persistence latent predictor zt−1, but the price

paid for employing such an IV is that when a true predictor xt−1 is high-persistence, the IV test

will have very poor power. Basically, whenever there is scope for high-persistence properties of

regressors to yield good power for predictive regression tests, we should always remain alert to

the possibility of spurious predictability.

4 A Stationarity Test for Predictive Regression Invalidity

Given the potential for standard predictive regression tests to spuriously signal predictability of

yt by xt−1 (alone) when βz 6= 0, we now consider a test devised to distinguish between βz = 0

and βz 6= 0. Non-rejection by such a test would indicate that zt−1 plays no role in predicting yt,

and hence that standard predictive regression tests based on xt−1 are valid. Rejection, however,

would indicate the presence of an unobserved zt−1 component in the generating process for yt,

thereby signalling the invalidity of predictive regression tests based on xt−1. Formally, then, we

wish to test the null hypothesis that βz = 0, i.e. Hu or Hx, against the alternative that βz 6= 0,

i.e. Hz or Hxz, in (1).

4.1 The Test Statistic and Conventional Asymptotics

The test we develop is based on testing a null hypothesis of stationarity; specifically, we adapt

the co-integration tests of Shin (1994) and Leybourne and McCabe (1994), which are themselves

variants of the well-known KPSS test; see also Nyblom (1989). Consider first the KPSS-type

statistic for serially independent errors applied to the residuals ε̂yt from (5):

S := s−2
y T−2

T∑

t=1

(
t∑

i=1

ε̂yi

)2

where s2
y is as defined previously. When βz 6= 0, the residuals ε̂yt from (5) incorporate the

omitted βzzt−1 term in (1), hence the persistence in zt−1 is passed to ε̂yt, and a test of βz = 0

against βz 6= 0 can be formed as a test for stationarity of ε̂yt, rejecting for large values of S.

Specifically, assume that cz = 0 and consider rewriting (1) as

yt = αy + βxxt−1 + rt−1 + εyt, rt = rt−1 + ut, ut = βzεzt. (8)

Then it is clear that testing βz = 0 against βz = gzT
−1 in (1) is precisely the same problem as

testing V (ut) =: σ2
u = 0 against σ2

u = (gzT−1)2 in (8), with gz = 0 under both null hypotheses

(that is, under βz = 0 and under σ2
u = 0). Now, if we temporarily assume that xt is strictly
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exogenous and εyt and εzt to be independent IID normal random variates, then the test which

rejects for large values of S can be shown to be the locally best invariant (to αy, αx, αz, βx
and σ2

y) test of the null σ2
u = 0 against the local alternative σ2

u = g2
zT
−2 in (8). Hence a KPSS-

type test is relevant for our testing problem where we seek to distinguish between βz = 0 and

βz 6= 0. Of course, in our more general model we do not impose cz = 0 (nor the other temporary

assumptions listed above), so in these more general circumstances we may reasonably consider

S to deliver a near locally best invariant test.

Notwithstanding the foregoing motivation, it is important to stress that a test based on S

should properly be viewed as a mis-specification test for the linear regression in (5). As such, a

rejection by this test indicates that the fitted regression in (5) is not a valid predictive regression.

As with the failure of any mis-specification test, this does not tell us why the regression has

failed. We do know that S is designed to deliver a test which is (approximately) locally optimal

in the direction of zt−1 being an omitted predictor, but a rejection does not mean that xt−1

is not a valid predictor for yt. Indeed, zt−1 might reasonably be viewed as a proxy for more

general mis-specification in the underlying regression model. An obvious example is provided

by the case where the true slope coefficient in (5) displays time-varying behaviour, such as has

been considered in, for example, Paye and Timmermann (2006) and Cai et al. (2015). It is

therefore important to stress that our proposed test is one for the invalidity of the putative

predictive regression, not as a test for the invalidity of the putative predictor, xt−1.

Because it is crucial in the present setting to account for the possibility of correlation between

εxt and εyt (h31 6= 0), we do not use the simple form of the S statistic given above, but follow

Shin (1994) by including an additional regressor ∆xt in the regression used to construct the

KPSS-type statistic. That is, in place of (5) we use the fitted linear regression

yt = α̂y + β̂xxt−1 + β̂∆x∆xt + êt, t = 1, ..., T (9)

and construct S using the residuals êt from (9), thereby redefining S as

S := s−2T−2
T∑

t=1

(
t∑

i=1

êi

)2

where s2 := (T − 3)−1
∑T

t=1 ê
2
t .

In Theorem 3 we now detail the limiting distribution of S under Assumption 1. This is

followed by some remarks concerning the result in the theorem and an extension to allow for

serial dependence in the innovations driving xt−1.

Theorem 3. For the DGP (1), (2), (3) and under Assumption 1,

S
w→ {h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1

∫ 1
0 {F (r, cx) + gzG(r, cx, cz)}2 (10)

where

F (r, cx) := B∗η(r)−
∫ r

0 B̄η1,cx(s){∫ 1
0 B̄η1,cx(s)2}−1

∫ 1
0 B̄η1,cx(s)dB∗η(s)

G(r, cx, cz) := h22{
∫ 1

0 d2(s)2}1/2
[∫ r

0 B̄η2,cz(s)−
∫ r

0 B̄η1,cx(s){∫ 1
0 B̄η1,cx(s)2}−1

∫ 1
0 B̄η1,cx(s)Bη2,cz(s)

]

11



with: B∗η(r) := B∗η(r) − rB∗η(1) the tied-down version of B∗η(r); B̄η1,cx(r) := Bη1,cx(r) −∫ 1
0 Bη1,cx(s) and B̄η2,cz(r) := Bη2,cz(r) −

∫ 1
0 Bη2,cz(s) the de-meaned versions of Bη1,cx(r) and

Bη2,cz(r), respectively; and, finally, B∗η(r) := h32{
∫ 1

0 d2(s)2}1/2Bη2(r)+h33{
∫ 1

0 d3(s)2}1/2Bη3(r).

Remark 5. The limit expression in (10) clearly shows how gz enters the asymptotic distribution

of S under Hz and Hxz. In particular, it is the presence of the term gzG(r, cx, cz) that is seen

to be the source of power for the test based on S to distinguish between Hu or Hx and Hz or

Hxz (noting that, by construction, S is exact invariant to βx). Notice that the distribution in

(10) does not depend on h31, and, hence, does not depend on the correlation between εxt and

εyt.

Remark 6. Under Hu or Hx, where gz = 0, the limit distribution in (10) simplifies to∫ 1
0

[
{h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1/2F (r, cx)

]2
. Notice, in this case we may write

{h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1/2F (r, cx) = Dη(r)− rDη(1)

−∫ r0 B̄η1,cx(s){∫ 1
0 B̄η1,cx(s)2}−1

∫ 1
0 B̄η1,cx(s)Dη(s)

whereDη(r) := {h2
32

∫ 1
0 d2(s)2+h2

33

∫ 1
0 d3(s)2}−1/2[h32{

∫ 1
0 d2(s)2}1/2Bη2(r)+h33{

∫ 1
0 d3(s)2}1/2Bη3(r)]

is a standardised heteroskedastic Brownian motion that is independent of Bη1(r). Consequently,

where gz = 0, the limit distribution of S depends only on cx and any unconditional heteroskedas-

ticity present in εt.

Remark 7. In our analysis we have assumed that the increments of the process for xt, i.e. εxt,

are serially uncorrelated, by virtue of et being a martingale difference sequence. More generally

we might consider a linear process assumption for εxt of the form

εxt =
∞∑

i=0

θivx,t−i (11)

where vx,t denotes the first element of HDtet and with the conditions
∑∞

i=0 i |θi| < ∞ and
∑∞

i=0 θi 6= 0 satisfied. Under homoskedasticity, this would include all stationary and invertible

ARMA processes. Notice that εyt remains uncorrelated with the increments of xt at all lags

(i.e. xt is weakly exogenous with respect to εyt) under this structure. In this case, it may be

shown that the limiting results given in Theorem 3 above and in Theorems 4-6 which follow will

continue to hold provided we replace (9) in the calculation of S with the augmented variant

yt = α̂y + β̂xxt−1 + β̂∆x∆xt +
p∑

i=1

δ̂i∆xt−i + êt, t = p+ 1, ..., T (12)

where p satisfies the standard rate condition that 1/p + p3/T → 0, as T → ∞, and where it

is assumed that T 1/2
∑∞

i=p+1 |δi| → 0, where {δi}∞i=1 are the coefficients of the AR(∞) process

obtained by inverting theMA(∞) process in (11). Similarly to Breitung and Demetrescu (2015),

we would also need to restrict the amount of serial dependence allowed in the conditional

variances via the cross-product moment assumption that supi,j≥1 ‖τ ij‖ < ∞, where τ ij :=
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E(ete′t ⊗ et−ie′t−j), with ⊗ denoting the Kronecker product. Serial correlation of a similar form

in the increments of the unobserved process zt, i.e. εzt, will have no impact on our large sample

results under the null hypothesis, Hu/Hx, although an effect would be apparent under Hz/Hxz.

As is standard in the predictive regression literature, we maintain the assumption that εyt is

serially uncorrelated, which is why, unlike in the setting considered in Shin (1994), we need only

include lags of ∆xt, rather than both leads and lags thereof.

Remark 8. Consider again the discussion just before the start of section 3.1 relating to the

case where the putative predictive regression contains multiple regressors and/or more general

deterministic components. These extensions can easily be handled in the context of our proposed

predictive regression invalidity test. Specifically, denoting the deterministic component as τ ′ft,

where ft is as defined in section 3.2 of Breitung and Demetrescu (2015), an obvious example

being the linear trend case where ft := (1, t)′, and the vector of putative regressors as xt−1, then

we would need to correspondingly construct S (and its bootstrap analogue, S∗, given below)

using the residuals êt from the regression of yt (y∗t for the bootstrap S∗ statistic) onto ft, xt−1

and ∆xt−1 (and lags of ∆xt−1 in the case considered in Remark 7). Doing so would alter

the form of the limit distributions given in Theorem 3 and in the sequel, as noted earlier, but

would not alter the primary conclusion given in Corollary 1 below, that the fixed regressor wild

bootstrap implementation of this test is asymptotically valid. �

A consequence of the result in Theorem 3 is therefore that if we wish to base a test for

predictive regression invalidity on S, then we need to address the fact that when we treat Hu or

Hx as the null hypothesis, the limit null distribution of S is not pivotal. In order to account for

the dependence of the limit distribution of S on any unconditional heteroskedasticity present, we

employ a wild bootstrap procedure based on the residuals êt. However, we also need to account

for the dependence of the limit distribution of S on cx, and this we carry out by using the

observed outcome on x := [x0, x1, ..., xT ]′ as a fixed regressor when implementing the bootstrap

procedure. The next subsection details this procedure.

4.2 A Fixed Regressor Wild Bootstrap Stationarity Test

A conventional approach to obtaining wild bootstrap critical values with which to compare

S would involve repeated generation of bootstrap samples for the original yt, such that they

mimic (in a statistical sense) the behaviour of yt with the null Hu/Hx imposed, together with

repeated generation of bootstrap samples for the original xt, to mimic the behaviour of xt. For

each bootstrap sample, these would then be used to calculate a bootstrap analogue of S, which

should then reflect the behaviour of S under the null. Generation of bootstrap samples of yt
with suitable properties turns out to be quite straightforward, at least in large samples, using a

standard wild bootstrap re-sampling scheme from the residuals êt from (9). However, finding a

standard bootstrap sample of xt presents a significant problem since xt = (1− cxT−1)xt−1 + εxt

(assuming αx = 0 for simplicity) and so any corresponding recursion used to construct the
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bootstrap sample data for xt from bootstrap samples of ext (a wild bootstrap re-sampling

scheme from ∆xt for example) would require knowledge of cx. Since we assume cx is not known,

recourse would then be made to its estimation. However, it is well-known that conventional

estimators of cx (such as the one based on a regression of xt on xt−1) are not consistent and

if such estimators were employed in constructing bootstrap samples of xt, the large sample

distribution of the resulting bootstrap analogue of S would be different to that of S under

Hu/Hx, with the consequence that the resulting bootstrap test would not be correctly sized, even

asymptotically. To avoid this problem, we abstract away from estimation of cx altogether and

instead follow the approach taken in Hansen (2000), considering a bootstrap procedure which

uses x := [x0, x1, ..., xT ]′ as a fixed regressor; that is, the bootstrap statistic S∗ is calculated

from the same observed xt as was used in the construction of the original KPSS-type statistic,

S.

We now outline the steps involved in our proposed fixed regressor wild bootstrap, collected

together in Algorithm 1.

Algorithm 1 (Fixed Regressor Wild Bootstrap):

(i) Construct the wild bootstrap innovations y∗t := êtwt, where wt, t = 1, . . . , T , is an

IIDN(0, 1) sequence.

(ii) Calculate the fixed regressor wild bootstrap analogue of S,

S∗ := (s∗y)
−2T−2

T∑

t=1

(
t∑

i=1

ε̂∗yi

)2

where ε̂∗yt are the OLS residuals from the fitted regression

y∗t = α̂∗y + β̂
∗
xxt−1 + ε̂∗yt, t = 1, ..., T (13)

and where (s∗y)2 := (T − 2)−1
∑T

t=1(ε̂∗yt)2.

