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1 Introduction

Many economic and political decisions involve the allocation of resources under a

budget constraint. Examples are the allocation of public goods, the redistribution

across classes of beneficiaries, the allocation of tax burden, the choice of intertemporal

expenditure streams, or the macro-allocation between expenditure, tax receipts and

net debt. Here we explore the possibility of taking these decisions collectively by

voting by an electorate or a representative body. This will be done in a general

multi-dimensional setting in which alternatives are elements of a convex subset of a

Euclidean space and preferences are convex. The budget allocation problem is the

special case in which the set of alternatives is a budget hyperplane.

Standard approaches to preference aggregation and voting assume ordinal or even

cardinal preference information as their input. Their application to budget allocation

and general multi-dimensional problems poses substantial difficulties. At the foun-

dational level, except for the one-dimensional case with two public goods and single-

peaked preferences (Black, 1948; Arrow, 1951/63), one is faced with generic impossi-

bility results under all reasonable domain restrictions (Kalai et al., 1979; Le Breton

and Weymark, 2011) just as in spatial voting models (Plott, 1967). In particular,

in higher dimensions there is no hope to generally find a Condorcet winner even if

all agents have well-behaved (e.g. Euclidean) preferences. Indeed, the indeterminacy

of majority voting is generic and can be severe (McKelvey, 1979). Thus, from the

point of view of ordinal social choice theory, it is not even conceptually clear what

allocations an optimal voting rule should aim at.

From a more applied mechanism design perspective, the task of articulating and

communicating a complete ordering over the set of all alternatives for each agent

(whether citizen or representative) is hard unless the number of alternatives is small.

It seems impossibly hard in the budget allocation problem in which the number of

alternatives grows exponentially in the number of dimensions (i.e. alternative uses of

the public resource). Clearly, much is to be said for making the task of the voter as

easy as possible.

Tops-Only Elicitation

Here, we take an informationally minimalist approach by assuming that only vot-

ers’ preference tops are individually elicited. This keeps cognitive demands on the
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voter at a minimum in that it requires every voter only to determine what he must

in order to arrive at a choice all by himself.1 Further, knowledge of at least vot-

ers’ tops is indeed required to arrive at a well-founded social decision in the most

elementary instances of aggregation, namely those of complete unanimity. Lastly,

tops-only elicitation stands out also when incentive considerations are introduced.

While tops-onliness can obviously not generally ensure strategy-proofness, it avoids

the ‘built-in’ manipulability of sub-top preference information on rich domains of

generalized single-peaked (in particular: convex) preferences; see Section 6 for more

details on the incentive perspective.

Alluding to the notion of ‘fast and frugal heuristics’ due to Gigerenzer and Gold-

stein (1996), we refer to our modeling approach as frugal in the sense of being infor-

mationally parsimonious while ensuring ‘good enough’ outcomes at the same time.

The Social Evaluator as an Imprecise Bayesian

Besides the individually elicited tops, relevant information may include background

knowledge about the structure of voters preferences; here we shall focus on knowledge

of preference convexity. We aim to determine which alternatives are socially optimal

given this tightly limited information. This task is framed as the decision problem of a

‘social evaluator’ who is modeled as imprecise Bayesian whose beliefs are described by

a set of admissible probability measures (‘priors’) over profiles of ordinal preferences.2

There are two key ingredients to such a model: assumptions on the evaluator’s

beliefs and a decision criterion relative to those beliefs. As decision criterion, we

shall introduce an ex-ante extension of the classical Condorcet criterion to imprecise

Bayesian uncertainty. The evaluator’s beliefs must respect the available information,

elicited individually and qua background. Furthermore, we assume the evaluator to

be substantially ignorant beyond what is exactly known. This forces her beliefs to be

imprecise (i.e. to consist of a proper, in fact quite large, set of priors).

By specifying an appropriate class of belief models, we find a sweet spot where

1Reliance on tops-only elicitation thus addresses a fundamental tension in the standard ordinal
aggregation framework, as the elicitation of a complete ordinal ranking requires much more cognitive
effort on part of the individuals than would be required for solo decision making, while individual
incentives to figure out ones own preferences are greatly reduced due the diluted impact of a voter on
the final choice. This theme of ‘rational ignorance’ goes back to Down’s classic treatment (Downs,
1957, pp. 244-246, 266-271).

2In contrast to a ‘social planner’ who pursues own goals, our envisioned ‘social evaluator’ is
assumed to act on behalf and in the interest of the group of agents.
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ex-ante Condorcet winners do exist and can be tractably characterized and analyzed.

Indeed, from such premises, the central result of the paper, Theorem 1, obtains a

decision-theoretic foundation of a refinement of the classical multi-dimensional gen-

eralization of the median rule, the Tukey median (Tukey, 1975).

We now describe in a bit more detail the decision criterion and the model of beliefs

at the heart of this argument.

The Ex-Ante Condorcet Approach

To determine ‘ex-ante’ optimal social choice with imprecise Bayesian beliefs, we pro-

pose a novel ex-ante Condorcet (EAC) approach. The EAC approach relies on ex-ante

comparisons between arbitrary pairs of alternatives. These comparisons are based on

the interval of expected majority counts consistent with the evaluator’s imprecise set

of priors. Significantly, these pairwise comparisons can be made on this basis in an

arguably canonical manner without reference to subjective attitudes of pessimism

vs. optimism, or ambiguity aversion vs. ambiguity seeking. The EAC approach then

uses this ex-ante majority relation to select an ex-ante Condorcet winner if it exists,

and settles for some Condorcet extension rule – left unspecified here – if not. Re-

markably, in the models at the center of this paper, ex-ante Condorcet winners do

exist and can be characterized explicitly.

Knowledge of Convexity is not Enough

The most straightforward model of the evaluator’s belief set, the plain convex model,

is to include all priors consistent with the available information. While seemingly nat-

ural, the plain convex model results in degenerate optimal choices which we attribute

to the implied extreme – and excessive – ignorance.

In the one-dimensional case in which convexity is tantamount to single-peakedness

of ex-post preferences, the plain convex model is very successful. As the ex-post Con-

dorcet winner is the median of voters’ tops, it is known ex-ante and equal to the

ex-ante Condorcet winner.3 But in the multi-dimensional case (at least three com-

peting uses of resources), convexity by itself loses much of its bite. In particular, with

tops in general position, convexity does not permit any significant novel inferences

3We use the ex-ante vs. ex-post metaphor purely for conceptual purposes in order to describe the
epistemic state of the social evaluator, without any assumption of an ex-post stage in real time at
which the actual profile of (‘ex-post’) preferences is observed.
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about preferences beyond those available from knowledge the tops; by consequence,

all tops are ex-ante Condorcet winners (Proposition 3). This appears quite counterin-

tuitive and unsatisfactory, since any notion of centrality of the putative optimal social

choice is lost, in stark contrast to the one-dimensional case and to the ‘preference for

centrality’ built into the preferences of each individual voter qua convexity.

A closer look reveals that this counterintuitive conclusion is driven by the mere

possibility of particular ex-post profiles that look very contrived and appear unlikely

a priori. In other words, assuming literally complete ignorance over preference profiles

(beyond what is known from the background and tops) is too permissive and entails a

consequential misspecification of plausible evaluator’s beliefs. This can be rectified by

injecting minimal probabilistic commitments while maintaining substantial ignorance

otherwise.

Symmetry of Marginals

To execute this, we adopt a parametric form of convex preferences, namely quadratic

preferences. A particular quadratic form describes the substitution-complementation

structure of a quadratic preference ordering in terms of the cross-partials of the utility

function. Notably, assuming quadraticity does not fix by itself the counterintuitive

implications of the plain convex model, for the expected majority counts remain

exactly the same as the plain convex model (Fact 4.1).

Within this setting, the counterintuitive conclusions of the plain convex and plain

quadratic models can be overcome by assuming that the evaluator’s beliefs are sym-

metric in the sense that, for each admissible prior, the marginal distribution over

quadratic forms is the same across voters irrespective of their top. Such ‘symmetry of

marginals’ expresses the idea that the evaluator lacks any grounds to form different

probabilistic beliefs about the unknown quadratic preference structure of different

voters; in particular, the knowledge of voters’ tops does not provide such a ground.

Symmetry of marginals is weak in that it does not impose any additional restriction

on the empirical joint distribution of the actual preference profile.

Besides symmetry of marginals, we furthermore assume that beliefs about these

marginals are completely ignorant (maximally imprecise), just as in the plain convex

model. These assumptions define the class of symmetrically ignorant quadratic (s.i.q.)

models of the evaluator’s beliefs. The main result of the paper, Theorem 1, shows

that in any s.i.q. model ex-ante Condorcet winners exist and coincide, when unique,
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with the classical Tukey median. When not unique, the EAC winners are shown

to coincide with a well-defined refinement of the set of Tukey medians. The Tukey

median is a well studied coordinate-free (affine invariant) generalization of ordinary

medians to multiple dimensions (Small, 1990; Rousseeuw and Hubert, 2017).

While our decision-theoretic foundation via Theorem 1 literally assumes knowl-

edge of quadratic preferences, this is not really necessary for the thrust of the result.

In Appendix C, we show that the result generalizes to mixtures of the s.i.q. models

and the plain convex model – exactly with a continuum of voters, and approximately

in the finite case. In this way, the ex-post quadraticity restriction on profiles can be

avoided.

A more orthodox modeling strategy would postulate the evaluator’s beliefs to be

precise (i.e. consist of unique priors). But this approach has limited appeal here,

as we argue in Section 5 below. Most importantly, we prove an impossibility result

(Theorem 2) showing that, in the present setting, the evaluator’s lack of knowledge

of the underlying profiles of convex preferences cannot be captured by precise priors

since such priors cannot satisfy the pertinent affine invariance requirements.

The Tukey Median as Voting Mechanism

The main contribution of the paper is a characterization of the social optimum under

specific informational assumptions which include knowledge of the voters tops. With

self-interested agents, such knowledge cannot be taken for granted. While a full

exploration of these incentive-issues is beyond the scope of the present paper, we

argue in Section 6 that the Tukey median retains significant merits also from the

incentive perspective and that it compares favorably to off-the-shelf alternatives in

the economic and statistical literature.

While full strategy-proofness on the domain of all convex, or all quadratic, pref-

erences is out of the question, due to well-known impossibility results such as Zhou

(1991), one can ask for restricted strategy-proofness properties. The Tukey median

indeed satisfies some salient properties of this kind (cf. Proposition 4) – along with

other multi-dimensional medians, but in contrast to the mean rule and many sim-

ilar score-based rules. Among the multi-dimensional medians, the Tukey median

stands out in its adaptation to the informational setting. Such adaptation requires in

particular affine invariance and thus rules out a number of other multi-dimensional

medians considered in the literature on strategy-proof social choice (Gershkov et al.,
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2019, 2020; Freeman et al., 2021), see Section 6 for further discussion.

Finally, the Tukey median receives additional motivation from the connection to

the literature on strategy-proof social choice on restricted domains. Indeed a central

finding of that literature has been that, on those domains on which strategy-proof

social choice rules exist at all, these rules must be tops-only, see Chatterji and Sen

(2011) and the references therein. Moreover, if one focuses on anonymous and neutral

rules, these must be multi-dimensional medians of sorts (‘issue-wise majority voting’)

(Nehring and Puppe, 2007b). Heuristically, the Tukey median can thus be viewed

as a mechanism that imitates salient qualitative features of such mechanisms on an

impossibility domain.

Related Literature

To the best of our knowledge, the present EAC approach and its application to the

‘frugal aggregation’ model of budget allocation are new to the literature. But there

are, of course, related approaches in the literature. Indirectly, the Tukey median has

been studied in the social choice literature inasmuch as it is equivalent to the outcome

of the minimax voting rule in standard spatial voting with Euclidean preferences

(Kramer, 1977; Demange, 1982; Caplin and Nalebuff, 1988). This model can be

viewed as a degenerate frugal model in which voters preferences conditional on their

top are known. (But with this additional, sub-top preference information, the Tukey

median is no longer welfare optimal as we argue in Appendix C.2.2.)

Most work of theoretical interest in the problem of incomplete information as stud-

ied here has come from the computer science literature, see Boutilier and Rosenschein

(2016) for an overview.4 One strand explores the implications of partial knowledge

of complete (ex-post) preference profiles for inferences about the outcome of stan-

dard social choice rules and criteria, e.g. via the notions of ‘possible’ vs. ‘necessary’

winners (Konczak and Lang, 2005). A rather small strand in the literature adopts

a decision-theoretic ex-ante approach as the present paper does. Some papers seek

solutions that maximize expected welfare based on some utilitarian welfare criterion

and a probability distribution over profiles, frequently uniform. Others argue for

the modeling of the social evaluator’s epistemic state in terms of a set of possible

profiles, as we do, and propose to apply classical criteria of decision making under

4We thank Jérôme Lang who pointed us to the pertinent literature.
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ignorance such as maximin or minimax regret (Lu and Boutilier, 2011). In the highly

complex state spaces associated with the epistemic models studied here, it may be

very difficult to execute these approaches if that is possible at all. Significantly, the

two quoted strands share the major conceptual limitation of having to rely on an

interprofile-comparable standard of aggregate welfare ex post. Thus, they in fact

suppose that the Arrovian problems of coherent aggregation and interpersonal non-

comparability have been solved or assumed away, e.g. by assuming strong forms of

utilitarian aggregation ex post.

By contrast, the EAC approach introduced here rests on an evaluation of decisions

in pairs of alternatives taking the full state space (set of possible profiles) into account.

In such pairwise comparisons, the majority criterion carries over naturally to the ex-

ante stage, without raising new issues of interpersonal comparison, and allowing a

tractable characterization in many cases. These pairwise comparisons need then be

put together to obtain a coherent rationale for an ex-ante evaluation of complex

choices such as budget allocations. At this juncture, Arrovian style issues of coherent

aggregation might arise in principle. It is a rather remarkable finding of this paper

that, for symmetrically ignorant sets of priors, these problems do not materialize.

With respect to the focal application to the allocation of public budgets, there is

an important, lively literature on ‘participatory budgeting’ with intended application

to cities and local communities (Shah, 2007). Participatory budgeting schemes have

been put into practice at various scales in many places around the world. The ballots

are typically very parsimonious, often taking the form of a set of projects approved.5

Again, most of the theoretical contributions come from the computer science commu-

nity, with a focus on indivisibilities and on ‘proportionality’ considerations to ensure

that the interest of different local subcommunities are fairly represented (Aziz and

Shah, 2020). By contrast, our focus is on continuous divisible budgets, and on find-

ing allocations that best satisfy the aggregate interest (in line with most of standard

voting theory).

5See, for instance, the open source project ‘Stanford Participatory Budgeting Platform’
(https://pbstanford.org) which offers guidance and allows municipalities, cities and other institu-
tions to run participatory budgeting elections online.
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Overview of Paper

The remainder of this paper is organized as follows. In Section 2, we introduce the

general EAC approach. The subsequent two sections apply it to the budget allocation

problem under the assumption that the social evaluator knows the profile of voters’

top alternatives (the ‘frugal aggregation’ model). Section 3 studies the plain convex

model which assumes in addition knowledge of convexity of voters’ preferences but

complete ignorance about anything else. Proposition 3 shows that, generically, the

set of ex-ante Condorcet winners coincides with the set of voters’ tops. In contrast,

by our main result, Theorem 1 in Section 4, in the symmetric quadratic model the

ex-ante Condorcet winner coincide with (a refinement of) the Tukey median. Section

5 proves an impossibility result (Theorem 2) showing that the epistemic state of the

social evaluator envisaged here cannot be described by a single ‘uninformative’ prior.

Section 6 offers some considerations on the use of the Tukey median as a voting

mechanism played by self-interested voters, and Section 7 concludes

Most proofs are gathered in Appendix B. Appendix C discusses the robustness

of our analysis with respect to the specific epistemic assumptions about the social

evaluator.

2 Condorcet Winners, Ex-Ante

We envisage a social evaluator who has to choose from a universe of alternatives

X on behalf of a group of n ∈ N voters under uncertainty about their preferences.

The social evaluator is modeled as an ‘imprecise’ Bayesian decision maker, i.e. his

epistemic state is described by a set of probability distributions over ‘admissible’

profiles <= (<1, ...,<n) of true (‘ex-post’) preferences.

Concretely, denote by π a probability measure over profiles (<1, ...,<n) of complete

preference orderings over X, and by Π a non-empty set of admissible such priors.6

The social evaluator is completely ignorant as to which probability distribution in Π

is the most appropriate and therefore needs to take into account all of them.

Often one will be interested in cases in which the priors in Π satisfy specific

additional properties. For instance, an important special case in the following will

6To make this fully rigorous, one needs to specify a measure space on the set of profiles. For our
purposes, the essential property is that, for each agent i and all alternatives x and y, the ‘event’
that agent i prefers x to y represents a measurable set.
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involve X ⊆ RL and the assumption that all priors are concentrated over profiles of

convex preferences.

For all distinct x, y ∈ X, a prior π ∈ Π induces an expected support count mπ(x, y)

of votes for x against y, i.e.

mπ(x, y) := Eπ [#{i : x �i y}] , (2.1)

where Eπ denotes the expectation operator with respect to the probability distribution

π. Thus, a set of priors induces an interval mΠ(x, y) of expected support counts in

the vote of x against y,

mΠ(x, y) :=
[
m−Π(x, y) , m+

Π(x, y)
]
,

where

m−Π(x, y) := inf
π∈Π

mπ(x, y), (2.2)

m+
Π(x, y) := sup

π∈Π
mπ(x, y). (2.3)

The family of these intervals will be what matters in our analysis.7 In deciding ex-

ante on a hypothetical choice between x and y, it is natural to base this choice on a

comparison of the intervals mΠ(x, y) and mΠ(y, x). Due to the imprecision of priors,

the intervals mΠ(x, y) and mΠ(y, x) may overlap in general. But due to the additivity

of the complementary vote counts for x against y and for y against x, a comparison

of the lower and upper expected counts must yield the same result. This evidently

holds if preferences are known to be strict ex-post. To guarantee it more generally,

the following regularity condition is needed which ensures that possible indifferences

play a negligible role; this condition is satisfied in all applications considered in the

following, and we maintain it throughout. Say that a set of priors Π is regular if for all

priors π ∈ Π and all pairs x, y ∈ X of distinct alternatives, there exists a prior π′ such

that π′(x ∼i y) = 0 for all i = 1, ..., n, and mπ′(x, y) ≤ mπ(x, y). Thus, regularity

guarantees that, for any pair x, y ∈ X, the minimal/infimal expected support for x

against y is realized by a prior for which all indifferences between x and y have zero

7Other approaches are conceivable; for a justification of our modeling choice to base the ex-ante
decision between two alternatives x and y on the support counts defined in (2.1), see Appendix A
below.

10



probability.

Proposition 1. Let Π be regular. For all θ and all distinct x, y ∈ X,

m−Π(x, y) ≥ m−Π(y, x) ⇐⇒ m+
Π(x, y) ≥ m+

Π(y, x). (2.4)

(Proof in appendix.)

By Proposition 1, an unambiguous balance of uncertainties ex-ante is possible;

in contrast to the classical theory of decision making under ignorance (Luce and

Raiffa, 1957), there is no need or even meaningful role for an evaluator’s degree of

pessimism vs. optimism (ambiguity aversion vs. ambiguity proneness in more modern

terminology).8

The ex-ante majority relation RΠ (for regular Π) is now defined as follows.

For all distinct x, y ∈ X,

xRΠy :⇐⇒ m−Π(x, y) ≥ m−Π(y, x) (2.5)

⇐⇒ m+
Π(x, y) ≥ m+

Π(y, x).

The maximal elements with respect to the ex-ante majority relation are referred

to as the ex-ante Condorcet winners, i.e.

CW(Π) := {x ∈ X | xRΠy for all y ∈ X}.

An aggregation rule is called ex-ante Condorcet consistent if it selects all

ex-ante Condorcet winners (if there are any).

In the following, we will refer to a set of priors Π as a model (of the evaluator’s

epistemic state). Moreover, we will say that two models are equivalent if they induce

the same expected majority intervals. Note that, trivially, sets of priors with the

same convex hull are equivalent, but the converse need not be true. Evidently, two

equivalent models induces the same set of ex-ante Condorcet winners, i.e. CW(Π′) =

CW(Π) whenever Π′ and Π are equivalent.