(iii) Define the corresponding p-value as P ∗T := 1−G∗T (S) with G∗T (·) denoting the conditional

(on the original data) cumulative density function (cdf) of S∗.

(iv) The wild bootstrap test of Hu/Hx at level ξ rejects in favour of Hz/Hxz if P ∗T ≤ ξ.

Remark 9. In practice, the cdf G∗T (·) required in step (iii) of Algorithm 1 will be unknown,

but can be approximated in the usual way through numerical simulation. This is achieved by

generating B (conditionally) independent bootstrap statistics, S∗k , k = 1, ..., B, each computed

as in Algorithm 1 above, but from y∗t,k := êtwt,k, t = 1, ..., T , with {{wt}Tt=1}Bk=1 a doubly

independent N(0, 1) sequence. The simulated bootstrap p-value for S is then computed as

P̃ ∗T := B−1
∑B

k=1 I(S∗k > S), and is such that P̃ ∗T → P ∗T almost surely as B → ∞. The choice

of B is discussed by, inter alia, Davidson and MacKinnon (2000). Note that an asymptotic

standard error for P̃ ∗T is given by [P̃ ∗T (1 − P̃ ∗T )/B]1/2; cf. Hansen (1996, p.419). Finally, we
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may also define the associated ξ level empirical bootstrap critical value, denoted cvξ,B, to be

the upper tail ξ percentile from the order statistic formed from the B bootstrap statistics S∗k ,

k = 1, ..., B.

Remark 10. The use of xt−1 as a fixed regressor in the construction of the bootstrap KPSS-

type statistic, S∗, is made explicit in (13). It is then seen that each of the bootstrap S∗k ,

k = 1, ..., B, statistics calculated as described in Remark 9 uses the same xt−1 as the regressor

in (13). As we shall see in section 4.3, this has important ramifications for the methods needed

to prove the asymptotic validity of our proposed bootstrap procedure. In particular, this will

entail the necessity to develop a conditional version of the invariance principle given in 4, jointly

with a bootstrap counterpart of this result, both of which appear to be new to the literature.

Remark 11. The wild bootstrap scheme used to generate y∗t is constructed so as to repli-

cate the pattern of heteroskedasticity present in the original innovations; this follows because,

conditionally on êt, y∗t is independent over time with zero mean and variance ê2
t .

Remark 12. Although êt depends on gz under Hz or Hxz, we will show in the next subsection

that this does not translate into large sample dependence of S∗ on gz. Notice also that we do

not need to include ∆xt as an additional regressor, or lags thereof in the case considered in

Remark 7, in (13). This is because the êt used to construct y∗t are free of any effects arising

from the correlation between εxt and εyt, or from any weak dependence in εxt.

4.3 Conditional Asymptotics and Bootstrap Validity

We show that the use of xt−1 as a fixed regressor in the construction of the bootstrap statistic

S∗ prevents S∗ from converging weakly in probability to any non-random distribution, in con-

tradistinction to most standard bootstrap applications we are aware of. Rather, the distribution

of S∗ given the data converges weakly to the random distribution which obtains by condition-

ing the limit in (10) on the weak limit B1 of T−1/2
∑bT ·c

t=1 e1t. We also show that under Hu/Hx

the distribution of the test statistic S conditional on x converges weakly to the same random

distribution, which in turn allows us to establish the asymptotic validity of our bootstrap test.

The asymptotic results we provide will therefore be likely to have wider applicability in other

scenarios where a fixed regressor bootstrap is used with (near-) integrated regressors.

It is a well known result that even if a random sequence, say (XT , YT ), converges to some

(X,Y ) in a strong sense (e.g., almost surely), the conditional distribution of XT given YT need

not converge to the conditional distribution of X given Y . Consequently, Theorem 3, where

the limit distribution of S is established, cannot be taken to imply that S conditional on x

converges weakly to the limit in (10) conditioned on B1. Nevertheless, it is not unreasonable to

expect that this result holds true, and here we develop the necessary theory in order to formally

prove it is in fact so.

Analogously to Theorem 3, whose validity is based on an invariance principle, a conditional

and a bootstrap version of that theorem can be based on a conditional joint invariance principle
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for the original and the bootstrap data. We are not aware of the existence of such a result in

the literature, and so our first step here is to establish it. In order to achieve this we strengthen

Assumption 1 as follows:

Assumption 2. Let Assumption 1 hold, together with the following conditions:

(a) et is drawn from a doubly infinite strictly stationary and ergodic sequence {et}∞t=−∞
which is a martingale difference w.r.t. its own past.

(b) {[e2t, e3t]}∞t=−∞ is an m.d.s. also w.r.t. X ∨ Ft, where X and Ft are the σ-algebras

generated by {e1t}∞t=−∞ and {[e2s, e3s]}ts=−∞, respectively, and X ∨ Ft denotes the smallest

σ-algebra containing both X and Ft.
(c) The initial values sx,0 and sz,0 are measurable w.r.t. X (in particular, they could be

fixed constants).

Remark 13. Arguably, the most restrictive condition in Assumption 2 is given in part (b). A

first leading example where it is satisfied is that of a symmetric multivariate GARCH process

with neither leverage nor asymmetric clustering. Specifically, let et = Ω1/2
t εt, where Ωt is

measurable with respect to the past [ε2
1s, ε

2
2s, ε

2
3s]
′, s ≤ t− 1, and {εt}∞t=−∞ is an i.i.d. sequence

such that E(εit|ε1t, ε
2
2t, ε

2
3t) = 0, i = 2, 3. If E‖et‖ < ∞, then it could be seen that E(eit|X ∨

Ft−1) = 0, i = 2, 3. Another leading example is that of a multivariate stochastic volatility

process et = H
1/2
t εt with {Ht}∞t=−∞ independent of {εt}∞t=−∞ and where {εt}∞t=−∞ is an i.i.d.

sequence with E(εit|ε1t) = 0, i = 2, 3 (which is certainly true if εt is multivariate standard

Gaussian, as is usually assumed in the stochastic volatility framework). If E‖et‖ < ∞, then

again E(eit|X ∨ Ft−1) = 0, i = 2, 3. These two examples are also the leading examples given in

the univariate context by Deo (2000), and in the section of Gonçalves and Kilian (2004) that

deals with wild bootstrap testing. It would be interesting, although beyond the scope of our

paper, to investigate how Assumption 2(b) could be weakened to the case where {et} could be

well approximated by a sequence satisfying Assumption 2(b). For instance, following Rubshtein

(1996), the conclusions of Theorem 4 below would remain valid if Assumption 2(b) was replaced

by the condition that supt≥1E{E(
∑t

s=1 eis|X )}2 <∞, i = 2, 3. �

In Theorem 4 we now establish two results: first, a conditional invariance principle that can

be assembled from results and ideas disseminated throughout the probabilistic literature (see,

in particular, Awad, 1981, Rubshtein, 1996, Denken and Gordin, 2003, Crimaldi and Pratelli,

2005), and, second, a bootstrap extension of that result. Besides their importance for obtaining

our main result, the conclusions of Theorem 4 serve as a vehicle to discuss the meaning of

bootstrap validity in the context of weak convergence to random measures. Analogously to the

definition of the vector x, let y := [y1, y2, ..., yT ]′ and z := [z0, z1, ..., zT ]′.

Theorem 4. Define the partial sums Uti := T−1/2
∑t

s=1 eis (i = 1, 2, 3), Ut := [Ut1, Ut2, Ut3]′

and Utb := T−1/2
∑t

s=1 esws. Moreover, let B†(·) := [B†1(·), B†2(·), B†3(·)]′ denote a standard

trivariate Brownian motion, independent of B(·). Under Assumption 2, the following converge
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jointly as T →∞:

U[T ·]|x w→ B(·)|B1(·)

in the sense of weak convergence of random measures on D3, and

[U[T ·]1, U ′[T ·]b]
′
∣∣∣x, y, z w→ [B1(·), (B†(·))′]′

∣∣∣B1(·)

in the sense of weak convergence of random measures on D4.

Remark 14. Let Ex(·) := E(·|x) and E∗(·) := E(·|x, y, z), the latter denoting expectation

given the data in standard bootstrap notation. The definition of the joint weak convergence

of random measures result established in Theorem 4, is that for all bounded continuous real

functions f and g on D3 and D4, respectively, it holds that
[

Ex(f(U ′bT ·c))

E∗(g(UbT ·c1, U ′bT ·cb))

]
w→
[

E (f (B′)|B1)

E(g(B1, (B†)′)
∣∣B1)

]

as T →∞, in the sense of standard weak convergence of random vectors in R2.

Remark 15. An implication of Theorem 4 is that if a continuous bounded function f is

used to define a statistic φ = f(U ′bT ·c), and the ‘fixed-regressor bootstrap’ statistic φ∗ =

f(UbT ·c1, UbT ·cb,2, UbT ·cb,3) is used to construct a distributional approximation for φ, then φ con-

ditional on x and φ∗ conditional on the data will jointly converge weakly to the same random

measure, defined by f (B′) |B1. As a consequence, the bootstrap approximation is consistent in

the following sense: it holds that

sup
u∈R
|Px (φ ≤ u)− P ∗(φ∗ ≤ u)| p→ 0 (14)

provided that the cumulative distribution process of f (B′)|B1 is a.s. continuous. Here Px and

P ∗ denote probability conditional on x and on all the data, respectively. Thus, the distribution

of the ‘fixed-regressor bootstrap’ statistic φ∗ conditional on the data consistently estimates

the large-sample distribution of the original statistic φ conditional on the ‘fixed regressor’ x.

This result is more general than the usual formulation of bootstrap validity, where either an

unconditional P (φ ≤ u) appears or a conditional Px (φ ≤ u) with a non-random limit. �

In order to obtain the analogue of (14) for S and S∗, we need to discuss limits involving

some stochastic integrals. Because these are not continuous transformations, the discussion in

Remark 15 does not apply directly and so we also need the result given next in Theorem 5.

Here the dimension of the bootstrap partial-sum process is reduced to one and the process itself

is constructed from delta-measurable quantities ẽTt that we shall subsequently specify to be the

residuals êt from the regression in (9).

Theorem 5. Let ẽTt (t = 1, ..., T ) be scalar measurable functions of the data x, y, z and such

that
∑bTrc

t=1 ẽ2
Tt

p→ ∫ r
0 m

2(s)ds for all r ∈ [0, 1], where m(·) is a square-integrable real function on
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[0, 1]. Introduce ε̃tb := wtẽTt, Ũtb := T−1/2
∑t

s=1 ε̃sb (t = 1, ..., T ), and B̃†m (·) :=
∫ ·

0m(s)dB†1(s),

where B†1 is as in Theorem 4. Under Assumption 2, the following converge jointly as T →∞:
(
T−1/2

bT ·c∑

t=1

εt, T
−1

T∑

t=1

t−1∑

s=1

εxs[εyt, εzt]

)∣∣∣∣∣x
w→
(
Mη(·),

∫ 1

0
Mηx(s)d[Mηy(s),Mηz(s)]

)∣∣∣∣B1

in the sense of weak convergence of random measures on D3 × R2, and
(
UbT ·c1, ŨbT ·cb, T−1

T∑

t=1

t−1∑

s=1

εxsε̃tb

)∣∣∣∣∣x, y, z
w→
(
B1(·), B̃†m(·),

∫ 1

0
Mηx(s)dB̃†m(s)

)∣∣∣∣B1

in the sense of weak convergence of random measures on D2 × R.

We are now in a position to establish in Theorem 6 the large sample behaviour of S condi-

tional on x, and of S∗, its bootstrap analogue from Algorithm 1, conditional on the data. These

two limiting distributions will be seen to coincide under the null hypothesis.

Theorem 6. Under DGP (1)-(3) and Assumption 2, the following converge jointly as T →∞,

in the sense of weak convergence of random measures on R:

S|x w→ {h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1

∫ 1
0 {F (r, cx) + gzG(r, cx, cz)}2

∣∣∣B1 (15)

and

S∗|x, y, z w→ {h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1

∫ 1
0 F
†(r, cx)2

∣∣∣B1, (16)

where

F †(r, cx) := B†∗η (r)− rB†∗η (1)− ∫ r0 B̄η1,cx(s){∫ 1
0 B̄η1,cx(s)2}−1

∫ 1
0 B̄η1,cx(s)dB†∗η (s)

with

B†∗η (r) := h32{
∫ 1

0 d2(s)2}1/2B†η2(r) + h33{
∫ 1

0 d3(s)2}1/2B†η3(r).