8Nor is there a conflict – possibly even threatening an Arrow-like impossibility – between axioms
of choice consistency and of independence; see Milnor (1954); Arrow (1960); Nehring (2000, 2009).
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3 The Plain Convex Model

In the rest of this paper, we will study the case in which X is a convex subset of RL

for some L ∈ N, and all preferences in any profile are convex. For our purposes, the

following notion of convex preference will be useful. A weak order < on X ⊆ RL is

convex if, (i) for all x, y, z, w ∈ X, y = t · x + (1 − t) · z for some 0 ≤ t ≤ 1, x < w

and z < w jointly imply y < w, and (ii) for all x, y, z ∈ X, y = t · x + (1 − t) · z for

some 0 < t < 1, and x � z jointly imply y � z.9

An important economic application is the budget allocation problem in which X

takes the form of a budget hyperplane. Concretely, consider a group of agents that

has to collectively decide on how to allocate a fixed budget, normalized to unity, to

a number L of public goods. Assuming given prices, the problem is fully determined

by specifying the expenditure shares. The corresponding allocation problem can thus

be modeled as the choice of an element of the following (L−1)-dimensional polytope:

X :=

{
x ∈ RL |

L∑
`=1

x` = 1 and x` ≥ 0 for all ` = 1, ..., L

}
, (3.1)

where x = (x1, ..., xL). Convex preferences are entirely standard in this context.

Other applications include the spatial voting model in which the coordinates rep-

resent different issues and alternatives represent political positions on these issues

(Downs, 1957), or the collective choice of design of projects positioned in a charac-

teristics space in the sense of Lancaster (1966).

The model of all priors with convex preferences on X without any further restric-

tion is referred to as the plain convex model and denoted by Πco.

3.1 Certainty about Tops

To simplify the task of the social evaluator, we assume in the main text that the

evaluator knows the top choices of voters (in Appendix C.1, we show that this as-

sumption can be relaxed). Concretely, denote by θ = (θ1, ..., θn) the profile of the

voters’ top alternatives which we assume to be unique. The epistemic state of the

social evaluator will now be denoted by Πθ
co to indicate the knowledge of θ. Here, the

9Observe that (ii) is clearly implied by but significantly weaker than strict convexity. For instance,
linear preferences satisfy both conditions (i) and (ii) but are not strictly convex.
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set Πθ
co is assumed to consist only of priors π that are compatible with the top profile θ

in the sense that every profile <= (<1, ...,<n) in the support of π has θ = (θ1, ..., θn)

as the corresponding top profile.

3.2 The One-Dimensional Case: Median Voting

In the one-dimensional case, our notion of preference convexity is equivalent to the

standard notion of single-peakedness, and the choice of the median top(s) constitutes

the unique ex-ante Condorcet consistent aggregation rule; specifically, we have the

following result. For every profile θ = (θ1, ..., θn), denote by θmed the unique median

if n is odd, and by [θmed− , θmed+ ] the median interval if the number of voters is even.

Proposition 2. Suppose that X ⊆ R, and let θ = (θ1, ..., θn) be a profile of tops in

X. Then,

CW(Πθ
co) =

{
{θmed} if n is odd

[θmed− , θmed+ ] if n is even
.

(Proof in appendix.)

Thus, in the one-dimensional case the ex-post and ex-ante Condorcet criterion

give the same result under single-peakedness. The reason is, evidently, that under

knowledge of single-peakedness any given top uniquely determines the preference on

both sides of the top, and that is all what is needed to apply the Condorcet criterion.

3.3 The Multi-Dimensional Case: Generic Plurality Rule

In the multi-dimensional case, a result similar to Proposition 2 holds if the top profile

is contained in a one-dimensional subspace; but in general, in the plain convex model

the ex-ante Condorcet winners essentially coincide with the plurality winners.

In the following, we say that a set of points Y ⊆ RL is in general position if no

three elements of Y are collinear. The crucial observation for the plain convex model

is that, if θ, x, y are not collinear, then there exist convex preferences < and <′ with

top θ such that x � y and y �′ x. This implies the following characterization of the

ex-ante Condorcet winners in the plain convex model. For its formulation, it will be

useful to identify profiles of individual tops with type profiles of tops with different

counts. Specifically, we denote by θ = (θ1; p1, ..., θm; pm) the anonymous profile in

which the fraction pi of all voters has top θi, where 0 < pi ≤ 1 and
∑

i pi = 1; in
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that context, we also refer to θi as the type of voter i and assume without of loss of

generality that the θi are pairwise distinct.

Proposition 3. Consider a type profile (θ1; p1, ..., θm; pm) such that {θ1, ..., θm} ⊆ X

are in general position. If pi∗ is maximal among {p1, ..., pm}, then θi∗ ∈ CW(Πθ
co).

Moreover, if pi∗ is uniquely maximal among {p1, ..., pm}, then

CW(Πθ
co) = {θi∗}.

(Proof in appendix.)

This is somewhat paradoxical. Intuitively it would appear that preference convex-

ity contains substantial information beyond knowledge of the tops but Proposition 3

appears to contradict this. What is amiss?

Example 1. Consider a set of voters with pairwise distinct tops in a set U . In ad-

dition, suppose that two voters are concentrated at a point x outside U (see Figure

1). If all tops in U plus the point x are in general position then, according to Propo-

sition 3, x is the unique ex-ante Condorcet winner. Indeed, for any point z 6= x,

m−
Πθco

(x, z) = 2 while m−
Πθco

(z, x) ≤ 1, or equivalently, m+
Πθco

(x, z) ≥ n − 1. Note that

the expected majority intervals are extremely wide, and the ex-ante Condorcet winner

is left to ‘grasp for straws’ in picking the optimal alternative that happens to be the

top of two voters rather than just of one. Nonetheless, if the epistemic state of the

social evaluator is literally that of complete ignorance within Πθ
co, then the ex-ante

preference for x over any other alternative z seems defensible.

However, this rationale is not very robust. Consider in particular the comparison

of x to y where y is sufficiently close to x and ‘between’ x and U as shown in Fig. 1.

Note that for x to be preferred to y by some voter with top θi in U , i’s preference must

be very special; for instance, geometrically, only rather special ellipses with center at

θi that include x will not include y.

The conceivable convex preference for x against y of a voter with top in U , on which

the conclusion in Example 1 hinges, seems very unlikely a priori. It would therefore

be desirable to capture this intuition by an appropriate specification of somewhat

more precise evaluator’s beliefs. The challenge is to describe these regularized beliefs

in a qualitative manner that is weak enough to be acceptable on slim information
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xy

U

Figure 1: Illustration of Proposition 3

while at the time sufficiently strong to have substantive implications. This task is at

the heart of this paper and is taken on in the next section.

4 Symmetrically Ignorant Quadratic Models

Our proposal for modeling the evaluator’s beliefs in a more appropriate and specific

manner involves two key features: First, we conceptually separate voters’ tops from

the substitution vs. complementation structure of preferences, and secondly, we as-

sume that this substitution vs. complementation structure is ‘ex-ante independent’ of

the tops. The first feature allows one to model preferences as quadratic; the second

feature means that knowledge of the tops is not informative ex-ante for the substitu-

tion vs. complementation structure described by the quadratic preferences.

Specifically, say that a preference < on X is quadratic if it can be represented

ordinally by a utility function of the form

uθi(x) = −(x− θi)T · Qi · (x− θi), (4.1)

for some θi ∈ X and a positive definite, symmetric L× L matrix Qi. Geometrically,

the representation in (4.1) means that the indifference curves are ellipsoids generated

from circles with center θi by a common affine transformation. The special case

in which the quadratic form Qi is the identity matrix I corresponds to the case of

Euclidean preferences which has been extensively studied in the literature on spatial

voting (Austen-Smith and Banks, 1999).

The cross-partial derivatives given by Qi capture the specific pattern of comple-

mentarities and/or substitutabilities between different goods. Quadratic preferences

can thus also be viewed as (second-order) Taylor approximations of arbitrary smooth

convex preferences. Denote by Πquad ⊆ Πco the model consisting of all sets of priors
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over profiles of quadratic preferences on X, the plain quadratic model. Evidently,

for all tops θi ∈ X and all x, y ∈ X such that θi, x, y are not collinear, there exist

quadratic preferences <i,<′i both with top θi such that x �i y and y �′i x. By

consequence, we have:

Fact 4.1. The models Πquad and Πco are equivalent. In particular, the two models

induce the same ex-ante majority relation and CW(Πquad) = CW(Πco).

Thus, the plain quadratic model can be viewed as a parametrized version of the

plain convex model. In particular the ‘generic plurality’ conundrum posed by Example

1 continues to apply to the plain quadratic model. But the great boon of the quadratic

model is that it allows for a clear separation between the preference top and the

preference structure (described by the quadratic from Qi). This will be the key in

our proposed resolution of the puzzle posed by Example 1.

Specifically, the epistemic state of the evaluator is given by a set of priors Π with

state space Xn × Qn where X is the set of all possible tops and Q the set of all

quadratic forms (symmetric and positive definite L × L matrices). For every prior

π ∈ Π and all voters i = 1, ..., n, denote by π|Xi and π|Q1 the marginal distributions

induced by π on Xi (the ith copy of X) and Qi (the i-th copy of Q), respectively.

In the remainder of this section, we will impose the following conditions on a

model Π. For all x ∈ X, denote by δx the degenerate probability distribution that

puts unit mass on x; similarly, for all Q ∈Q, denote by δQ the degenerate probability

distribution that puts unit mass on Q.

1. Quadratic Preferences. Π ⊆ Πquad.

2. Tops Certainty. For all π ∈ Π and all i, π|Xi = δθi for some θi ∈ X.

3. Symmetry of Marginals. For all π ∈ Π and all i, j, π|Qi = π|Qj .

4. Complete Ignorance of Marginals. For all i and all Q ∈ Q, there exists

π ∈ Π such that π|Qi = δQ.

A model Π satisfying Assumptions 1 to 4 will be called symmetrically ignorant

quadratic, or s.i.q. for short. Assumption 2 means that all voters’ tops are known;

therefore Assumptions 1 and 2 can be summarized as requiring Π ⊆ Πθ
quad in our pre-

vious notation, where θ = (θ1, ..., θn) is the known profile of voters tops. Assumption
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3 means that an individual’s top (or any other observable individual characteristic)

does not contain any information on the distribution of the individual’s preferences by

itself. Finally, Assumption 4 assumes in effect complete ignorance about each agent’s

Qi. More detailed discussion of these assumptions is provided in Section 5 below and

in Appendix C.

The plain quadratic model satisfies all assumptions except Symmetry of Marginals.

The ‘regularizing’ effect of the Symmetry of Marginals assumption can be illustrated

in Example 1.

Example 1 (cont.) Consider again the situation depicted in Fig. 1 above, but now

suppose that the epistemic state of the social evaluator is described by a symmetric

quadratic model Π rather than by the plain convex model. The minimal expected ma-

jority count for x against y is still 2, since it is evidently possible to find a symmetric

prior such that all voters in U prefer y to x, i.e. m−Π(x, y) = 2. For example, one may

take the prior that assumes with certainty that all preferences are Euclidean. What

about m−Π(y, x)? As before, one can assign quadratic forms (Q1, ...,Qn) to the tops

such that all voters with top in U prefer x to y. But, as is evident from Fig. 1, these

quadratic forms generally have to be distinct for different voters; the prior assuming

this profile with certainty is therefore not symmetric. Any symmetric prior must thus

be properly probabilistic; for example, a symmetric prior might assign equal probability

1/n! to each of the permutations of the profile (Q1, ...,Qn). But for any such prior

the expected majority count for y against x will be at least 3, i.e. m−Π(y, x) ≥ 3, as a

key argument in the proof of our main result shows; for the geometric intuition behind

this argument, see Figure 3 below. Hence, for any symmetric quadratic model Π we

obtain m−Π(y, x) > m−Π(x, y), and thus yPΠx, where PΠ denotes the asymmetric part

of the ex-ante majority relation RΠ; in other words, x is not an ex-ante Condorcet

winner.

At one extreme, there exists a unique largest (most imprecise) s.i.q. model Πsym
quad

consisting of all symmetric priors. Note that it does not impose any additional knowl-

edge, i.e. probability one restrictions, beyond the plain quadratic model; it can thus

be viewed as a regularized version of that model.

At the other extreme, there is also a unique smallest (most precise) s.i.q. model,

as follows. Call a prior uniform if all voters have the same quadratic form with

probability one (while there may be uncertainty about what the common quadratic

form is), and denote by Πunif the uniform (quadratic) model consisting of all
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uniform priors. Moreover, denote by Πexunif the extremal uniform model consisting

of all uniform priors of the form δ(Q,...,Q), i.e. all priors that put unit mass on some

single profile of the form (Q, ...,Q). Evidently, the extremal uniform model satisfies

Assumptions 1 to 4; conversely, combining Assumptions 3 and 4 also shows that any

s.i.q. model contains the extremal uniform model.10

There is a wide range of intermediate specifications. For example, the quadratic

forms Qi can be assumed to be drawn i.i.d. from some unknown distribution. In the

subjectivist tradition, this is captured (and slightly generalized in the finite case) by

assuming that Π consists of all exchangeable priors in the sense of de Finetti (1931).11

Finally, a s.i.q. model Π may also incorporate beliefs about possibly learnable corre-

lations between the tops and the quadratic forms.

It turns out that ex-ante Condorcet winners in the s.i.q. models exist, and that

they are Tukey medians (Tukey, 1975) of a particular kind. For all x ∈ X, denote by

Hx the family of all Euclidean half-spaces that contain x (i.e. the family of all sets

of the form {y ∈ X : a · y ≥ a · x} for some non-zero vector a ∈ RL). For all profiles

θ = (θ1, ..., θn) and all half-spaces H, denote θ(H) := #{i : θi ∈ H}, and define the

Tukey depth of x at the profile θ by

d(x; θ) := min
H∈Hx

θ(H).

Intuitively, the Tukey depth measures the ‘centrality’ of x with respect to the profile

of tops: the larger d(x; θ) the more tops θi are guaranteed to lie in every direction

viewed from x, and d(x; θ) = 0 means that x can be separated from the entire set

of tops θ by a hyperplane. Denote by d∗(θ) := maxx∈X d(x; θ) the maximal Tukey

depth over X. The Tukey median rule selects, for every profile θ, the alternatives

that attain this maximal depth:

T (θ) := arg max
x∈X

d(x; θ) = {x ∈ X | d(x; θ) = d∗(θ)}. (4.2)

Our main result involves the following refinement. For all profiles θ and all x,

denote by H∗x := {H 3 x : θ(H) = d∗(θ)}. A Tukey median x ∈ T (θ) is strict if, for

10By the preceding observation, the class of all s.i.q. models forms a bounded lattice partially
ordered by set inclusion.

11Specifically, in our context a prior π is exchangeable if, for all events E ⊆Q1× . . .×Qn and all
permutations σ of agents, π(E) = π(σ(E)), where σ(E) is the event obtained from E by applying
σ.
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no y ∈ T (θ), H∗y ( H∗x. The set of strict Tukey medians is denoted by T ∗(θ).

Theorem 1. For all profiles θ and every symmetrically ignorant quadratic model

Π ⊆ Πθ
quad, CW(Π) is non-empty. Moreover,

CW(Π) = T ∗(θ).

The proof of Theorem 1 (provided in the appendix) proceeds in a series of steps.

First, it is shown that all s.i.q. models are equivalent. The argument relies crucially

on both the symmetry assumption and the EAC solution concept, in particular on

its definition based on the expected support counts (2.1). This allows us to focus on

the characterization of the analytically convenient uniform model, thus simplifying

matters greatly since the uniform model is characterized by strong ex-post restrictions

on profiles. In particular, profiles of preferences with a common quadratic form are

intermediate preferences in the sense of Grandmont (1978). More specifically, for any

two alternatives x and y, the tops in a profile of preferences with a common quadratic

form Q that prefer x to y are separated from those preferring y to x by a hyperplane

through the midpoint between x and y, see Lemma B.2 in the appendix; Figure 2

shows these hyperplanes for selected common quadratic forms (for the identity matrix

Q = I, the hyperplane is perpendicular to the straight line through x and y).

x

y

tops preferring x to y
tops preferring y to x

Q = IQ′Q′′

Figure 2: Intermediate preferences with separating hyperplane

From this one can show that the ex-ante majority relation of the uniform model

coincides locally with the comparison of alternatives in terms of their relative Tukey
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depth: for all distinct x, y ∈ X, let

xRdy :⇐⇒ min
H∈Hx, y 6∈H

θ(H) ≥ min
H∈Hy , x 6∈H

θ(H). (4.3)

The ex-ante majority relation does not coincide globally with the relative Tukey depth

relation (4.3) since the half-spaces separating the underlying tops in the quadratic

model must go through the midpoint between x and y. Nonetheless, the set of local

maxima of this relation is shown to coincide with the set of global maxima, which in

turn coincides with the set of strict Tukey medians. Finally, the existence of strict

Tukey medians is shown by an appeal to the Hausdorff maximal principle.

Example 1 (cont.) In Example 1, the Tukey depth of x relative to y is evidently

minH∈Hx, y 6∈H θ(H) = 2. Conversely, the Tukey depth of y relative to x is obtained

by looking at the straight line ∂H through x and y: the tops that support y against x

must at least contain the tops in U∩H, or the tops in U∩Hc. As can be inferred from

Fig. 3, we therefore have minH∈Hy , x 6∈H θ(H) = 3, and hence yPdx, where Pd denotes

the asymmetric part of Rd. It follows from the arguments provided in the proof of

Theorem 1 in the appendix that we thus also obtain yPΠx for any s.i.q. model Π, as

claimed above.

xy

H

Hc

∂H
U

Figure 3: The Tukey depth of y relative to x is equal to 3

To illustrate the relation between absolute and relative Tukey depth, consider the

following example.

Example 2. Suppose that there are five voters whose tops θ1, ..., θ5 form a pentagon

as shown in Figure 4. The (strict) Tukey median (and hence by Theorem 1 also the

ex-ante Condorcet winners of any s.i.q. model) is given by the points in the inner

convex pentagon marked in red.12 Fig. 4 also shows a point y and its associated upper

12This can be verified from the following observations. First, any line passing through the inner
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contour set with respect to the relative Tukey depth relation given by (4.3) in blue

color. Note in particular that the points x and y have the same (absolute) Tukey

depth but different relative depth, to wit xPdy.

θ1

θ5 θ2

θ4 θ3

y x

Figure 4: Absolute versus relative Tukey depth

While every Tukey median is strict in Example 2, it is an open question if this is the

case generally. It must be the case whenever Tukey medians are unique (because strict

Tukey medians always exist). Demange (1982) has in fact shown such uniqueness

whenever voters’ tops are continuously distributed with a convex support. Using this

result, we obtain the following ‘continuous’ version of Theorem 1.

Theorem 1′ Suppose that voters’ tops are distributed according to a continuous mea-

sure θ with convex support. Then, the strict Tukey median set T ∗(θ) consists of a

single point, and for every s.i.q. model Π ⊆ Πθ
quad,

CW(Π) = T (θ) = T ∗(θ).

(Proof in appendix.)

Appendix C discusses in detail the robustness of Theorems 1 and 1′ with respect

to our assumptions on the evaluator’s beliefs. Section C.1 shows that Assumption 2

(Tops Certainty) can be relaxed, while Section C.2 considers different specifications of

beliefs corresponding to various relaxations of Assumptions 1,3 and 4. In particular,

red pentagon has at least two tops on either side; on the other hand, for any point outside the inner
pentagon there is a Euclidean half-space containing that point and at most one top. In particular,
the maximal Tukey depth is d∗(θ) = 2; all points in the convex hull of the tops that are not in this
inner pentagon have depth one, and all points outside the convex hull of the tops have depth zero.
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Assumptions 1 (Quadratic Preferences) and 4 (Complete Ignorance of Marginals)

show substantial robustness with respect to smaller and greater precision, respectively.

5 Why not Bayesian?

An alternative, more standard modeling strategy would postulate a Bayesian social

evaluator characterized by one single prior. But this approach has limited appeal

here. First of all, the precise Bayesian approach seems difficult to execute since under

its premises ex-ante Condorcet winners will frequently fail to exist, just as in the

standard setting. This entails at least two drawbacks. First, one need to settle –

with more or less well-founded arguments – for some (ex-ante) Condorcet extension.

Moreover, even when this is resolved, one is likely going to lose much of the analytical

tractability of the present analysis, including its ability to characterize frugal optima.