Remark 16. A comparison of (15) and (16) in Theorem 6 shows that the bootstrap statistic

S∗, conditional on the data, and the original statistic S, conditional on x, share the same first-

order asymptotic distribution when gz = 0; that is, under the null hypothesis, Hu/Hx. An

implication of this result, formalised in Corollary 1 below, is that it enables us to establish the

asymptotic validity of the bootstrap test based on S∗. As usual, it is formulated in terms of

bootstrap P -values. �

Corollary 1. Under Hu/Hx and Assumption 2,

P ∗T = P ∗(S∗ ≤ S) w→ U [0, 1] (17)

as T →∞.
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Remark 17. For the bootstrap statistic, S∗, the convergence result in (16) does not depend

on the value of gz; that is, the same limiting distribution is obtained under the alternative

hypothesis, Hz/Hxz, as under the null hypothesis. In contrast, for the case of S (conditional on

x), a stochastic offset, arising from the term gzG(r, cx, cz), is seen in the limiting distribution

in (15). It is important to note, however, that the limiting distribution given in (15) does not

coincide with that given in (10) in Theorem 3. The implication of this is that a bootstrap test

based on S∗ will have non-trivial asymptotic local power under Hz/Hxz, but that this will not

coincide (for a given alternative) with the asymptotic local power of an (infeasible) version of

S based on knowledge of the unknown parameter, cx. �

The practical implication of the foregoing results is that comparison of the original statistic S

with an empirical bootstrap critical value based on B bootstrap replications, cvξ,B as defined in

Algorithm 1 and Remark 9, will result in a bootstrap test that has correct asymptotic size (ξ)

under Hu/Hx, and non-trivial local power under Hz/Hxz, the latter because while the empirical

bootstrap critical value cvξ,B will remain unchanged (at least in the limit), the corresponding

critical value from the distribution of S conditional on x will depend on gz. In what follows,

as a matter of shorthand notation, we will denote by SB the fixed regressor wild bootstrap

procedure outlined in Algorithm 1 and Remark 9, based on B bootstrap replications, whereby

S is compared to the empirical bootstrap critical value cvξ,B.

4.4 Asymptotic Local Power of Stationarity Tests under Hz

We now turn to a consideration of the asymptotic local power of S and SB. We use the same

set of unconditionally homoskedastic simulation models as for the size of tu and Q in Figures

1-4, so we overlay the power information on them. For the asymptotic power of S under Hz

we use the limit expression (10), having first obtained 0.10-level critical values from simulating

(10) under gz = 0. Since these critical values depend on knowledge of cx, we can consider S

an infeasible test against which to benchmark the power of the fixed regressor wild bootstrap

procedure, SB. The asymptotic power of SB is also based on the limit distribution of S under

Hz but compared against a simulated limit bootstrap critical value cvξ,B (see Remark 9) with

ξ = 0.10 in each Monte Carlo replication. For each replication, the simulated limit bootstrap

critical value is obtained by simulating the limit (16) using B = 2000 bootstrap replications,

conditioning on the simulated B1 for that Monte Carlo replication.

From Figure 1, where cx = cz = 0, we see the power of S rising rapidly with departures

from gz = 0. For gz = 50, its power is very close to 1. Turning attention to SB, we see that it

follows a very similar power profile to that of S; indeed, its power marginally exceeds that of S.

It is of course anticipated from the discussion in Remark 17 that SB would not have the same

asymptotic local power function as S, but the fact that its power exceeds that of S is a most

welcome finding especially as SB, unlike S, represents a feasible procedure. Similar comments

apply to Figure 2, where cx = cz = 5, although a non-monotonicity in the power profiles of S

and SB is apparent for σxy = −0.70 and σzy < 0 for small gz, with power dipping below size.
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In Figures 3 and 4 (which examines the larger values of cx = cz) the powers of S and SB appear

near identical, but at a lower level than in Figures 1 and 2. The issue of non-monotonicity with

power below size when σxy = −0.70 and σzy < 0 is more apparent here, revealing itself for small

to moderate values of gz. For larger values of gz, power increases with gz, as seen for all values

of gz when σxy = −0.70 and σzy ≥ 0, and when σxy = σzy = 0.

The important comparison next is between the asymptotic power of SB (restricting our

attention to the feasible procedure) and the size of tu and Q (for discussion purposes we treat

these as a pair because their size profiles are qualitatively similar). From Figure 1, it is clear

that when cx = cz = 0, the power of SB exceeds the size of tu/Q, hence the invalidity of the

predictive regression is detected with greater frequency than tu/Q spuriously reject in favour of

predictability of yt by xt−1. This demonstrates the capability of SB to detect predictive regres-

sion invalidity in cases where the important size problems associated with tu/Q are apparent.

That the power of SB exceeds the size of tu/Q under Hz is largely to be expected, because S is

designed to detect departures from the null of gz = 0 whereas such departures simply represent

model mis-specification in the context of the predictive regression tests tu and Q. In Figure 2,

where cx = cz = 5, we again see that the power of SB generally out-strips the sizes of tu/Q,

with the size/power differences appearing even more marked than for cx = cz = 0. The only

exception to this is for σxy = −0.70 and σzy < 0 when gz is small; however, since there is no

discernible over-size for tu/Q here, this is of little concern. Similar remarks apply to Figures

3 and 4 for the cases of larger cx = cz, with SB power generally exceeding tu/Q size, with the

exception of the non-monotonicity region when σxy = −0.70 and σzy < 0; once again, however,

we generally observe that where SB has power below size, tu and Q do not over-reject. Com-

paring across the figures, as the persistence of xt and zt decrease, so do the powers of S and

SB, in line with the decreasing size of tu/Q discussed above. This is as would be expected given

that, other things equal, the influence of a less persistent zt becomes harder to detect.

5 Finite Sample Size and Power under Hz

In this section we evaluate the finite sample size properties of the predictive regression tests

and the size and power of the newly proposed test for predictive regression invalidity. For

the predictive regression tests, we first consider the feasible version of the tu test proposed by

Cavanagh et al. (1995) and the feasible version of the Q statistic proposed by Campbell and

Yogo (2006), which both rely on Bonferroni bounds to control size.3 In addition, we consider

the preferred IV-based test of Breitung and Demetrescu (2015) which combines a fractional

instrument with a sine function instrument, denoted IVcomb hereafter, comparing this against

its asymptotic χ2(1) critical value. For the predictive regression invalidity test we report results

for the feasible bootstrap test SB, based on B = 499 bootstrap replications.

To begin, we continue to abstract from heteroskedasticity and consider finite sample DGPs

for the same settings as were used in the asymptotic simulations above. Specifically, we simulate
3We are grateful to Campbell and Yogo for making their Gauss code available for these two procedures.
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the DGP (1)-(3) for T = 200 with αy = αx = αz = 0, βx = 0, sx,0 = sz,0 = 0, dit = 1

(i = 1, 2, 3), and et ∼ IIDN(0, I3). Figures 5-8 report the finite sample analogues of Figures

1-4, i.e. rejection frequencies of nominal 0.10-level (two-sided for tu, Q and IVcomb) tests under

Hz for the same settings of gz, cx = cz,σ2
x = σ2

z = σ2
y, σxy and σzy. The simulations are

again conducted using 10,000 Monte Carlo replications. On comparing Figures 5-8 with their

large sample counterparts in Figures 1-4, it is clear that our asymptotic simulations provide a

close approximation to the finite sample rejection frequencies of tu, Q and SB, particularly in

terms of the relative behaviour of the tests, albeit in absolute terms the finite sample rejection

frequencies tend to be slightly lower than their asymptotic counterparts. For tu and Q this

is in part a consequence of the feasible tests not having the same large sample properties as

the infeasible tests. The general observations made on the basis of the asymptotic simulations

apply equally here, that is a feature of increasing finite sample size of the predictive regression

tests as gz increases, again suggesting an increasing likelihood of spurious predictive ability. As

anticipated in the discussion of section 3.1, a similar pattern of rejections is found for IVcomb,

where the spurious rejection frequencies are seen to be close to those associated with tu and Q.

As regards SB, its finite sample power is found to also increase with gz, with the invalidity of the

predictive regression generally detected with greater frequency than the predictive regression

tests’ spurious rejections. The capability of SB to detect predictive regression invalidity in

cases where well-known predictive regression tests suffer problematic over-size is consequently

also displayed in finite samples.

As a matter of practical interest, it is valuable to analyse the interplay between the occur-

rence of spurious rejections by the predictive regression tests and the likelihood of detecting

predictive regression invalidity. To this end, we evaluate the performance of a putative two-step

procedure, whereby in a first stage, the SB test for predictive regression invalidity is applied as a

pre-test, and then a given predictive regression test (tu, Q or IVcomb) is only applied as a second

stage if SB fails to reject. As such, we are gauging the efficacy of using the SB test to reduce the

degree of predictive regression test over-size by pre-screening for predictive regression invalidity.

In Figures 5-8 we additionally report the rejection frequencies for such two-step pre-test-based

procedures, denoted by tpreu , Qpre and IV pre
comb; here, a rejection in favour of predictability of yt

by xt−1 is only returned if SB non-rejects and the appropriate predictive regression test rejects

(tu, Q or IVcomb). We observe that the substantial over-size seen for the tu, Q and IVcomb

tests is dramatically reduced by prior application of SB as a pre-test. Indeed, the tpreu , Qpre

and IV pre
comb sizes converge to zero as gz becomes large, driven by the power of SB increasing

in gz. For smaller gz we see that the tpreu , Qpre and IV pre
comb rejection frequencies rarely exceed

the nominal 0.10 level, particularly for the larger values of cx = cz considered, and in the cases

where some over-sizing does remain (mostly when cx = cz = 0), the maximum size seen across

gz is around 0.18, though often much less. Comparing the original predictive regression tests

with their pre-test-based counterparts, the role of the bootstrap predictive regression invalidity

test SB would appear indisputable.
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We next consider the impact of unconditional heteroskedasticity in the DGP, investigating

the size of IVcomb (and IV pre
comb) and the size and power of SB when the error processes are

subject to a single break in volatility.4 Specifically, we again simulate the DGP (1)-(3) for

T = 200 with αy = αx = αz = 0, βx = 0, sx,0 = sz,0 = 0, and et ∼ IIDN(0, I3), but now we let

dit =

{
1 t ≤ bτT c
σi t > bτT c

, i = 1, 2, 3

with τ = {0.3, 0.7} thereby allowing for two common volatility break timings, and σi = {1, 4, 1
4}

allowing for both upward and downward volatility shifts, with the chosen magnitudes being

substantial for illustrative purposes. We consider cx = cz = {0, 5, 10} and for simplification

abstract from time-varying correlation between εxt, εzt and εyt by setting h31 = h32 = 0. Table

1 reports results for the size of SB, IVcomb and IV pre
comb where gz = 0 (note that the settings

for cz and σ2 are irrelevant here). Tables 2 and 3 then report results for gz = 25 and gz = 50

respectively, where the table entries correspond to power for SB and size for IVcomb and IV pre
comb.

As before, the results are for nominal 0.10-level tests, two-sided in the case of IVcomb and IV pre
comb.

Turning first to Table 1, it is clear that the size of SB is very well controlled across all the

patterns of time-varying volatility of εxt and εyt we consider. The wild bootstrap aspect of the

bootstrap methods that we propose therefore works well in achieving size close to the nominal

level even for the large volatility changes that we consider.5 The IVcomb test also displays a

good degree of robustness to heteroskedasticity, although size can be a little inflated for some

settings. As would be expected, IV pre
comb displays empirical size slightly lower than that of IVcomb.

Finally, in Tables 2 and 3 we again see that, for a given heteroskedasticity setting, the

power of SB is increasing in gz. However, it is clear that the presence of (unconditional)

heteroskedasticity can have a substantial influence on the level of power attainable. Other things

equal, a volatility increase in εzt (an increase in σ2) leads to higher SB power, with a volatility

decrease in εzt having the opposite effect, while volatility changes in εyt have the reverse effect,

with an increase (decrease) in σ3 resulting in lower (higher) power for SB. Volatility changes in

εxt (changes in σ1) appear to have relatively little effect. While the absolute powers can vary

across the timing of the volatility changes, the directional relationships are the same for τ = 0.3

and τ = 0.7. A similar pattern of rejection frequencies is also observed for the sizes of the IVcomb
test under heteroskedasticity. In the same cases where SB power is increased (decreased), so

the over-size of IVcomb increases (decreases). As in the conditionally homoskedastic case, we

generally see that the power of SB exceeds the size of IVcomb, although under the large volatility

changes that we consider, there are a small number of cases where this ranking is reversed and

SB power falls below IVcomb size, typically associated with a reduction in εzt volatility and an

increase in εyt volatility. In terms of the interplay between SB and IVcomb, we again see that the
4We do not consider tu and Q here since these procedures are not designed to be robust to heteroskedastic

errors.
5We also simulated the finite sample size of SB under a variety of conditionally heteroskedastic specifications,

including multivariate GARCH and EGARCH, the latter an example of an asymmetric GARCH process. The

size of SB was found to be well controlled, with only minor deviations from nominal size observed.
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pre-screened IV pre
comb procedure always achieves a reduction in the over-size of IVcomb. In most

cases, the reductions are substantial, as in the corresponding homoskedastic cases, resulting in

an IV pre
comb size at or below the nominal 0.10 level. In those situations where SB has power at

a similar or lower level than the IVcomb size, the rejection frequency of IV pre
comb can be above

the nominal level, sometimes to a greater extent than was seen under homoskedasticity, but

in all cases the degree of over-size is still markedly lower than that of the original IVcomb test

which makes no use of the predictive regression invalidity test SB. It appears, therefore, that

SB has attractive size and power properties in finite samples as well as in the limit, and it is

encouraging to see that for the most part these carry over to situations where the errors are

unconditionally heteroskedastic.