Introducing probabilistic subjectivity one also loses a deeper potential of the fru-

gal aggregation framework. Indeed, this framework not only enables frugality on part

of the voters by parsimonious tops-only elicitation, but also on the side of the social

evaluator. Indeed, whose subjective probability is supposed to serve as the basis of the

evaluation? If the social evaluator was understood as a social planner (‘bureaucrat’),

one may think of the required judgmental input as reflecting the planner’s expertise;

but in a group decision context, the social evaluator is naturally viewed as represent-

ing ‘the group’ at a constitutional stage at which individual preference profiles are

unknown. Frugality in this more encompassing sense requires that the evaluator’s

beliefs be grounded in the (sparse) available information, not just consistent with this

information.

Such grounding can be captured formally by taking beliefs to be functions of the

situation-specific information (the profile of tops), i.e. prior mappings θ 7→ Π(θ). To

ensure that the prior mapping does not ‘smuggle in’ implicit information, we shall

impose two minimal uninformativeness conditions. We shall show that while these

conditions are satisfied by the imprecise models in Sections 3 and 4, they cannot

be satisfied by any precise model. Impossibilities of this kind are classic themes in

both the ancient and contemporary discussion of the foundations of probability. For

example, Bernardo and Smith summarize in their authoritative treatment of Bayesian

theory that “in continuous multiparameter situations there is no hope for a single,

unique, ‘non-informative prior’ [...]” (Bernardo and Smith, 1994, p. 366).
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The first condition of uninformativeness is a requirement of description invariance

akin to those invoked in this literature. It requires that the admissible prior map-

pings be invariant with respect to all structure-preserving bijections on the space of

alternatives. In the case of convex or quadratic preferences, the structure-preserving

mappings are the affine transformations. Formally, we will thus require affine invari-

ance of the social evaluator’s beliefs, as follows.13

Denote by C the set of all profiles of convex preference orderings on RL, and by

Cn the set of all profiles of all convex preference orderings with n voters. For any

(measurable) event E ⊆ Cn and any affine transformation t : RL −→ RL denote by

t(E) := {(�t1, ...,�tn) : (�1, ...,�n) ∈ E} the transformed event where, for all i, �ti
is the preference ordering defined by y �ti z :⇔ t(y) �i t(z).

Affine Invariance. The set of priors Π(θ) is affine invariant, if for all events E and

all affine transformations t,

Π(θ)(E) = Π(t(θ))(t(E)),

where Π(θ)(E) := {π(θ)(E) : π(θ) ∈ Π(θ)}, π(θ)(E) is the probability assigned by

π(θ) to the event E, and t(θ) is the transformed profile of tops (t(θ1), ..., t(θn)).

The next condition reflects the assumption that information about other voters’

tops does not convey information about the sub-top preferences of any given voter.

Top/Sub-top Independence. The set of priors Π(θ) is top/sub-top independent if

for all i and all i-marginal events E ⊆ C[i] – the i-th copy of C – and all profiles θ, θ′

such that θi = θ′i,

Π(θ)(E) = Π(θ′)(E).

The case for Top/Sub-top Independence is especially transparent in the quadratic

submodel. Here, the quadratic form describes the substitution/complementation pref-

erence of voters for alternatives below the top, a dimension of preference distinct in

kind from the location of their tops.

These two uninformativeness requirements cannot be satisfied by precise prior

mappings, indeed not even by mappings with precise prior marginals.

13For simplicity, we assume X = RL in this and the next section; the general case of a convex
subset X ⊆ RL can be treated similarly, albeit with some additional work.
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Marginal Precision. The set of priors Π(θ) is marginally precise if, for all π, π′ ∈
Π(θ) and all i, π|C[i] = π′|C[i] .

Theorem 2. a) The plain convex model Πco and the s.i.q. model Πsym
quad consisting

of all symmetric priors (understood as prior mappings) satisfy affine invariance

and top/sub-top independence.

b) If L ≥ 2, any prior mapping Π that satisfies affine invariance and top/sub-top

independence violates marginal precision.

(Proof in appendix.)

As a corollary we also obtain that there does not exist a precise set of priors

satisfying affine invariance and top/sub-top independence over the set of all profiles

of quadratic preference orderings, since such prior would satisfy the same conditions

on the set of profiles of convex preference orderings.

The asserted impossibility is a natural consequence of the richness of the group of

affine transformations, which in turn reflects the richness and paucity of structure of

the domain of convex preferences and thus, in turn again, the paucity of information

available for the formation of beliefs. Mathematically, affine invariance precludes the

use of geometric information about angles and lengths of line segments. By contrast,

smaller domains such as the domain of Euclidean preferences are not invariant with

respect to all affine transformations but only to the subclass of all isometric trans-

formations, and top-subtop independent priors that are invariant with respect to the

latter clearly exist.

The main observation in the proof of Theorem 2 is that invariance with respect to

independent rescaling of different coordinates (an affine transformation) conflicts with

convexity plus completeness of preferences. And indeed a statement similar to that

of Theorem 2 does not hold if one allows for incomplete preferences, as follows. For

all x ∈ X, denote by �0
x the partial order with top x that only compares alternatives

along rays emanating from x; then for instance, the prior such that the marginals put

probability one on the profile that agrees with �0
θi

for each i satisfies all conditions

of Theorem 2.

Also observe that the result does not hold for L = 1. As a simple example, for

each x ∈ R, consider the marginals that put full probability on the metric preference

ordering �dx with top x (i.e. y <d
x z ⇔ d(y, x) ≤ d(z, x)), where d is the Euclidean
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distance; then, the prior such that the marginals put probability one on the profile

that agrees with �dθi for each i satisfies all conditions of Theorem 2.

On the other hand, if L = 1, description invariance implies more than just affine

invariance since preference convexity is then preserved under all monotone transfor-

mations. And in fact a result akin to Theorem 2 holds also for L = 1 if the invariance

condition is strengthened accordingly in this case, demonstrating its conceptual ro-

bustness.

6 The Tukey Median as a Voting Mechanism

We have argued for the strict Tukey median as the normative welfare optimum under

restricted (‘frugal’) information and an appropriate class of s.i.q. beliefs of the social

evaluator; in fact, in Appendix C, we demonstrate that this finding is robust with

respect to the specification of beliefs: it suffices that the evaluator puts some small

positive probability on preferences being quadratic on top of being convex. One can

understand this normative optimum as constituting an ideal voting mechanism in

which voters always report their true tops.

In actual voting situations, one needs to take into account the possibility of strate-

gic voting. Indeed, strategic voting will necessarily entail misrepresentation at some

profiles. This follows for the domain of all convex as well as for the the domain

of all quadratic preferences from well-known impossibility results, see Zhou (1991).

Hence the question arises whether the extent and/or frequency of misrepresentation

are sufficiently limited so that the Tukey mechanism can be viewed as implementing

the Tukey median as normative ideal ‘approximately.’ There is no room here to enter

in detail into the various game-theoretic issues that arise. The following heuristic

considerations aim to show that, indeed, the Tukey median holds significant promise

as a voting mechanism implementing the Tukey ideal approximately.14 If successful,

such approximation is good enough for our purposes. Indeed, if on top of that, other

mechanisms could be shown to be superior in some convincing sense – a demonstra-

tion that seems a long way off – this would be interesting and further support the

approximability of the Tukey ideal.

14For simplicity, we neglect the difference between the strict and non-strict versions of the Tukey
median in the following.
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Bounded Manipulability

So, how vulnerable is the Tukey median against unilateral manipulations by single

individuals and coalitions of voters? We will now show that both the extent and

the potential welfare loss of such manipulations are quite limited. To formulate this

precisely, denote by OJ(θ) the option set of the coalition J ⊆ {1, ..., n} at the profile

θ = (θ1, ..., θn), i.e.

OJ(θ) := {x ∈ X |x ∈ T ∗(θ̂) for some θ̂ with θ̂i = θi for all i 6∈ J};

moreover, consider the Tukey depth level sets, i.e. the upper contour sets of the Tukey

depth function. For all profiles θ and all m > 0, let

T [m](θ) := {x ∈ X | d(x; θ) ≥ m}, (6.4)

so that T ∗(θ) = T [d∗(θ)](θ). It is easily seen that {T [m](θ)}m∈N form a nested family of

convex sets contained in the convex hull of θ for all m > 0; these properties suggest

the following result.

Proposition 4. For all profiles θ and all coalitions J ⊆ {1, ..., n},

OJ(θ) ⊆ T [d∗(θ)−2#J ](θ).

Thus, any manipulation of a coalition of size k can reduce the resulting Tukey

depth by at most 2k. The substantive interest in Proposition 4 stems from the

nestedness, boundedness and convexity of the sets T [m](θ) for m > 0 which suggests

that the Tukey level sets stay small if m is close to d∗(θ). How close the outcome

resulting from manipulations stay to the true Tukey median, of course, depends on the

specifics of the underlying distribution. For instance, if θ is a joint normal distribution

the Tukey depth level sets correspond to the upper contour sets of the density function

(spheres in the i.i.d. case).

The proof of Proposition 4 is simple. It is easy to see that any alternative in the

Tukey median set after misrepresentation by a single voter loses at most 1 count of

Tukey depth at the true profile, and any alternative outside the Tukey median set can

gain at most 1 count. This holds for any member of a coalition which immediately

proves the claim. Mathematically, Proposition 4 only provides a rough upper bound;
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better bounds can be obtained in special cases. For instance, in the one-dimensional

case, it is straightforward to verify that OJ(θ) ⊆ T [d∗(θ)−#J ](θ), i.e. a manipulation

by a coalition of size k can reduce the resulting Tukey depth by at most k. In two

or more dimensions this is no longer true. This is easily verified in the setting of

Example 2 by adding a voter with top in the inner pentagon.15

Proposition 4 shows that manipulations by single voters have little impact, and

this has also implications for Nash equilibria. If – for whatever reasons – only a

moderate fraction of k voters manipulate, the outcome stays within T [d∗(θ)−2k](θ),

thus close to the true optimum. And there may indeed be several reasons for limited

manipulation. First, it may well be that only few voters have an incentive to deviate.

Secondly, even if they have such incentive in principle, cognitive costs may exceed

the expected benefits; this would be particularly relevant for voters who understand

that, in view of Proposition 4, they have limited influence on the outcome. Outside

the purview of Proposition 4, note that even if a large fraction of voters manipulate,

these manipulations could largely cancel each other out so that the equilibrium again

stays close to the true optimum.