6 An Empirical Illustration using U.S. Stock Index Returns

To illustrate how our proposed procedure may be used in practice, we consider predictability

of the monthly U.S. S&P returns, i.e. the differenced log S&P stock price index, using either

the log dividend-price ratio or log earnings-price ratio as the posited predictor variables. These

measures are constructed using data on the monthly S&P stock price, dividends and earnings

obtained from Robert J. Shiller’s website at http://www.econ.yale.edu/∼shiller/data.htm. We

use data for the period January 1871 to December 2014. The dividend-price ratio is calculated

as the ratio of average dividends over the last year to the current stock price (T = 1716); the

earnings-price ratio is calculated as the ratio of average dividends over the last ten years to the

current stock price (T = 1608), cf. Campbell and Shiller (1988). Table 4 shows the values for

the heteroskedasticity-robust IVcomb statistic of Breitung and Demetrescu (2015) and our SB
statistic, the latter implemented using BIC selection for the order of p in the fitted regression

(12), starting from pmax = 12 (roughly corresponding to T 1/3), with an appropriate degrees of

freedom adjustment in the calculation of s2
y. The P -values shown for IVcomb are for the χ2(1)

distribution, while those P -values shown for SB are from the empirical bootstrap distribution

based on B = 9999 bootstrap replications.

Table 4. Application to monthly U.S. Stock Index Returns, Jan. 1871 – Dec. 2014

Predictor

Dividend-price ratio Earnings-price ratio

IVcomb SB IVcomb SB

Statistic 21.01 2.02 14.45 17.85

P -value 0.00 0.00 0.00 0.00

For the dividend-price ratio predictor we see that the IVcomb statistic rejects very strongly,

thereby, when taken at face value, signalling substantial levels of predictability of S&P returns
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by the log dividend-price ratio.6 However, any such conclusion of predictability is immediately

thrown into serious question once we observe that SB also rejects strongly, implying that such

a predictive regression model is potentially spurious, or at the very least, under-specified by

some latent persistent process. This pattern of results is similar when we consider the earnings-

price ratio as an alternate potential predictor. If anything, when this predictor is employed the

warning message provided via SB is conveyed even more forcefully.7

7 Conclusions

In this paper we have examined the issue of spurious predictability that can potentially arise

with recently proposed tests for predictability. We have shown that the outcomes from these

tests have considerable potential to spuriously signal that a putative predictor is a genuine

predictor whenever unobserved persistent latent variables, themselves uncorrelated with the

putative predictors under test, are present in the underlying data generation process. To guard

against this possibility we have proposed a diagnostic test for such predictive regression in-

validity based on a well-known stationarity testing approach. In order to again allow for an

unknown degree of persistence in the putative (and latent) predictors, and to allow for both

conditional and unconditional heteroskedasticity in the data, a fixed regressor wild bootstrap

test procedure was proposed and its asymptotic validity established. Doing so required us to

establish some novel asymptotic results pertaining to the use of the fixed regressor bootstrap

with non-stationary regressors, which are likely to have important applications beyond the

present context. Monte Carlo simulations were reported which suggested that our proposed

methods work well in practice. An empirical illustration using well-known U.S. stock market

data highlighted the potential value of our procedure in practice.
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Appendix

We start with some preliminaries. First, we set sx,0 = sz,0 = 0 throughout the Appendix,

without loss of generality under our assumptions. Second, for centred variables we introduce

the notation ẙt := yt − ȳ, x̊t := xt − x̄−1 and ∆x̊t := ∆xt − ∆x, where ȳ := T−1
∑T

t=1 yt,

x̄−1 := T−1
∑T−1

t=0 xt and ∆x := T−1
∑T

t=1 ∆xt.

Third, we will repeatedly use the following result, which holds under Assumption 1 by virtue

of Lemma A.1 of Boswijk et al. (2015),

T−1
T∑

t=1

εtε
′
t
p→ H[

∫ 1

0
diag{d2

1(r), d2
2(r), d2

3(r)}dr]H ′ (18)

where diag{v} denotes a diagonal matrix with v on the main diagonal.

Fourth, we will also use the Orstein-Uhlenbeck convergence

T−1/2

[
xbT ·c
zbT ·c

]
w→
∫ ·

0

[
e−(·−s)cxdMηx(s)

e−(·−s)czdMηz(s)

]
=

[
Mηx,cx(·)
Mηz,cz(·)

]
=: Mηc(·) (19)

and the associated convergence to stochastic integrals

T−1
T∑

t=1

[
xt−1

zt−1

]
[ε′t,∆xt,∆zt]

w→
∫ 1

0
Mηc(s)d[Mη(s)′,Mηc(s)′]. (20)

These obtain from (4) by routine arguments using a standard approximation of the exponential

function, partial summation and integration, and the continuous mapping theorem [CMT].

Proof of Theorem 1: We may set αy, αx and αz to zero, without loss of generality. First

write tu as

tu =
T−1

∑T
t=1 x̊t−1yt√

s2
yT
−2
∑T

t=1 x̊
2
t−1

.

Then, we can write

T−1
T∑

t=1

x̊t−1yt = gxT
−2

T∑

t=1

x̊t−1xt−1 + gzT
−2

T∑

t=1

x̊t−1zt−1 + T−1
T∑

t=1

x̊t−1εyt

w→ gx
∫ 1

0 M̄ηx,cx(r)2 + gz
∫ 1

0 M̄ηx,cx(r)Mηz,cz(r) +
∫ 1

0 M̄ηx,cx(r)dMηy(r)

and T−2
∑T

t=1 x̊
2
t−1

w→ ∫ 1
0 M̄ηx,cx(r)2 using (19), (20) and the CMT. Also,

s2
y = T−1

T∑

t=1

ẙ2
t − T−1 {T−1

∑T
t=1 x̊t−1yt}2

T−2
∑T

t=1 x̊
2
t−1

+ op(1) = T−1
T∑

t=1

y2
t − ȳ2 + op(1)

= T−1
T∑

t=1

(gxT−1xt−1 + gzT
−1zt−1 + εyt)2

−
{
T−1

T∑

t=1

(gxT−1xt−1 + gzT
−1zt−1 + εyt)

}2

+ op(1)

= T−1
T∑

t=1

ε2yt + op(1)
p→ h2

31

∫ 1
0 d1(r)2 + h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

27



by (18). Consequently, by the CMT,

tu
w→ gx

∫ 1
0 M̄ηx,cx(r)2 + gz

∫ 1
0 M̄ηx,cx(r)Mηz,cz(r) +

∫ 1
0 M̄ηx,cx(r)dMηy(r)√{

h2
31

∫ 1
0 d1(r)2 + h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

}∫ 1
0 M̄ηx,cx(r)2

.

�

Proof of Theorem 2: It follows from the proof of Theorem 1 that

T β̂x
w→ gx

∫ 1
0 M̄ηx,cx(r)2 + gz

∫ 1
0 M̄ηx,cx(r)Mηz,cz(r) +

∫ 1
0 M̄ηx,cx(r)dMηy(r)∫ 1

0 M̄ηx,cx(r)2
.

Also,

T (ρ̂x − ρx) =
T−1

∑T
t=1 x̊t−1εxt

T−2
∑T

t=1 x̊
2
t−1

w→
∫ 1

0 M̄ηx,cx(r)dMηx(r)∫ 1
0 M̄ηx,cx(r)2

since T−1
∑T

t=1 x̊t−1εxt
w→ ∫ 1

0 M̄ηx,cx(r)dMηx(r) using (19), (20) and the CMT. Now

ε̂xt = xt − x̄− ρ̂xx̊t−1

= ρxxt−1 + εxt − ρxx̄−1 − ε̄x − ρ̂xx̊t−1

= −(ρ̂x − ρx)̊xt−1 + εxt − ε̄x

giving

s2
x = T−1

T∑

t=1

{−(ρ̂x − ρx)̊xt−1 + εxt − ε̄x}2 + op(1)

= (ρ̂x − ρx)2T−1
T∑

t=1

x̊2
t−1 + T−1

T∑

t=1

(εxt − ε̄x)2

−2(ρ̂x − ρx)T−1
T∑

t=1

x̊t−1(εxt − ε̄x) + op(1)

= T−1
T∑

t=1

ε2xt + op(1)
p→ h2

11

∫ 1
0 d1(r)2

by (18), and

sxy = T−1
T∑

t=1

ε̂xtε̂yt + op(1)

= T−1
T∑

t=1

{−(ρ̂x − ρx)̊xt−1 + εxt − ε̄x}{βxx̊t−1 + βz z̊t−1 + (εyt − ε̄y)− β̂xx̊t−1}+ op(1)

= T−1
T∑

t=1

εxtεyt + op(1)
p→ h11h31

∫ 1
0 d1(r)2

using (18).
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So, using the limit of s2
y from Theorem 1, we find that

Q =
T β̂x − (sxy/s2

x)T (ρ̂x − ρx)√
s2
y{1− (s2

xy/s
2
ys

2
x)}/T−2

∑T
t=1(xt−1 − x̄−1)2

w→ gx
∫ 1

0 M̄ηx,cx(r)2 + gz
∫ 1

0 M̄ηx,cx(r)Mηz,cz(r) +
∫ 1

0 M̄ηx,cx(r)dMηy(r)− h31
h11

∫ 1
0 M̄ηx,cx(r)dMηx(r)√√√√√√

∫ 1
0 M̄ηx,cx(r)2

{
h2

31

∫ 1
0 d1(r)2 + h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

}

×
[
1− h2

31

∫ 1
0 d1(r)2

{
h2

31

∫ 1
0 d1(r)2 + h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2

}−1
]

=
gx
∫ 1

0 M̄ηx,cx(r)2 + gz
∫ 1

0 M̄ηx,cx(r)Mηz,cz(r) +
∫ 1

0 M̄ηx,cx(r)dMηy(r)− h31
h11

∫ 1
0 M̄ηx,cx(r)dMηx(r)√

{h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}∫ 1

0 M̄ηx,cx(r)2

�

Proof of Theorem 3: We may set αy, αx and αz to zero, and gx to −ch−1
11 h31, without

loss of generality, since the êt are invariant to these parameters. Let yxt := yt − h−1
11 h31∆xt,

ẙxt := ẙt − h−1
11 h33∆x̊t and εxyt := εyt − h31d1te1t = h32d2te2t + h33d3te3t. For later reference we

first observe that

T−1
T∑

t=1

x̊t−1y
x
t = T−1

T∑

t=1

x̊t−1ε
x
yt + gzT

−1
T∑

t=1

x̊t−1zt−1 (21)

w→
∫ 1

0
M̄ηx,cx(r)dB∗η(r) + gz

∫ 1

0
M̄ηx,cx(r)Mηz,cz(r)

using (19), (20) and the CMT.

Next, consider the limit of the partial sum process for êt, which we write as

T−1/2

bTrc∑

t=1

êt = T−1/2

bTrc∑

t=1

ẙt −
[
T−3/2

∑bTrc
t=1 x̊t−1 T−1/2

∑bTrc
t=1 ∆x̊t

]
NT β̂ (22)

with NT := diag{1, T} and

NT β̂ :=

[
T−2

∑T
t=1 x̊

2
t−1 T−1

∑T
t=1 x̊t−1∆xt

T−2
∑T

t=1 x̊t−1∆xt T−1
∑T

t=1(∆x̊t)2

]−1 [
T−1

∑T
t=1 x̊t−1yt

T−1
∑T

t=1 ∆x̊tyt

]
.

Before passing to the limit in (22), we focus on NT β̂. It holds that

NT β̂ = ∆−1
T

[
T−1

∑T
t=1(∆x̊t)2 −T−1

∑T
t=1 x̊t−1∆xt

op(1) T−2
∑T

t=1 x̊
2
t−1

][
T−1

∑T
t=1 x̊t−1yt

T−1
∑T

t=1 ∆x̊tyt

]
, (23)

where ∆T := T−3{∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)2 − (

∑T
t=1 x̊t−1∆xt)2} = T−3

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)2 +

op(T−3) because
∑T

t=1 x̊t−1∆xt = Op(T ) by (19) and (20). Further, as also
∑T

t=1 x̊t−1yt =

29



Op(T ) by the proof of Theorem 1, it holds that

NT β̂ = ∆−1
T

[
T−2{∑T

t=1 x̊t−1yt
∑T

t=1(∆x̊t)2 −∑T
t=1 x̊t−1∆xt

∑T
t=1 ∆x̊tyt}

T−3
∑T

t=1 x̊
2
t−1

∑T
t=1 ∆x̊tyt + op(1)

]

= ∆−1
T

[
T−2{∑T

t=1 x̊t−1y
x
t

∑T
t=1(∆x̊t)2 −∑T

t=1 x̊t−1∆xt
∑T

t=1 ∆x̊tyxt }
T−3 h31

h11

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)2 + T−3

∑T
t=1 x̊

2
t−1

∑T
t=1 ∆x̊tyxt + op(1)

]

= ∆−1
T

[
T−2

∑T
t=1 x̊t−1y

x
t

∑T
t=1(∆x̊t)2 + op(1)

T−3 h31
h11

∑T
t=1 x̊

2
t−1

∑T
t=1(∆x̊t)2 + op(1)

]
(24)

because
∑T

t=1 ∆x̊tyxt =
∑T

t=1 ∆xtεxyt+gzT
−1
∑T

t=1 ∆xtzt−1−T−1(xT−x1){∑T
t=1 ε

x
yt+gzT

−1
∑T

t=1 zt−1}
= op(T ) given that (i)

∑T
t=1 ∆xtεxyt =

∑T
t=1 εxtε

x
yt − cT−1

∑T
t=1 xt−1ε

x
yt = op(T ) using (18) and

the convergence T−1
∑T

t=1 xt−1ε
x
yt

w→ ∫ 1
0 Mηx,cx(s)dB∗η(s) implied by (20), (ii) T−1

∑T
t=1 ∆xtzt−1

w→ ∫ 1
0 Mηz,cz(r)dMηx,cx(r) as a consequence of (20), (iii) T−1/2(xT − x1) w→ Mηx,cx(1) by (19)

and the CMT, (iv) T−1/2
∑T

t=1 ε
x
yt

w→ B∗η(1), and (v) T−3/2
∑T

t=1 zt−1
w→ ∫ 1

0 Mηz,cz(s) by (19)

and the CMT. Finally,

NT β̂ =
[

(T−1
∑T

t=1 x̊
2
t−1)−1

∑T
t=1 x̊t−1y

x
t h−1

31 h33

]′
+ op(1) (25)

because T−1
∑T

t=1(∆x̊t)2 = T−1
∑T

t=1 ε
2
tx−2cxT−2

∑T
t=1 εtxxt−1 +T−3c2

x

∑T
t=1 x

2
t−1−T−2(xT −

x1)2 = T−1
∑T

t=1 ε
2
tx + op(1)

p→ h2
11

∫ 1
0 d

2
1(r) by (18), so T−1

∑T
t=1(∆x̊t)2 is bounded away from

zero in P -probability.