Proposition 4 is also interesting from the perspective of coordinated coalitional

manipulation. To put its assertion into proper context, two observations seem par-

ticularly relevant. First, coordination of coalitions is particularly demanding in our

setting with limited information. Secondly, if successful coordinated coalitional ma-

nipulation may generally be expected to have a disproportionate impact (as, e.g., in

those cases in which strategy-proofness does not imply coalitional strategy-proofness,

see, among others, Nehring and Puppe 2007a); but here the impact exhibits a degree

of proportionality by Proposition 4.

Non-trivial robustness properties such as the one described by Proposition 4 gen-

erally distinguish the class of multi-dimensional medians that extend the univariate

median to higher dimensions with the main aim of ensuring resistance to outliers, see

Small (1990); Rousseeuw and Hubert (2017) for overviews.

A straightforward example of a tops-only mechanism that lacks such robustness

is the mean, for which a single voter can achieve any outcome by an appropriate

15If the true top θ6 of an additional sixth voter is contained in the inner pentagon in Example 2,
the resulting (unique) Tukey median is θ6 with a Tukey depth of 3; if this voter misrepresents a top

θ̂6 outside the inner pentagon, the alternative θ6 looses one depth unit and the alternative θ̂6 gains
one unit. If θ̂6 is in the convex hull of the other voters’ (true) tops, it receives a Tukey depth of 2
and will therefore be among the Tukey medians under the unilateral manipulation.
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manipulation (in the full Euclidean space). If we consider, somewhat more generally,

mechanisms that minimize
∑

i d (x, θi)
α for the Euclidean metric d, the same applies

to all α > 1 (note that the mean corresponds to α = 2).16

Neutrality

In analogy to Section 5, a natural requirement from a frugal mechanism perspec-

tive is a neutrality condition reflecting the ‘description invariance’ of the underly-

ing problem. Specifically, say that a choice rule is neutral if it commutes with all

structure-preserving bijections on the space of alternatives. Since in the case of con-

vex or quadratic preferences, the structure-preserving mappings are the affine trans-

formations, the neutrality requirement thus translates into invariance of the choice

rule with respect to all affine transformations. Evidently, the Tukey median satis-

fies affine invariance; since non-invariant mechanisms will tend to induce non-neutral

(description-dependent) outcomes, it is hard to see how such mechanisms could ro-

bustly ‘approximate’ the affine invariant Tukey median ideal.

While most of the multi-dimensional medians discussed in the economic literature

on strategy-proofness are not affine invariant,17 the statistical literature has explored

a number of multi-dimensional medians that are affine invariant. Historically, the

Tukey median (Tukey, 1975) was the first of these followed, among others, by the Oja

median (Oja, 1983), the simplicial median (Liu, 1990), and the projective median(s)

(Zuo, 2003).

16If α < 1, the minimand is not convex and the minimizer not continuous; if α tends to zero,
we obtain plurality rule which suffers from similar drawbacks. Within this class, the case α = 1
is singled out and defines a classical multi-dimensional median, the ‘geometric’ or ‘spatial’ median
(Weber, 1909).

17Examples are the coordinate-wise median, the geometric median, and more generally all medians
based on the minimization of the sum of the Lp-distances to the voters’ tops for p ≥ 1. Some of
these can be motivated by their desirable properties on rather tightly restricted subdomains of
convex preferences. For instance, Gershkov et al. (2019, 2020) have argued for the coordinate-wise
(‘marginal’) median in models in which voters’ preferences are induced by norms with the coordinates
chosen endogenously depending on the norms; and Freeman et al. (2021) have shown that the L1-
median (i.e. the minimizer of the sum of the L1-distances to the voters’ tops) is strategy-proof if
voters L1-metric preferences and tops on a budget hyperplane. Thus, different domain restrictions
may motivate different multi-dimensional medians. But due to their lack of affine invariance, such
mechanisms are not well-suited to the much larger domain of all convex preferences, or to the domain
of all quadratic preferences.

28



Voting by Issues

Among the affine invariant multi-dimensional medians, the Tukey median is distin-

guished by its representation in terms of half-spaces. These can be interpreted as

‘issues’ in the sense of the literature on strategy-proof social choice on rich domains of

generalized single-peaked preferences (Barberà et al., 1991, 1997; Nehring and Puppe,

2007b, 2010), lending further support to the Tukey median from a mechanism design

perspective. Indeed, the latter two papers characterize strategy-proof social choice

rules on these domains as independent and consistent, tops-only ‘voting by issues.’

In the anonymous and neutral case these rules take the form of issue-wise majority

voting.

The domains of convex and that of quadratic preferences are both instances of rich

single-peaked domains with respect to the Euclidean betweenness relation according

to which a point is between two others if and only if it lies on the line segment

spanned by them. The relevant issues {H,Hc} are given by the Euclidean half-

spaces and their complements. Consistency cannot be achieved non-dictatorially by

independent issue-wise aggregation unless there is an alternative with Tukey depth

exceeding n
2
; by consequence, strategy-proofness cannot be generally be obtained in

a non-dictatorial way.

The Tukey median achieves consistency among issue-wise majorities by prioritizing

the larger ones according to (4.2). If a half-space H receives large enough support

(specifically, if θ(H) ≥ 1− 1/(L+ 1)), the Tukey median will choose in H. Note that

this holds independently of the location of tops within H and its complement Hc.

In this way, the Tukey median approximates the unifying structure of strategy-proof

social choice rules rather tightly.

Table 1 summarizes the basic properties satisfied by different tops-only mecha-

nisms.18

18Legend to Table 1: The ‘Lp-medians’ are the minimizers of the sum of the Lp-distances to
voters’ tops; the bounded manipulability properties of the simplicial and Oja medians follow from
their respective ‘breakdown values’ which are inferior to that of the Tukey median, by contrast
the projective median has an optimal breakdown value (see Rousseeuw and Hubert (2017)); finally,
plurality rule can be construed as ‘voting by issues’ using the particular issues of ‘being /not being
identical to’ any given alternative.
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bounded

manipulability

affine

invariance

voting

by issues

mean rule 7 3 7

plurality rule 7 3 3

Lp-median, p > 1 3 7 7

coordinate-wise

median
3 3 7

simplicial, Oja, and

projective median
3 7 3

Tukey median 3 3 3

Table 1: Properties of voting mechanisms

7 Concluding Remarks: A Middle Ground?

In this paper, we have proposed a minimalist (‘frugal’) approach to voting in multi-

dimensional settings and singled out a particular choice rule, the Tukey median. A

natural follow-up challenge is to explore the middle ground between such minimalism

and the standard maximalist assumption of knowing the voters’ complete preference

profile.

Such middle ground is easy to identify in the absence of any background informa-

tion in which plurality is the canonical frugal choice rule if only for want of something

better (Goodin and List, 2006). In that setting, it is conceptually and pragmatically

quite straightforward to obtain and utilize additional information. Two popular ways

of doing so is to ask for a top set of alternatives (approval voting) or to rank the top

k > 1 alternatives associated with a variety of salient methods of aggregation.

Yet, in multi-dimensional settings with a background knowledge of preference

convexity, it seems a lot harder to determine a viable middle ground. Ranking the top

k alternatives is not well-defined, so this route seems precluded. On the other hand,

it is straightforward conceptually to ask voters for a top set of alternatives in analogy

to approval voting – here, one would presumably be looking for an extension of the

Tukey median to (convex) set-valued inputs. Note, however, that this is cognitively

highly demanding and lacking in parsimony.

Other types of input may be elicited quite easily, but might be challenging to uti-

lize in a cogent manner. Suppose, for example, the evaluator has obtained additional

preference comparisons to a set of other alternatives (which might itself be endoge-
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neous, e.g. chosen based on the profile of tops). While it is easy to incorporate this

into the knowledge base of the evaluator, how should it change her beliefs? Recall

that the step from knowledge to beliefs has been crucial in our argument how to

properly exploit the background information of preference convexity.

These are some of the interesting challenges for future research. They might

lead to a variety of novel mechanisms based on alternative input specifications. On

the other hand, it may well prove difficult to enhance the minimalist tops-only plus

preference-convexity specification assumed here while preserving both parsimony of

the input and cogency of the use of that information by the mechanism.

Appendix A: Why expected support counts?

In our EAC approach, the ex-ante decision between two alternatives is based on the

support count as defined in (2.1). More generally, one could assume that the social

evaluator evaluates majority margins via the expected utility of the majority margin,

i.e. via

Eπ[u(#{i : x �i y}] (A.1)

for some utility function u(·) and each prior π. However, this more general approach

violates fundamental axioms unless u is in fact linear as in (2.1).

To illustrate, consider the extreme case in which u(k) = 0 if k < n/2 and u(k) = 1

if k > n/2 so that (A.1) simply corresponds to the probability that x wins by a

majority against y under π. For simplicity, suppose that there are three voters with

tops θi ∈ {x, y}, and that the evaluator’s prior is concentrated on four profiles with

the probabilities specified in the first column of Table 2 (columns 2 - 4 represent

voters, rows represent profiles). Now, given the evaluator’s belief, alternative x wins

by a majority against y with probability 3/5, while each voter ex-ante prefers y to

x. Thus, this specification of u leads to a violation of an attractive ex-ante Pareto

criterion. As can be shown this holds more generally whenever u(·) is not linear as

in (2.1).
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probability θ1 θ2 θ3

1/5 x x y
1/5 x y x
1/5 y x x
2/5 y y y

Table 2: Three voters and four profiles over two alternatives

Appendix B: Proofs

Proof of Proposition 1. Given the pair x, y ∈ X, let Π′ ⊆ Π be the subset of all

priors π ∈ Π such that, for all i = 1, ..., n, π(x ∼i y) = 0. By the regularity

assumption, we have m−Π(x, y) = m−Π′(x, y) and m−Π(y, x) = m−Π′(y, x), and therefore

also m+
Π(x, y) = m+

Π′(x, y) and m+
Π(y, x) = m+

Π′(y, x). By construction, we have for all

π ∈ Π′,

mπ(x, y) +mπ(y, x) = n.

This implies

m−Π′(x, y) +m+
Π′(y, x) = n and

m−Π′(y, x) +m+
Π′(x, y) = n,

therefore

m−Π′(x, y) +m+
Π′(y, x) = m−Π′(y, x) +m+

Π′(x, y),

and hence (2.4).

For the following proofs, the following observation will be useful. Denote by Πexco

the ‘extremal’ convex model, i.e. the submodel of the plain convex model which only

contains sets of priors that put all mass on a single profile of convex preferences.

Lemma B.1. The two models Πexco and Πco are equivalent.

Proof. Consider any pair of distinct alternatives x, y ∈ X. Let π0 be a minimizer of

the support count for x against y under the model Πco, i.e. m−Πco
(x, y) = mπ0(x, y).

Furthermore, let <0 be a profile of convex preferences in the support of π0 such that

#{i : x �i y} is minimal among all profiles in the support of π0. Let δ<0 be the prior

that puts all mass on <0; then, mδ<0 (x, y) ≤ mπ0(x, y). But since δ<0 is an admissible
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prior under the model Πco, we have in fact mδ<0 (x, y) = mπ0(x, y); this implies the

desired result.

Proof of Proposition 2. Using Lemma B.1, the proof is straightforward from well-

known properties of single-peaked preferences.

Proof of Proposition 3. Again using Lemma B.1, it is sufficient to prove the statement

for the model Πexco ⊆ Πθ
co. Consider any x 6= θi∗ ; by assumption, there is at most one

θj 6= θi∗ on the straight line through x and θi∗ . Since preference convexity entails no

restriction in the comparison of x and θi∗ for tops outside that straight line, and since

θi∗ has largest popular support, this implies m−Πexco
(θi∗ , x) ≥ m−Πexco

(x, θi∗), i.e. θi∗ is

an ex-ante majority winner against x; if θi∗ has uniquely largest popular support, we

even have m−Πexco
(θi∗ , x) > m−Πexco

(x, θi∗). Since x was chosen arbitrarily, the result

follows.

Proof of Theorem 1

The proof of Theorem 1 is given by means of a series of auxiliary results. First,

Proposition 5 shows that all s.i.q. models are equivalent to the uniform quadratic

model hence, by an argument analogous to that given in the proof of Lemma B.1, also

to the extremal uniform model Πexunif . The main subsequent steps are summarized

in two further propositions: Proposition 6 shows that the ex-ante Condorcet winners

of the extremal uniform model coincide with the maximizers of the relative Tukey

depth. Finally, Proposition 7 demonstrates that the set of maximizers of the relative

Tukey depth is non-empty and coincides with the strict Tukey median.

A key fact about the s.i.q. models is that they are all equivalent; specifically, we

have the following result.

Proposition 5. All symmetrically ignorant quadratic models are equivalent.

Proof. We show that any s.i.q. model Π is equivalent to the uniform quadratic model

Πunif . Consider a fixed pair x, y ∈ X of distinct alternatives, and a fixed profile θ of

tops. Let π be any symmetric prior and consider any fixed voter h = 1, ..., n. Denote

by π̃ ∈ Πunif be the unique prior that is concentrated on uniform profiles and satisfies

π̃Qh = π|Qh . By symmetry of π, we have π|Qi = π|Qh for all i = 1, ..., n, and by
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construction, π̃Qi = π̃Qh for all i = 1, ..., n; hence, π̃Qh = π|Qh for all i = 1, ...n. This

implies

mπ̃(x, y) = Eπ̃[#{i : x �i y}] =
n∑
i=1

Eπ̃Qi [x �i y] =

n∑
i=1

EπQi [x �i y] = Eπ[#{i : x �i y}] = mπ(x, y).

In other words, for every prior π ∈ Π there exists a uniform prior π̃ ∈ Πunif that

induces the same expected majority count for x against y. This implies

m−Πunif
(x, y) ≤ m−Π(x, y). (B.1)

On the other hand, by Assumptions 3 (Symmetry of Marginals) and 4 (Com-

plete Ignorance of Marginals), every s.i.q. model contains the extremal uniform model

Πexunif , hence

m−Π(x, y) ≤ m−Πexunif
(x, y). (B.2)

Finally, by an argument completely analogous to the argument in the proof of

Lemma B.1, we have

m−Πexunif
(x, y) = m−Πunif

(x, y). (B.3)

Combining (B.1), (B.2) and (B.3), we obtain that the arbitrary s.i.q. model Π

induces the same intervals of expected majority counts as the uniform quadratic

model Πunif .

In the following, it will be useful to denote the relative Tukey depth of x with

respect to y by

d(x, y; θ) := min
H∈Hx, y 6∈H

θ(H),

so that xRdy :⇔ d(x, y; θ) ≥ d(y, x; θ) (cf. (4.3)), as well as

S(θ) := {x ∈ X| for no y ∈ X, yPdx}.

Due to Proposition 5 and Lemma B.1, we can concentrate in the remainder of the

proof of Theorem 1 on the extremal uniform model Πexunif (with the fixed top profile

θ). Our goal is to prove the following result.

34



Proposition 6. For all profiles θ and Πexunif ⊆ Πθ
quad,

CW(Πexunif) = S(θ).

One difficulty in showing this is that the ex-ante majority relation of the extremal

uniform model does in fact not coincide with the relative Tukey depth, as noted in

Example 2 above. Nevertheless, their maximal elements coincide.

Again, we need a preliminary result. Observe that, since a preference is quadratic

if and only if is obtained from a Euclidean preference (with circles as indifference

curves) by an affine transformation, we have the following result.

Lemma B.2. Let x, y ∈ X be any two distinct alternatives, and <= (<1, ...,<n) a

uniform profile of quadratic preferences with tops θ = (θ1, ..., θn). Then, there exists

a (Euclidean) half-space H ⊆ RL such that the hyperplane ∂H passes through the

midpoint between x and y, and

{θi |x �i y} ⊆ int(H) and {θi | y �i x} ⊆ int(Hc), (B.4)

where Hc is the complement of H in RL. Conversely, for any (Euclidean) half-space

H that separates x from y such that ∂H passes through the midpoint between x and

y, there exists a uniform profile of quadratic preferences that satisfies (B.4).

Proof of Proposition 6. Let x∗ ∈ CW(Πexunif), i.e. x∗RΠexunif
y for all y ∈ X. By

contradiction, assume that x∗ 6∈ S(θ). Then, yPdx
∗ for some y ∈ X, i.e.

d(x∗, y; θ) < d(y, x∗; θ). (B.5)

Let H0 ∈ Hx∗ be a Euclidean half-space that separates x∗ from y and that minimizes

the measure θ(H) among all such half-spaces. Without loss of generality, we may

assume that x∗ ∈ ∂H0 and that ∂H0∩{θ}ni=1 ⊆ {x∗} (the latter by the fact that {θ}ni=1

is a discrete set). Therefore, we my shift H0 slightly towards y to H̃0 while keeping the

mass with respect to θ constant, i.e. such that θ(H0) = θ(H̃0) = d(x∗, y; θ). Consider

the intersection point w of the straight line L connecting y and x∗ with ∂H̃0, and

the point z on L such that w is the midpoint between w and x∗ (see Figure 7). By

Lemma B.2 we have m−Πexunif
(x∗, z) = θ(H̃0) = d(x∗, y; θ). Moroever, we evidently

also have d(x∗, y; θ) = d(x∗, z; θ), and d(z, x∗; θ) ≥ d(y, x∗; θ). Thus, using (B.5) and
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the fact that, for all w, v ∈ X, m−Πexunif
(w, v) ≥ d(w, v; θ), we obtain,

m−Πexunif
(z, x∗) ≥ d(z, x∗; θ) ≥ d(y, x∗; θ) >

d(x∗, y; θ) = d(x∗, z; θ) = m−Πexunif
(x∗, z).

i.e. zPΠexunif
x∗ in contradiction to the initial assumption that x∗ ∈ CW(Πexunif).

y x∗
z

w

H0

H̃0

Figure 5: ‘Localization’ argument

Conversely, let x∗ ∈ S(θ), i.e. x∗Rdx for all x ∈ X. Consider any fixed y ∈ X

distinct from x∗, and let w denote the midpoint of the line segment connecting x∗

and y. Let H1 be a half-space with x∗ ∈ H1, w ∈ ∂(H1) such that θ(H1) is minimal

among all half-spaces with these two properties. Then, by Lemma B.2,

m−Πexunif
(x∗, y) = θ(H1). (B.6)

Since x∗ is in the interior of H1 and w on its boundary, we have

θ(H1) ≥ d(x∗, w; θ). (B.7)

By the assumption x∗ ∈ S(θ), we have

d(x∗, w; θ) ≥ d(w, x∗; θ), (B.8)

and again by Lemma B.2,

d(w, x∗; θ) = m−Πexunif
(y, x∗). (B.9)
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Combining (B.6) - (B.9), we thus obtain,

m−Πexunif
(x∗, y) ≥ m−Πexunif

(y, x∗),

i.e. x∗RΠexunif
y. Since y was arbitrarily chosen, we thus obtain x∗ ∈ CW(Πexunif) as

desired.

It remains to be shown that S(θ) coincides with the strict Tukey median, and that

these two sets are indeed non-empty.

Proposition 7. For all θ, the strict Tukey median T ∗(θ) is non-empty and

S(θ) = T ∗(θ).

The proof of Proposition 7 is given through a series of lemmata.

Lemma B.3. For all x, y ∈ X, d(x; θ) > d(y; θ) implies xPdy.

Proof. By assumption there exists a half-space H containing y with θ(H) < d(x; θ),

hence in particular x 6∈ H. Thus,

d(x, y; θ) ≥ d(x; θ) > θ(H) ≥ d(y, x; θ).

Note that Lemma B.3 implies S(θ) ⊆ T (θ).

Lemma B.4. For all distinct x, y ∈ X such that d(x; θ) = d(y; θ) =: α, one has

d(x, y; θ) = α or d(y, x; θ) = α.

Proof. Let H 3 x be such that θ(H) = α; without loss of generality, we may assume

that x is on the boundary ∂(H) of H (otherwise, one may shift the boundary of H to

x without increasing θ(H)). For any such H, θ(∂H \ {x}) = 0. Indeed, if ∂H \ {x}
contained some voters’ tops, an appropriate slight rotation around x to H ′ would

eliminate some of them without including additional ones (by the finiteness of the set

{θi}ni=1); but this would entail d(x; θ) < α, a contradiction.