Given (25), (22) simplifies to

T−1/2

bTrc∑

t=1

êt = T−1/2

bTrc∑

t=1

ẙxt −
∑T

t=1 x̊t−1y
x
t

T−1
∑T

t=1 x̊
2
t−1

T−3/2

bTrc∑

t=1

x̊t−1 + ρT (r), (26)

where
bTrc∑

t=1

ẙxt =
bTrc∑

t=1

εxyt + T−1gz

bTrc∑

t=1

zt−1 − bTrc − 1
T

{
T∑

t=1

εxyt + T−1gz

T∑

t=1

zt−1}

w→ B∗η(r)− rB∗η(1) + gz(
∫ r

0
Mηz,cz(s)− r

∫ r

0
Mηz,cz)

in the sense of weak convergence of measures on D, and ρT (r) = op(1)T−3/2
∑bTrc

t=1 x̊t−1 +

op(1)T−1/2
∑bTrc

t=1 ∆x̊t is such that

sup
r∈[0,1]

|ρT (r)| ≤ op(1) sup
r∈[0,1]

|T−3/2

bTrc∑

t=1

x̊t−1|+ op(1)T−1/2 sup
t=0,...,T

|xt| = op(1) (27)

because supr∈[0,1] |T−3/2
∑bTrc

t=1 x̊t−1| w→ supr∈[0,1] |
∫ r

0 M̄ηx,cx(s)| and T−1/2 supt=0,...,T |xt| w→
supr∈[0,1] |Mηx,cx(r)| by the CMT. Therefore, using also (21) and the CMT again,

T−1/2

bTrc∑

t=1

êt
w→ B∗η(r)− rB∗η(1)−

∫ 1
0 M̄ηx,cx(s)dB∗η(s)
∫ 1

0 M̄
2
ηx,cx(s)

∫ r

0
M̄ηx,cx(s)

+ gz{
∫ r

0
Mηz,cz(s)− r

∫ 1

0
Mηz,cz(s)−

∫ 1
0 M̄ηx,cx(s)Mηz,cz(s)∫ 1

0 M̄
2
ηx,cx(s)

∫ r

0
M̄ηx,cx(s)}

= F (r, cx) + gzG(r, cx, cz).
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Next, using the previously established order of magnitude results, we have that,

T∑

t=1

ê2
t =

T∑

t=1

ẙ2
t −

[
T−1

∑T
t=1 x̊t−1yt

∑T
t=1 ∆x̊tyt

]
NT β̂ (28)

=
T∑

t=1

ẙ2
t − h−1

31 h33

T∑

t=1

∆x̊tyt −
T∑

t=1

x̊t−1yt(
T∑

t=1

x̊2
t−1)−1

T∑

t=1

x̊t−1y
x
t + op(T )

=
T∑

t=1

ẙ2
t − h−2

31 h
2
33

T∑

t=1

(∆x̊t)2 − h−1
31 h33

T∑

t=1

∆x̊tyxt + op(T )

=
T∑

t=1

(ẙxt )2 + h−1
31 h33

T∑

t=1

yxt ∆x̊t + op(T )

=
T∑

t=1

(εxyt)
2 − 2T−1gz

T∑

t=1

zt−1εyt + T−2g2
z

T∑

t=1

z2
t−1 + op(T ) =

T∑

t=1

(εxyt)
2 + op(T ),

where T−1
∑T

t=1(εxyt)
2 p→ h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2 by (18). Consequently,

s2 p→ h2
32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2, (29)

and by the CMT,

S
w→ {h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1

∫ 1
0 {F (r, cx) + gzG(r, cx, cz)}2dr.

�

Before proceeding to the proof of Theorem 4, we first define some additional notation re-

lated to the conditional convergence modes used in the remainder of the Appendix. For weak

convergence of random measures induced by conditioning, i.e., of the form (·)|x w→ (◦)|B1 and

(N)|x, y, z w→ (4)|B1, we write (·) wx→ (◦)|B1 and (·) w∗→ (4)|B1 respectively, the definitions being

E{f(·)|x} w→ E{f(◦)|B1} and E{g(N)|x, y, z} w→ E{g(4)|B1} for all bounded continuous real

functions f and g, where ·, ◦, N and 4 are placeholders for random elements. We say that the

wx and w∗ convergence are joint if (E{f(·)|x}, E{g(N)|x, y, z})′ w→ (E{f(◦)|B1}, E{g(4)|B1})′
for the same class of functions f, g. This is distinct from the two wx modes of convergence,

(·) wx→ (◦)|B1 and (N) wx→ (4)|B1, being joint, where E{h(·,N)|x} w→ E{h(◦,4)|B1} should hold

for bounded continuous h (and similarly, for w∗). We write (·)T = Oxp (1) to denote that for

every ε > 0 there exists a C > 0 such that P (P (‖(·)T ‖ > C|x) > ε) < ε, and (·)T = oxp(1) if

(·)T wx→ 0, where ‖·‖ is a norm (for random processes, the uniform norm). The corresponding

notation O∗p(1) and o∗p(1) is introduced similarly for conditioning on the data.

Proof of Theorem 4: From Theorem 2 of Rubshtein (1996), by extending the argument

to the multivariate case, it follows that E(f(UbT ·c2, UbT ·c3)|X ) a.s.→ E (f (B2, B3)) for continuous

bounded real f on D2. Then, by the bounded convergence theorem for conditional expectations,

Exf(UbT ·c2, UbT ·c3) a.s.→ Ef (B2, B3) (30)
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for these functions f . As additionally UbT ·c
w→ B in D3 (a special case of (4)), from Corollary

4.1 of Crimaldi and Pratelli (2005) it follows that

Exf(U ′bT ·c)
w→ E(f(B′)|B1) (31)

for continuous bounded real f on D3. Here we have used the result that conditioning on x and

UbT ·c1 are equivalent.

Next, we note that Utb, given the data, is a Gaussian process with independent increments,

mean zero and variance function VT (r) := V ar∗(UbTrcb) = T−1
∑bTrc

t=1 ete
′
t

p→ rI3 (r ∈ [0, 1]),

by Lemma A.1 of Boswijk et al. (2015). As VT are component-wise increasing in r and their

point-wise limit is continuous in r, the convergence of VT is uniform in r, and it follows that

E∗f(U ′bT ·cb)
p→ Ef(B†′) (32)

for continuous bounded real f on D3. Additionally, [U ′bT ·c, U
′
bT ·cb]

′ w→ [B′, B†′]′ on D6 by the

martingale functional CLT [MFCLT] of Brown (1971), and so from Corollary 4.1 of Crimaldi

and Pratelli (2005) it follows further that, for continuous bounded real f on D6,

E∗f(U ′bT ·c, U
′
bT ·cb)

w→ E{f(B′, B†′)|B};

here we have used the result that conditioning on x, y, z and UbT ·c are equivalent. In particular,

for f that do not depend on UbT ·c1, UbT ·c2, restricted to D4, the bootstrap counterpart of (31)

is obtained:

E∗f(UbT ·c1, U ′bT ·cb)
w→ E{f(B1, B

†′)|B} = E{f(B1, B
†′)|B1}, (33)

the last equality following by the independence of the components of [B′, B†′]′.

To see that (31) and (33) are joint, it is sufficient to apply the Cramer-Wald device to obtain

aExf(U ′bT ·c) + bE∗g(UbT ·c1, U ′bT ·cb)
w→ E(af(B′) + bg(B1, B

†′)|B1) (34)

for arbitrary a, b ∈ R and for continuous bounded real f and g on D3 and D4, respectively.

To this end, by Skorokhod’s representation theorem applied to the Polish space D6, and

since [B′, B†′]′ has a.s. continuous sample paths, we can consider a probability space where

[UbT ·c, U ′bT ·cb]
′ → [B′, B†′]′ a.s. On this probability space, by Corollary 4.4 of Crimaldi and

Pratelli (2005), (31) and (33) hold in probability instead of weakly, and hence, (34) holds in

probability. Since the distribution of the involved conditional expectations only depends on

[U ′bT ·c, U
′
bT ·cb]

′ and [B′, B†′]′, it follows that on general probability spaces (34) holds weakly. �

Proof of Theorem 5: Introduce ε̃it := dteit, Ũti := T−1/2
∑t

s=1 ε̃is, M̃i (·) :=
∫ ·

0di(s)dBi(s)

(i = 1, 2, 3), Ũt := [Ũt1, Ũt2, Ũt3]′, M̃ := [M̃1, M̃2, M̃3]′. Given that εt is a linear transformation

of ε̃t, and linear transformations are continuous on the support of the process M̃ , it suffices to

establish that
(
ŨbT ·c,

T∑

t=1

Ũt−1,1[∆Ũt2,∆Ũt3]

)
wx→
(
M̃,

∫ 1

0
M̃1(s)d[M̃2(s), M̃3(s)]

)∣∣∣∣B1 (35)
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jointly with
(
UbT ·c1, ŨbT ·cb,

T∑

t=1

Ũt−1,1∆Ũtb

)
w∗→
(
B1, B̃

†
m,

∫ 1

0
M̃1(s)dB̃†m(s)

)∣∣∣∣B1. (36)

We shall prove Theorem 5 in this way.

Notice first that, given the data, ŨbT ·cb is a Gaussian process with independent increments,

mean zero and variance function V ar∗(ŨbTrcb) = T−1
∑bTrc

t=1 ẽ2
Tt. Under the assumption that

T−1
∑bTrc

t=1 ẽ2
Tt

p→ ∫ r
0 m

2(s)ds, r ∈ [0, 1], this convergence is uniform in r because T−1
∑bTrc

t=1 ẽ2
Tt

are increasing in r and the limit integral is continuous in r. This suffices for the conclusion that

ŨbT ·cb given the data (and thus, given UbT ·c) converges weakly in probability to B̃†m:

E∗g(ŨbT ·cb)
p→ Eg(B̃†m) (37)

for all bounded continuous real g on D, where B̃†m is a Gaussian process with independent

increments, zero mean and variance function
∫ ·

0 m
2(s)ds. On the other hand, since UbT ·c

w→ B

by the MFCLT of Brown (1971), and since D3×D is separable, it follows that [U ′bT ·c, ŨbT ·cb]
′ w→

[B′, B̃†m]′ on D3 ×D, with B and B̃†m independent (see Theorem 2.8 of Billingsley (1999)), and

also on D4, because the limit process is continuous.

In view of Skorokhod’s representation theorem and the a.s. continuity of [B′, B̃†m]′’s sample

paths, we may assume in the remainder of the proof that [U ′bT ·c, ŨbT ·cb]
′ and [B′, B̃†m]′ are defined

on the same probability space (say S), and

[U ′bT ·c, ŨbT ·cb]
′ → [B′, B̃†m]′ a.s. (38)

By using (38) and the distributional properties of [U ′bT ·c, ŨbT ·cb]
′ (though not functional relations

with the data and the bootstrap multipliers, which need not be defined on S), we show that on

S the convergence in (35)-(36) holds in probability, so in general it holds weakly. To be specific,

we write Ũti =
∑t

s=1 di(s/t)∆Uti (i = 1, 2, 3), and establish that on S,

Exφ

(
Ũ ′bT ·c,

T∑

t=1

Ũt−1,1[∆Ũt2,∆Ũt3]

)
p→ E

[
φ

(
M̃ ′,

∫ 1

0
M̃1(s)d[M̃2(s), M̃3(s)]

)∣∣∣∣B1

]
(39)

and

E∗ψ

(
UbT ·c1, ŨbT ·c,b,

T∑

t=1

Ũt−1,1∆Ũtb

)
p→ E

[
ψ

(
B1, B̃

†
m,

∫ 1

0
M̃1(s)dB̃†m(s)

)∣∣∣∣B1

]
(40)

for every bounded and continuous real φ and ψ on D3 × R2 and D2 × R, respectively. On S,

Ex and E∗ denote exclusively E(·|UbT ·c1) and E(·|UbT ·c). In view of (30) and (37), on S we can

still invoke

Exf(UbT ·c2, UbT ·c3) w→ Ef (B2, B3) and E∗g(ŨbT ·cb)
w→ Eg(B̃†m)

for arbitrary bounded and continuous real f and g on D2 and D, respectively, because the

distributions of the conditional expectations depend only on the distributions of [U ′bT ·c, ŨbT ·cb]
′
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and [B′, B̃†m]′. Moreover, in view also of (38), by Corollary 4.4 of Crimaldi and Pratelli (2005),

it holds on S that

Exh(U ′bT ·c)
p→ E{h(B′)|B1} and E∗g(UbT ·c1, ŨbT ·cb)

p→ E{g(B1, B̃
†
m)|B1} (41)

for arbitrary bounded and continuous real h and g on D3 and D2.

It is well known that (39)-(40) cannot be put in the form of (41) for any choice of h and

g because, in general, the stochastic integrals involved are not continuous transformations.

Therefore, we resort to their continuous approximations, as is habitually done. We approximate:

(a) ŨbT ·cj by ξδj(UbT ·cj) (j = 1, 2, 3), where ξδj : D → D are defined by ξδj(X) = X(·)δj(·)−∫ ·
0 X(s)δ′j(s)ds and are continuous on the support C[0, 1] of Bj for every fixed smooth function

δj : [0, 1]→ R. Then, using (41) and integration by parts, it follows that

Exm(ξδ1(UbT ·c1), ξδ2(UbT ·c2), ξδ3(UbT ·c3))
p→ E{m(ξδ1(B1), ξδ2(B2), ξδ3(B3))|B1}

= E{m(
∫ ·

0
δ1 (s) dB1 (s) ,

∫ ·
0
δ2 (s) dB2 (s) ,

∫ ·
0
δ3 (s) dB3 (s))|B1}

and

E∗n(UbT ·c1, ξδ1(UbT ·c1), ŨbT ·cb)
p→ E{n(B1, ξδ1(B1), B̃†m)|B1}

= E{n(B1,

∫ ·
0
δ1 (s) dB1 (s) , B̃†m)|B1}.

for continuous m,n : D3 → R. It then needs to be argued that the integrals involving smooth

δj approximate those involving dj , in conditional distribution, such that it also holds that

Exm(ŨbT ·c)
p→ E{m(M̃)|B1} and

E∗n(UbT ·c1, ŨbT ·c1, ŨbT ·cb)
p→ E{n(B1, M̃1, B̃

†
m)|B1}.

(b)
∫ 1

0 ŨbTs−c1dŨbTscj (j = 2, 3) and
∫ 1

0 ŨbTs−c1dŨbTscb by ζL(ŨbT ·c1, ŨbT ·cj) and ζL(ŨbT ·c1, ŨbT ·cb),

where ζL : D2 → R is defined by

ζL(X,Y ) := X(1)Y (1)−
L∑

i=1

Y (
i

L
)
{
X(

i

L
)−X(

i− 1
L

)
}

=
∫ 1

0
XL(s−)dY (s),

with

XL(s) :=
L∑

i=1

X(
i− 1
L

)I{ i− 1
L
≤ s < i

L
}+X(1)I{s = 1},

and is continuous on the support of [M̃1, M̃j ]′ and [M̃1, B̃
†
m]′ for every L ∈ N. Then, by an

appropriate choice of m and n above, it follows that

Exφ
(
ŨbT ·c, ζL(ŨbT ·c1, ŨbT ·c2), ζL(ŨbT ·c1, ŨbT ·c3)

)
p→ E

[
φ
(
M̃, ζL(M̃1, M̃2), ζL(M̃1, M̃3)

)∣∣∣B1

]

and

E∗ψ
(
UbT ·c1, ŨbT ·cb, ζL(ŨbT ·c1, ŨbT ·cb)

)
p→ E

[
ψ
(
B1, B̃

†
m, ζL(M̃1, B̃

†
m)
)∣∣∣B1

]
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for φ and ψ as in (39)-(40). To complete the proof, it remains to be shown that, as L →
∞, ζL approximates the stochastic integrals of interest sufficiently well, again in conditional

distribution.

We turn to the accuracy of these approximations introduced previously, starting from point

(a) and proceeding in two steps.

(a.1) By partial summation and the mean-value theorem,

max
r∈[0,1]

|ŨbTrcj − ξδj(UbT ·cj)(r)| ≤ max
r∈[0,1]

∣∣∣∣∣
1

T 1/2

brTc∑

t=1

{dj( t
T

)− δj( t
T

)}∆Utj
∣∣∣∣∣+

1
2

max
r∈[0,1]

|RT (r)|, (42)

where RT (r) := T−2
∑brT c

t=1 Ut−1,jδ
′′
j (θt/T ), with θt ∈ [(t− 1)/T, t/T ], satisfies

max
r∈[0,1]

|RT (r)| ≤ T−1 max
r∈[0,1]

|δ′′j (r)| max
t=1,...,T

|Utj | = oxp(1)

because {maxt=1,...,T |Utj |}|x → max[0,1] |Bj | (a.s. for j = 1 and weakly in probability for

j = 2, 3) by continuity of the sup on the support of Bj . Moreover, for j = 1 and every λ > 0,

by Doob’s inequality and the property E(∆Ut1∆Us1) = I{t = s} (inherited on S from the

martingale difference property of e1t and the standardisation Ee2
1t = 1), it holds that

P

{
Px

(
max
r∈[0,1]

∣∣∣∣∣
1

T 1/2

brTc∑

t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

∣∣∣∣∣ ≥ λ
)

= 0

}

= 1− P
(

max
r∈[0,1]

∣∣∣∣∣
1

T 1/2

brTc∑

t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

∣∣∣∣∣ ≥ λ
)

≥ 1− 1
λ2E

(
1

T 1/2

T∑

t=1

{d1(
t

T
)− δ1(

t

T
)}∆Ut1

)2

= 1− 1
λ2T

T∑

t=1

{d1(
t

T
)− δ1(

t

T
)}2 →

T→∞
1− 1

λ2

∫ 1

0
(d1 − δ1)2.

Since smooth functions are dense in L2[0, 1], this limit can be made as close to 1 as desired by

choosing δ1 according to λ. On the other hand, for j = 2, 3, by using Ex(∆Utj |{∆Usj}t−1
s=1) = 0

(inherited on S from Ex(ejt|Ft−1) = 0, which is a distributional property), it follows from the

conditional version of Doob’s inequality that

Px

(
max
r∈[0,1]

∣∣∣∣∣
1

T 1/2

brTc∑

t=1

{dj( t
T

)− δj( t
T

)}∆Utj
∣∣∣∣∣ ≥ λ

)
(43)

≤ 1
λ2Ex

(
1

T 1/2

T∑

t=1

{dj( t
T

)− δj( t
T

)}∆Utj
)2

=
1
λ2T

T∑

t=1

{dj( t
T

)− δj( t
T

)}2Ex[(∆Utj)2]

and from Markov’s inequality that

P

(
1
λ2T

T∑

t=1

{dj( t
T

)− δj( t
T

)}2Ex[(∆Utj)2] ≥ λ
)
≤ E[(∆U1j)2]

λ3T

T∑

t=1

{dj( t
T

)− δj( t
T

)}2

→
T→∞

λ−3

∫ 1

0
(dj − δj)2,
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which can be made as small as desired by the choice of δj .

(a.2) By the continuous-time version of Doob’s inequality,

P

(
max
r∈[0,1]

∣∣∣∣
∫ r

0
{dj(u−)− δj(u−)}dBj(u)

∣∣∣∣ ≥ λ
)
≤ 1

λ2E

(∫ 1

0
{dj(u−)− δj(u−)}dBj(u)

)2

= λ−2

∫ 1

0
(dj − δj)2

can be made as small as desired by the choice of δj , as in step (a.1).

We consider next the integral approximations in point (b), starting from the non-bootstrap

case. Let ∆j
TL :=

∑T
t=1 Ũt−1,1∆Ũtj − ζL(ŨbT ·c1, ŨbT ·cj). As Ex(∆Utj |{∆Usj}t−1

s=1) = 0 (j = 2, 3,

t = 1, ..., T ), with {T li}Li=0 = {⌊TiL
⌋}Li=0 and j = 2, 3 it holds that

Ex{∆j
TL}2 = Ex{

L∑

i=1

T li∑

t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)∆Ũtj}2

= T−1
L∑

i=1

T li∑

t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)2d2
j (
t

T
)Ex[(∆Utj)2]

≤ sup
[0,1]
|d2
j |

L∑

i=1

max
t=T li−1+1,...,T li

(Ũt−1,1 − ŨT li−1,1)2.T−1
T li∑

t=T li−1+1

Ex[(∆Utj)2].

Here, first, ŨbT ·c1
p→ M̃1 can be established on S by using the approximation of ŨbT ·c1 with

ξδ1(UbT ·c1) as was previously done, and second, γT ij := T−1
∑T li

t=T li−1+1(∆Utj)2 satisfiesExγTij
p→

li − li−1 as T →∞. Indeed, ExγTij = Γ≤T ij,K + Γ>Tij,K for every K > 0, where

Γ≤Tij,K := Ex


T−1

T li∑

t=T li−1+1

(∆Utj)2I{(∆Utj)2 ≤ K}



p→ (li − li−1)E[(∆Ut1)2I{(∆Ut1)2 ≤ K}] → li − li−1

as T →∞ followed by K →∞, by the bounded convergence theorem for conditional expecta-

tions (as T →∞) and then the monotone convergence theorem (as K →∞), and

Γ>Tij,K := Ex


T−1

T li∑

t=T li−1+1

(∆Utj)2I{(∆Utj)2 > K}

 p→ 0

as T → ∞ followed by K → ∞, by Markov’s inequality and the uniformly bounded fourth

moment of ∆Utj . Therefore, by Chebyshev’s inequality, Px(|∆j
TL| ≥ λ) for every λ > 0 is

bounded above by λ−2 times a r.v. converging in probability to

sup
[0,1]
|d2
j |

L∑

i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2.(li − li−1).

36



Further, using Doob’s sub-martingale inequality,

P

(
L∑

i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2.(li − li−1) ≥ λ
)

≤
L∑

i=1

li − li−1

λ
V ar(M̃1(li)− M̃1(li−1)) =

L∑

i=1

li − li−1

λ

∫ li

li−1

d2
1(s)ds

≤ 1
λ

max
i=1,...,L

|li − li−1|
∫ 1

0
d2

1(s)ds→ 0

as L→∞ for every λ > 0. Hence,

lim
L→∞

lim sup
T→∞

P

(
Px

(∣∣∣∣∣
T∑

t=1

Ũt−1,1∆Ũtj − ζL(ŨbT ·c1, ŨbT ·cj)

∣∣∣∣∣ ≥ λ
)
≥ λ

)
= 0.

On the other hand, it also holds that

ζL(M̃1, M̃2) =
∫ 1

0
M̃L

1 (s−)dM̃j(s)
p→
∫ 1

0
M̃1 (s−) dM̃j (s) as L→∞

because
∫ 1

0 (M̃L
1 (s)− M̃1 (s))2ds

p→ 0 as L→∞.

Regarding bootstrap integrals, the argument is similar except that E∗(∆Ũtb)2 appears in-

stead of Ex(∆Utj)2. Since E∗(∆Ũtb∆Ũsb) = 0 for t 6= s (inherited on S from the independence

of wt), it holds that

E∗{
L∑

i=1

T li∑

t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)∆Ũtb}2 = T−1
L∑

i=1

T li∑

t=T li−1+1

(Ũt−1,1 − ŨT li−1,1)2E∗(∆Ũtb)2

≤
L∑

i=1

max
t=T li−1+1,...,T li

(Ũt−1,1 − ŨT li−1,1)2.T−1
T li∑

t=T li−1+1

E∗(∆Ũtb)2

p→
L∑

i=1

max
r∈[li−1,li]

|M̃1(r)− M̃1(li−1)|2
∫ li

li−1

m2(s)ds

as T →∞, as T−1
∑T li

t=T li−1+1E
∗(∆Ũtb)2 p→ ∫ li

li−1
m2(s)ds is a distributional property inherited

on S from T−1
∑T li

t=T li−1+1 ẽ
2
Tt

p→ ∫ li
li−1

m2(s)ds. The rest of the argument proceeds as for non-

bootstrap integrals. This completes the proof of the theorem. �

We next discuss some implications of Theorem 5 for Orstein-Uhlenbeck limits and stochastic

integrals involving them. With sx,0 = αx = 0, the standard evaluation

max
r∈[0,1]

∣∣∣∣∣∣
xbTrc − e−cx

bTrc
T

bTrc∑

i=1

ecx
i
T εxi

∣∣∣∣∣∣
≤ max

r∈[0,1]

bTrc−1∑

i=0

∣∣∣(1− cx/T )i − e−cx iT
∣∣∣ |εx,bTrc−i|

≤ ∣∣(1− cx/T )T − e−cx∣∣max
[0,1]
|d1|

T∑

t=1

|e1t| = O(1)

holds for almost all x, by the ergodic theorem. As
∑bTrc

i=1 ecx
i
T εxi = h11

∑bTrc
i=1 ecx

i
T d1( iT )e1i, by

applying Theorem 5 with ecx(·)d1(·) in place of d1(·), it follows that

T−1/2xbT ·c
wx→ h11e

−cx(·)
∫ ·

0
ecxsd1(s)dB1(s)

∣∣∣∣B1 = Mηx,cx(·)|B1,

37



and similarly, T−1/2zbT ·c
wx→ Mηz,cz(·)|B1, jointly with the convergence in Theorem 5, by the

argument for that theorem.

Regarding stochastic integrals, for ε̃it (i = 2, 3) introduced in the proof of Theorem 5, we

find by partial summation that

(1− cx
T

)
T∑

t=1

sx,t−1ε̃it = sx,T

T∑

t=1

ε̃it −
T∑

t=1

εxt

t−1∑

s=1

ε̃is +
cx
T

T∑

t=1

sx,t−1

t−1∑

s=1

ε̃is −
T∑

t=1

εxtε̃it,

where the following converge by the CMT, Theorem 5 and the discussion in the previous para-

graph: T−1sx,T
∑T

t=1 ε̃it
wx→Mηx,cx(1)M̃i(1)|B1, T−1

∑T
t=1 εxt

∑t−1
s=1 ε̃is

wx→ h11

∫ 1
0 [dM̃1(s)]M̃i(s)|B1,

T−2
∑T

t=1 sx,t−1
∑t−1

s=1 ε̃is
wx→ h11

∫ 1
0 M̃1(s)M̃i(s)ds|B1 jointly. Moreover, T−1

∑T
t=1 εxtε̃it = oxp(1)

by the conditional Chebyshev inequality, as

T−1V arx(
T∑

t=1

εxtε̃it) ≤ KT−1
T∑

t=1

e2
1tExe

2
it → KE(e2

1te
2
it) a.s. (44)

using the martingale difference property and the ergodic theorem, with K := h2
11 sup[0,1] |d2

1d
2
i |.

Therefore,

T−1
T∑

t=1

sx,t−1ε̃it
wx→

(
Mηx,cx(1)M̃i(1)− h11

∫ 1

0
[dM̃1(s)]M̃i(s) + cxh11

∫ 1

0
M̃1(s)M̃i(s)ds

)∣∣∣∣B1

=
∫ 1

0
M̃i(s)dMηx,cx(s)

∣∣∣∣B1

jointly with the convergence in Theorem 5 and its implications. By continuity again, as

T−2
∑T

t=1 sx,t−1zt−1
wx→ ∫ 1

0 Mηx,cx (s)Mηz,cz (s) ds|B1 and T−3/2
∑T−1

t=1 sx,t
wx→ Mηx,cx(1)|B1, it

follows for s̊x,t := sx,t − T−1
∑T−1

i=1 sx,i and εxyt := εyt − h31d1te1t that

T−1
T∑

t=1

s̊x,t−1y
x
t = T−1

T∑

t=1

s̊x,t−1(εxyt + T−1gzzt−1) (45)

wx→
{∫ 1

0
M̄ηx,cx (s) dB∗η (s) + gz

∫ 1

0
M̄ηx,cx (s)Mηz,cz (s) ds

}∣∣∣∣B1,

if gx = 0, where B∗η is defined in Theorem 3.

Proof of Theorem 6: We again set αy, αx, αz to zero and gx to −h−1
11 h31cx, without loss

of generality. Notice for further reference that for a random sequence ξT ,

ξT
p→ K = const implies that ξT

wx→ K (46)

because ξT
p→ K implies, for bounded continuous f , that Exf (ξT )

p→ f(K). This follows from

the ‘in probability’ bounded convergence theorem for conditional expectations.

From relations (26)-(27), with ξT = supr∈[0,1] |ρT (r)|, it follows that

T−1/2

bTrc∑

t=1

êt = T−1/2

bTrc∑

t=1

ẙxt −
∑T

t=1 x̊t−1y
x
t

T−1
∑T

t=1 x̊
2
t−1

T−3/2

bTrc∑

t=1

x̊t−1 + oxp(1)
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uniformly in r. Here, from Theorem 5, the convergence T−1/2zbT ·c
wx→ Mηz,cz(·)|B1 and the

CMT,

bT ·c∑

t=1

ẙxt =
bT ·c∑

t=1

εxyt + T−1gz

bT ·c∑

t=1

zt−1 − bT ·c − 1
T

{
T∑

t=1

εxyt + T−1gz

T∑

t=1

zt−1}

wx→ {B∗η(·)− (·)B∗η(1) + gz(
∫ ·

0
Mηz,cz (s) ds− (·)

∫ 1

0
Mηz,cz (s) ds)}

∣∣∣∣B1,

so using also (45), the convergence T−1/2xbT ·c
wx→Mηx,cx(·)|B1 and the CMT, we have that

T−1/2

bT ·c∑

t=1

êt
wx→ {F (·, cx) + gzG(·, cx, cz)}|B1.

Next, (29) and (46) with ξT = s2
y imply that s2

y
wx→ h2

32

∫ 1
0 d2(r)2 +h2

33

∫ 1
0 d3(r)2. Consequently,

by the CMT,

S
wx→ ({h2

32

∫ 1
0 d2(r)2 + h2

33

∫ 1
0 d3(r)2}−1

∫ 1
0 {F (r, cx) + gzG(r, cx, cz)}2dr)|B1. (47)

We proceed to part (b). The bootstrap process T−1/2
∑bT ·c

t=1 y
∗
t is of the form of ŨbT ·cb of

Theorem 5, with ẽTt = êt satisfying T−1
∑bTrc

t=1 ê2
t = T−1

∑bTrc
t=1 (εxyt)

2 + op(1), r ∈ [0, 1]. Under

Assumption 1, using Lemma 3 of Boswijk et al. (2015), we conclude that T−1
∑bTrc

t=1 ê2
t

p→
h2

32

∫ r
0 d

2
2(s)ds + h2

33

∫ r
0 d

2
3(s)ds =

∫ r
0 m

2(s)ds with m (s) =
√
h2

32d
2
2(s) + h2

33d
2
3(s). As B†∗η is a

Gaussian process with independent increments, mean zero and V ar(B†∗η (r)) =
∫ r

0 m
2 (s) ds,

from Theorem 5 and its discussion it follows that

UbT ·c1, T−1/2

bT ·c∑

t=1

y∗t ,
T∑

t=1

Ũt−1,1y
∗
t


 w∗→

(
B1, B

†∗
η ,

∫ 1

0
M̃1(s)dB†∗η (s)

)∣∣∣∣B1

jointly with T−1/2xbT ·c
w∗→Mηx,cx |B1 and (47).

Next,

T−1/2

bTrc∑

t=1

ε̂∗yt = T−1/2

bTrc∑

t=1

(y∗t − ȳ∗)− T−3/2

bTrc∑

t=1

x̊t−1
T−1

∑T
t=1 x̊t−1y

∗
t

T−2
∑T

t=1 x̊
2
t−1

,

where by the CMT, the following converge jointly, and jointly with (47): T−1/2
∑bT ·c

t=1 (y∗t −
ȳ∗) w∗→ {B†∗η (·) − (·)B†∗η (1)}|B1, T−3/2

∑bT ·c
t=1 x̊t−1

w∗→ ∫ ·
0M̄ηx,cx(s)ds|B1, T−1

∑T
t=1 x̊t−1y

∗
t

w∗→∫ 1
0 M̄ηx,cx(s)dB†∗η (s)|B1 analogously to (45), T−2

∑T
t=1 x̊

2
t−1

w∗→ ∫ 1
0 M̄

2
ηx,cx(s)ds|B1, and since the

two limit processes in D are continuous,

T−1/2

bTrc∑

t=1

ε̂∗yt
w∗→
(
B†∗η (r)− rB†∗η (1)− ∫ r0 M̄ηx,cx(s){∫ 1

0 M̄
2
ηx,cx(s)}−1

∫ 1
0 M̄ηx,cx(s)dB†∗η (s)

)∣∣∣B1

=
(
B†∗η (r)− rB†∗η (1)− ∫ r0 B̄η1,cx(s){∫ 1

0 B̄
2
η1,cx(s)}−1

∫
B̄η1,cx(s)dB†∗η (s)

)∣∣∣B1

= F †(r, cx)|B1
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in D, jointly with (47). Moreover, using the previous convergence results we have that,

s∗2y = T−1
T∑

t=1

(y∗t − ȳ∗)2 − T−1 {T−1
∑T

t=1 x̊t−1y
∗
t }2

T−2
∑T

t=1 x̊
2
t−1

+ o∗p(1)

= T−1
T∑

t=1

y∗2t + o∗p(1) = T−1
T∑

t=1

w2
t ê

2
t + o∗p(1)

= T−1
T∑

t=1

ê2
t + T−1

T∑

t=1

(w2
t − 1)ê2

t + o∗p(1)

= T−1
T∑

t=1

ê2
t + o∗p(1)

because E∗{T−1
∑T

t=1(w2
t − 1)ê2

t }2 = 2T−2
∑T

t=1 ê
4
t = op(1) under the assumption that the

fourth moments are finite. We conclude that s∗2y
w∗→ h2

32

∫
d2

2 + h2
33

∫
d2

3 and, by the CMT, that

S∗ w
∗→
(
{h2

32

∫
d2

2 + h2
33

∫
d2

3}−1
∫
F †(r, cx)2dr

)∣∣∣B1

jointly with (47). �

Proof of Corollary 1: The asymptotic validity of the bootstrap rests on the result that, as

T →∞, S conditional on x, under Hu/Hx, and S∗ conditional on the data, under all considered

hypotheses, jointly converge weakly to the same random measure.

By Theorem 6, it holds that [Exf (S) , E∗f(S∗)]′ w→ [E{f(S∞)|B1}, E{f(S∞)|B1}]′ under

Hu/Hx, for all continuous bounded real f , where S∞ is implicitly defined by (16). This implies

weak convergence of the (random) cumulative distribution functions (or processes) of S given

x and S∗ given the data, see e.g. Daley and Vere-Jones (2008, pp.143-144). Specifically, if Φ

denotes the cumulative process of S∞ conditional on B1 (i.e., Φ(z) := P (S∞ ≤ z|B1), all z),

then [Px(S ≤ ·), P ∗(S∗ ≤ ·)]′ w→ [Φ,Φ]′ in D × D. As the distribution of S∞ conditional on B1

is atomless a.s., and so Φ is continuous a.s., the latter convergence holds also in D2 and implies

that supx∈R |Px(S ≤ x)−P ∗(S∗ ≤ x)| = op(1). Therefore, if ΦT denotes the cumulative process

of S conditional on x (i.e., ΦT (z) := Px(S ≤ z), all z), then P ∗(S∗ ≤ S) = ΦT (S) + op(1).

Further, define the quantile transformation using the right-continuous version of the gener-

alised inverse. As the quantile transformation is continuous in the Skorokhod metric, it holds

that (ΦT ,Φ−1
T ) w→ (Φ,Φ−1) in D2. For θ ∈ [0, 1],

Px (ΦT (S) ≥ θ) = Px(S ≥ Φ−1
T (θ)) = 1− Px(S < Φ−1

T (θ))

= 1− ΦT (Φ−1
T (θ)−) w→ 1− Φ(Φ−1(θ)) = θ

using the continuity of Φ, and the same holds in probability as the limit is a constant. By

the Bounded convergence theorem, integration over x yields P (ΦT (S) ≥ θ) → θ for θ ∈ [0, 1].

Therefore, ΦT (S) w→ U [0, 1]. Since P ∗(S∗ ≤ S) = ΦT (S) + op(1), it also holds that P ∗(S∗ ≤
S) w→ U [0, 1].
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Table 1. Finite sample size of SB and IVcomb, IV
pre
comb under volatility shifts:

T = 200, gx = gz = 0, di = 1(t ≤ ⌊τT ⌋) + σi1(t > ⌊τT ⌋), i = 1, 3

cx = 0 cx = 5 cx = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ3 SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb

1 1 0.098 0.109 0.094 0.098 0.109 0.094 0.103 0.104 0.089 0.103 0.104 0.089 0.102 0.107 0.093 0.102 0.107 0.093

4 0.101 0.108 0.094 0.101 0.113 0.089 0.106 0.107 0.094 0.105 0.113 0.093 0.105 0.108 0.096 0.107 0.111 0.093
1

4
0.102 0.112 0.081 0.098 0.106 0.087 0.104 0.107 0.079 0.099 0.106 0.089 0.104 0.105 0.081 0.102 0.105 0.091

4 1 0.100 0.110 0.093 0.102 0.112 0.096 0.103 0.106 0.091 0.104 0.112 0.093 0.104 0.109 0.094 0.104 0.116 0.098

4 0.099 0.109 0.099 0.102 0.118 0.104 0.107 0.110 0.098 0.107 0.120 0.106 0.106 0.114 0.103 0.109 0.123 0.109
1

4
0.101 0.109 0.062 0.099 0.100 0.073 0.104 0.104 0.062 0.102 0.101 0.071 0.106 0.102 0.064 0.102 0.105 0.078

1

4
1 0.102 0.112 0.093 0.099 0.111 0.094 0.102 0.108 0.091 0.105 0.107 0.090 0.104 0.109 0.092 0.110 0.107 0.091

4 0.103 0.107 0.079 0.103 0.110 0.074 0.102 0.101 0.082 0.108 0.107 0.077 0.104 0.101 0.081 0.108 0.107 0.081
1

4
0.103 0.115 0.099 0.098 0.108 0.091 0.105 0.113 0.095 0.101 0.109 0.093 0.106 0.113 0.097 0.101 0.110 0.097

T
.1



Table 2. Finite sample rejection frequencies of SB (power) and IVcomb, IV
pre
comb (size) under volatility shifts:

T = 200, gx = 0, gz = 25, di = 1(t ≤ ⌊τT ⌋) + σi1(t > ⌊τT ⌋), i = 1, 2, 3

cx = cz = 0 cx = cz = 5 cx = cz = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ2 σ3 SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb

1 1 1 0.910 0.714 0.049 0.910 0.714 0.049 0.742 0.382 0.075 0.742 0.382 0.075 0.568 0.245 0.087 0.568 0.245 0.087

4 0.478 0.434 0.192 0.585 0.504 0.158 0.252 0.162 0.112 0.308 0.199 0.115 0.174 0.130 0.105 0.198 0.146 0.106
1

4
0.970 0.770 0.018 0.944 0.742 0.034 0.880 0.491 0.043 0.828 0.423 0.054 0.754 0.342 0.063 0.688 0.279 0.068

4 1 0.997 0.845 0.002 0.977 0.767 0.013 0.985 0.638 0.007 0.919 0.539 0.029 0.960 0.479 0.015 0.842 0.404 0.043

4 0.905 0.736 0.052 0.815 0.624 0.075 0.761 0.401 0.075 0.612 0.348 0.087 0.585 0.242 0.085 0.462 0.230 0.088
1

4
0.999 0.857 0.001 0.987 0.780 0.008 0.995 0.674 0.003 0.947 0.569 0.021 0.986 0.534 0.006 0.895 0.439 0.032

1

4
1 0.656 0.553 0.129 0.864 0.703 0.068 0.469 0.253 0.106 0.661 0.348 0.088 0.340 0.182 0.100 0.481 0.218 0.095

4 0.245 0.263 0.179 0.534 0.487 0.167 0.153 0.128 0.105 0.251 0.189 0.126 0.131 0.117 0.102 0.168 0.139 0.107
1

4
0.817 0.646 0.066 0.904 0.739 0.053 0.641 0.355 0.084 0.754 0.392 0.070 0.482 0.248 0.083 0.588 0.249 0.080

4 1 1 0.907 0.721 0.054 0.912 0.687 0.041 0.739 0.387 0.079 0.745 0.389 0.074 0.569 0.240 0.087 0.576 0.256 0.086

4 0.464 0.416 0.198 0.602 0.380 0.112 0.254 0.159 0.116 0.317 0.170 0.107 0.175 0.127 0.106 0.204 0.140 0.110
1

4
0.971 0.801 0.019 0.942 0.769 0.036 0.885 0.563 0.053 0.823 0.524 0.073 0.751 0.419 0.082 0.680 0.380 0.091

4 1 0.996 0.858 0.003 0.968 0.755 0.022 0.982 0.644 0.010 0.907 0.583 0.048 0.956 0.479 0.019 0.828 0.463 0.069

4 0.896 0.737 0.063 0.781 0.553 0.096 0.754 0.385 0.080 0.577 0.325 0.111 0.579 0.229 0.086 0.432 0.226 0.119
1

4
0.999 0.872 0.001 0.978 0.783 0.016 0.993 0.691 0.004 0.940 0.641 0.036 0.983 0.550 0.009 0.882 0.539 0.059

1

4
1 0.679 0.545 0.104 0.886 0.662 0.040 0.487 0.245 0.096 0.688 0.326 0.065 0.351 0.170 0.093 0.505 0.207 0.080

4 0.253 0.248 0.168 0.576 0.355 0.103 0.158 0.127 0.107 0.279 0.154 0.105 0.135 0.119 0.104 0.178 0.133 0.108
1

4
0.826 0.689 0.062 0.919 0.757 0.036 0.660 0.412 0.080 0.771 0.474 0.062 0.494 0.296 0.078 0.601 0.313 0.074

1

4
1 1 0.909 0.711 0.044 0.914 0.723 0.046 0.744 0.375 0.067 0.733 0.367 0.078 0.573 0.255 0.085 0.567 0.235 0.084

4 0.494 0.504 0.186 0.584 0.569 0.173 0.255 0.201 0.121 0.291 0.258 0.146 0.174 0.145 0.102 0.190 0.178 0.122
1

4
0.975 0.738 0.011 0.943 0.739 0.033 0.874 0.416 0.036 0.828 0.383 0.051 0.755 0.287 0.052 0.687 0.246 0.062

4 1 0.996 0.848 0.001 0.979 0.767 0.010 0.988 0.623 0.004 0.913 0.498 0.026 0.965 0.473 0.010 0.838 0.345 0.034

4 0.920 0.774 0.036 0.824 0.665 0.069 0.791 0.471 0.058 0.614 0.386 0.085 0.606 0.305 0.079 0.466 0.254 0.082
1

4
0.999 0.855 0.000 0.989 0.773 0.006 0.996 0.638 0.001 0.946 0.507 0.016 0.988 0.493 0.003 0.894 0.355 0.023

1

4
1 0.603 0.574 0.181 0.855 0.721 0.078 0.444 0.283 0.132 0.649 0.357 0.102 0.323 0.214 0.129 0.468 0.226 0.104

4 0.214 0.326 0.223 0.515 0.554 0.201 0.150 0.154 0.114 0.235 0.248 0.161 0.129 0.131 0.102 0.161 0.172 0.127
1

4
0.785 0.613 0.093 0.897 0.738 0.059 0.596 0.320 0.107 0.750 0.368 0.073 0.448 0.238 0.114 0.585 0.234 0.083

T
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Table 3. Finite sample rejection frequencies of SB (power) and IVcomb, IV
pre
comb (size) under volatility shifts:

T = 200, gx = 0, gz = 50, di = 1(t ≤ ⌊τT ⌋) + σi1(t > ⌊τT ⌋), i = 1, 2, 3

cx = cz = 0 cx = cz = 5 cx = cz = 10

τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7 τ = 0.3 τ = 0.7

σ1 σ2 σ3 SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb SB IVcomb IV
pre

comb

1 1 1 0.987 0.808 0.009 0.987 0.808 0.009 0.944 0.545 0.023 0.944 0.545 0.023 0.866 0.393 0.040 0.866 0.393 0.040

4 0.761 0.622 0.120 0.848 0.677 0.078 0.527 0.276 0.110 0.607 0.345 0.107 0.356 0.176 0.102 0.414 0.222 0.107
1

4
0.996 0.835 0.003 0.992 0.820 0.005 0.981 0.621 0.008 0.968 0.577 0.015 0.949 0.481 0.020 0.924 0.427 0.025

4 1 1.000 0.863 0.000 0.996 0.815 0.002 0.997 0.689 0.001 0.976 0.636 0.011 0.992 0.557 0.004 0.944 0.520 0.021

4 0.984 0.819 0.010 0.956 0.748 0.023 0.946 0.566 0.023 0.857 0.518 0.048 0.871 0.392 0.044 0.740 0.375 0.065
1

4
1.000 0.866 0.000 0.998 0.820 0.002 0.999 0.701 0.001 0.983 0.647 0.009 0.996 0.575 0.002 0.958 0.534 0.016

1

4
1 0.886 0.710 0.054 0.973 0.807 0.015 0.777 0.420 0.063 0.908 0.523 0.035 0.639 0.297 0.076 0.809 0.364 0.052

4 0.465 0.441 0.197 0.796 0.670 0.098 0.293 0.186 0.121 0.530 0.314 0.121 0.210 0.143 0.108 0.339 0.206 0.119
1

4
0.951 0.768 0.022 0.983 0.820 0.009 0.882 0.531 0.041 0.948 0.561 0.021 0.793 0.406 0.051 0.882 0.401 0.034

4 1 1 0.988 0.812 0.008 0.987 0.786 0.008 0.942 0.552 0.026 0.946 0.549 0.022 0.860 0.391 0.046 0.874 0.402 0.040

4 0.759 0.609 0.123 0.861 0.572 0.051 0.520 0.257 0.108 0.625 0.271 0.079 0.353 0.162 0.100 0.431 0.183 0.094
1

4
0.996 0.849 0.003 0.992 0.825 0.006 0.981 0.656 0.011 0.970 0.638 0.016 0.948 0.528 0.022 0.925 0.513 0.032

4 1 0.999 0.874 0.001 0.994 0.790 0.004 0.996 0.690 0.003 0.977 0.649 0.012 0.990 0.544 0.005 0.944 0.546 0.026

4 0.982 0.825 0.012 0.943 0.696 0.032 0.940 0.553 0.029 0.845 0.490 0.061 0.866 0.366 0.045 0.726 0.364 0.084
1

4
1.000 0.877 0.000 0.996 0.800 0.003 0.998 0.703 0.001 0.984 0.669 0.009 0.994 0.567 0.003 0.961 0.573 0.019

1

4
1 0.891 0.708 0.047 0.978 0.776 0.009 0.784 0.410 0.055 0.922 0.501 0.021 0.649 0.276 0.063 0.826 0.337 0.038

4 0.487 0.418 0.167 0.829 0.545 0.052 0.297 0.170 0.112 0.575 0.227 0.076 0.218 0.136 0.105 0.370 0.158 0.093
1

4
0.957 0.801 0.020 0.985 0.826 0.008 0.894 0.584 0.036 0.952 0.621 0.018 0.797 0.464 0.049 0.889 0.476 0.032

1

4
1 1 0.987 0.805 0.009 0.987 0.810 0.008 0.947 0.545 0.018 0.941 0.535 0.024 0.869 0.409 0.040 0.857 0.382 0.044

4 0.773 0.681 0.113 0.847 0.729 0.084 0.536 0.349 0.122 0.589 0.435 0.146 0.356 0.239 0.124 0.400 0.292 0.146
1

4
0.997 0.816 0.001 0.992 0.817 0.005 0.980 0.573 0.007 0.969 0.549 0.012 0.949 0.437 0.017 0.924 0.390 0.024

4 1 0.999 0.872 0.000 0.997 0.821 0.002 0.998 0.691 0.001 0.975 0.618 0.011 0.993 0.573 0.003 0.939 0.483 0.019

4 0.985 0.841 0.008 0.958 0.778 0.022 0.955 0.616 0.018 0.852 0.551 0.053 0.884 0.462 0.035 0.736 0.414 0.068
1

4
1.000 0.874 0.000 0.998 0.825 0.002 0.999 0.697 0.001 0.983 0.622 0.008 0.997 0.584 0.001 0.954 0.489 0.014

1

4
1 0.849 0.721 0.090 0.970 0.815 0.018 0.749 0.455 0.093 0.901 0.529 0.043 0.623 0.351 0.108 0.798 0.368 0.063

4 0.407 0.530 0.271 0.790 0.730 0.114 0.285 0.253 0.153 0.498 0.421 0.177 0.204 0.199 0.139 0.320 0.281 0.166
1

4
0.946 0.743 0.026 0.982 0.823 0.011 0.851 0.487 0.058 0.944 0.542 0.023 0.761 0.386 0.073 0.878 0.378 0.038

T
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 1. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 0;
S: – . – , SB: , tu: - - - , Q: – –

F
.1



(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 2. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 5;
S: – . – , SB: , tu: - - - , Q: – –

F
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 3. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 10;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 4. Asymptotic rejection frequencies of S, SB (power) and tu, Q (size): gx = 0, cx = cz = 20;
S: – . – , SB: , tu: - - - , Q: – –
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 5. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb, t
pre
u , Qpre, IV pre

comb (size): T = 200, gx = 0, cx = cz = 0;
SB: , tu: - - - , Q: – – , IVcomb: · · · , t

pre
u : - N - , Qpre: – N – , IV pre

comb: · · ·N · · ·

F
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 6. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb, t
pre
u , Qpre, IV pre

comb (size): T = 200, gx = 0, cx = cz = 5;
SB: , tu: - - - , Q: – – , IVcomb: · · · , t

pre
u : - N - , Qpre: – N – , IV pre

comb: · · ·N · · ·

F
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 7. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb, t
pre
u , Qpre, IV pre

comb (size): T = 200, gx = 0, cx = cz = 10;
SB: , tu: - - - , Q: – – , IVcomb: · · · , t

pre
u : - N - , Qpre: – N – , IV pre

comb: · · ·N · · ·

F
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(a) σxy = 0, σzy = 0 (b) σxy = −0.70, σzy = −0.35 (c) σxy = −0.70, σzy = −0.70

(d) σxy = −0.70, σzy = 0 (e) σxy = −0.70, σzy = 0.35 (f) σxy = −0.70, σzy = −0.70

Figure 8. Finite sample rejection frequencies of SB (power) and tu, Q, IVcomb, t
pre
u , Qpre, IV pre

comb (size): T = 200, gx = 0, cx = cz = 20;
SB: , tu: - - - , Q: – – , IVcomb: · · · , t

pre
u : - N - , Qpre: – N – , IV pre

comb: · · ·N · · ·

F
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