If y 6∈ H, then d(x, y; θ) = α. If y ∈ H, since x is on the boundary of H, H could

be changed slightly (by appropriate shift plus slight rotation) to H ′ with y ∈ H ′
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eliminating x without including any additional tops (by the argument above). Thus,

α ≤ θ(H ′) ≤ θ(H) ≤ α, in particular θ(H ′) = α. In other words, we have constructed

H ′ such that θ(H ′) = α, y ∈ H ′ and x 6∈ H ′, hence d(y, x; θ) = α.

Lemma B.5. For all distinct x, y ∈ X with d(x; θ) = d(y; θ) =: α,

xPdy ⇐⇒ d(x, y; θ) > α ⇐⇒ Hα
x ( Hα

y , (B.10)

where Hα
x := {H ∈ H | x ∈ H and θ(H) = α}. In particular, the relation Pd is a

strict partial order and

S(θ) = T ∗(θ). (B.11)

Proof. The first biconditional in (B.10) follows from Lemma B.4 since d(y, x; θ) ≥
d(y; θ) = α. Thus, we only need to show that d(x, y; θ) > α ⇐⇒ Hα

x ( Hα
y . If

d(x, y; θ) > α, there does not exist a half-space H such that x ∈ H, y 6∈ H and

θ(H) = α. Moreover, by Lemma B.4, d(y, x; θ) = α, i.e. there exists a half-space H

such that y ∈ H, x 6∈ H and θ(H) = α; hence in fact Hα
x ( Hα

y .

Conversely, if Hα
x ( Hα

y , there does not exist a half-space H such that x ∈ H,

y 6∈ H and θ(H) = α, hence d(x, y; θ) > α.

The equality stated in (B.11) now follows from the definition of the strict Tukey

median.

We now show that the sets T ∗(θ) and hence S(θ) are indeed non-empty. To this

end, consider the Tukey median set T (θ), i.e. the depth level set with maximal depth

and denote, for all x ∈ T (θ), by L̃x(θ) := {y ∈ T (θ) | xRdy} \ {x} (i.e. the lower

contour set of x with respect to Rd minus the alternative x itself). Moreover, denote

the complement of L̃x(θ) in T (θ) by Ũx(θ), i.e.

Ũx(θ) = {y ∈ T (θ) | yPdx} ∪ {x}

(this is the upper contour set of x with respect to Pd plus the alternative x itself).

Lemma B.6. For all x ∈ T (θ), the sets Ũx(θ) are relative closed in T (θ).

Proof. We show that the complementary sets L̃x(θ) are relative open in T (θ). Con-

sider any pair x, y ∈ T (θ) such that xRdy and x 6= y, and let α∗ be the maximal

Tukey depth. We have d(x; θ) = d(y; θ) = α∗, and by Lemmas B.4 and B.5, we
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have d(y, x; θ) = α∗. Thus, there exists a half-space H with θ(H) = α∗, y ∈ H,

x 6∈ H. Since the voters’ tops form a discrete set, we can move the boundary ∂H

slightly towards x in a parallel fashion to obtain a half-space H ′ such that H ⊆ H ′,

θ(H ′) = θ(H) = α∗ and x 6∈ H ′. Thus, d(y′, x; θ) = α∗, and hence again by Lemma

B.5, xRdy
′, for all y′ in a small neighborhood of y. This shows that L̃x(θ) is relative

open in T (θ).

Lemma B.7. For all profiles θ, S(θ) is non-empty.

Proof. Consider chains of upper contour sets, i.e. subsets C ⊆ {Ũx(θ) | x ∈ T (θ)}
totally ordered by set inclusion, and denote by U the family of all such chains partially

ordered by set inclusion. By Zorn’s Lemma, there exists a maximal element in U ,

i.e. a maximal chain C∗.
The function x 7→ d(x; θ) is upper semicontinuous, hence the set T (θ) of its max-

imizers is non-empty and closed. Hence, since T (θ) is clearly also bounded, T (θ) is a

compact set. By Lemma B.6, the elements of C∗ are relative closed in T (θ), hence as

relative closed subsets of the compact set T (θ) themselves compact.

Consider the directed net (Z,≥) where Z := {x ∈ T (θ) | Ũx(θ) ∈ C∗} and

x ≥ y :⇐⇒ Ũx(θ) ⊆ Ũy(θ).

By the compactness of T (θ), the net (Z,≤) contains a convergent subnet in Z; let x∗

denote its limit. By the orderedness of the chain C∗, x ≥ y implies x ∈ Ũy(θ); hence

by the closedness of Ũy(θ), we have x∗ ∈ Ũy(θ) for all y ∈ Z, and therefore x∗ ∈ ∩C∗.
By Lemma B.5, the relation Pd is transitive on T (θ), hence Ũx∗(θ) ⊆ Ũy(θ) for all

y ∈ Z, and therefore Ũx∗(θ) ⊆ ∩C∗. By the maximality of C∗, Ũx∗(θ) = {x∗}. By the

definition of Ũx∗(θ), x
∗ ∈ S(θ), in particular S(θ) = T ∗(θ) is non-empty.

Proof of Proposition 7. By Lemma B.5, we have S(θ) = T ∗(θ), and by Lemma B.7

S(θ) is non-empty. This completes the proof of Proposition 7.

Proof of Theorem 1. The proof follows from combining Propositions 5, 6 and 7.

Remaining Proofs

Proof of Theorem 1′. The first steps in the proof follow closely the proof of Theorem

1. Indeed, many intermediate steps and arguments hold without change in the case
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of a continuous distribution θ of tops. In particular, Proposition 5 can be shown in

an analogous manner, and Lemmas B.2 and B.3 hold without change. Next, we show

that

CW(Πexunif) = S(θ) (B.12)

(cf. Proposition 6). As in the proof of Proposition 6, suppose that x∗ ∈ CW(Πexunif)

and, by contradiction, x∗ 6∈ S(θ), i.e. (B.5) for some y ∈ X. As in the proof of

Proposition 6, we choose H0 such that y 6∈ H0, x∗ ∈ ∂(H0) and θ(H0) = d(x∗, y; θ).

Since θ is continuously distributed, for any positive ε, we can shift H0 slightly towards

y to H̃0 as in Fig. 4 above such that θ(H̃0) < θ(H0) + ε. If ε is sufficiently small, we

obtain

m−Πexunif
(z, x∗) ≥ d(z, x∗; θ) ≥ d(y, x∗; θ) >

d(x∗, y; θ) + ε > θ(H̃0) = m−Πexunif
(x∗, z).

i.e. zPΠexunif
x∗ in contradiction to the initial assumption that x∗ ∈ CW(Πexunif).

The converse statement S(θ) ⊆ CW(Πexunif) follows exactly as in the proof of

Proposition 6 above.

By (Demange, 1982, Sect. 2.4.(ii)), the Tukey median set T (θ) consists of a unique

point x∗. In particular, d(x∗, θ) > d(y, θ) for all y ∈ X \ {x∗}; hence by Lemma B.3,

S(θ) = T (θ) = {x∗}. Thus, by (B.12) also CW(Πexunif) = {x∗} = T (θ).

Proof of Theorem 2. Part a) is straightforward. Part b) is shown by contradiction.

Thus assume that Π(θ) satisfies all three stated conditions, and let π|C[i] the unique

marginal prior corresponding to voter i. By affine invariance, we may assume that θi =

0, and write µ instead of π|C[i] for notational simplicity. Consider y = (1, 0, ..., 0) ∈ RL,

z = (0, 1, 0, ..., 0) ∈ RL and, for all k ∈ N the sequence εk = 1/k. Since µ is

invariant to the (linear) transformation tk : RL −→ RL that maps every (a1, ..., aL)

to (a1, εk · a2, a3, ..., aL), we obtain

µ(Ez�y) = µ(Eεk·z�y) (B.13)

for all k, where Ez�y is the event that z is preferred to y under µ. Denote by Ek the

event that (εk · z � y and y < z). By completeness of preferences, we have

Ek = Eεk·z�y \ Ez�y, (B.14)
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and by convexity, for all k, Ez�y ⊆ Eεk·z�y. From (B.13) and (B.14), we thus obtain

for all k, µ(Ek) = 0. Hence, by countable additivity of µ, µ(∪k∈NEk) = 0. But by

continuity and the fact that 0 is the unique top of all preferences considered, we have

∪k∈NEk = Ey<z, and hence µ(Ey<z) = 0.

By the same argument, reversing the roles of y and z, we also obtain µ(Ez<y) = 0

contradicting the completeness of preferences.

Appendix C: Robustness against Alternative Spec-

ifications of Beliefs

C.1 Uncertainty about Tops

We have so far assumed that the only individuating information about individual

preferences concerns their tops, and that this information is perfect (tops assumed to

be known by the social evaluator). We now extend the frugal aggregation approach

maintaining the first assumption while abandoning the second. Formally, we now

assume that the evaluator has a precise prior over the top of each voter. Such models

may be of interest when individual tops are elicited by a vote or a poll, and when

there are doubts whether they should be taken at face value, for instance for incentive

reasons. Obviously, for concrete applications this needs to be developed further by

specifying how the evaluator’s probabilistic beliefs over tops are themselves formed.

Specifically, we adapt our assumptions on the epistemic state Π of the evaluator

as follows.

1. Concentration on Quadratic Preferences. Π ⊆ Πquad.

2a. Tops Probabilism. For all π, π′ ∈ Π and all i, π|Xi = π′|Xi =: µi.

2b. Independence. For all i and all θi, θ
′
i ∈ suppµi, π|Qθi = π|Qθ′

i

.

3. Symmetry of Marginals. For all π ∈ Π and all i, j, π|Qi = π|Qj .

4. Complete Ignorance of Marginals. For all i, θi ∈ suppµi and all Q ∈ Q,

there exists π ∈ Π such that π|Qθi = δQ.

Assumption 2a says that all priors in Π agree on the distribution of tops, i.e. the

uncertainty about tops is probabilistic rather than imprecise. Assumption 2b adds
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that any top θi in the support of the marginal top distribution µi induces the same

marginal distribution π|Qθi over quadratic forms. The marginal top distributions

can take the form of finite or continuous measures; in the latter case, in order to

apply Theorem 1′, we need to assume that all µi have a common convex support.19

Denoting by µ = (µ1, ..., µn) the profile of the marginal distributions over tops, and

by Πµ
quad the set of all quadratic priors that induce the marginal distribution profile µ,

we can summarize Assumptions 1 and 2a by requiring Π ⊆ Πµ
quad. With slight abuse

of terminology, we continue calling a model satisfying these modified assumptions

symmetrically ignorant quadratic (s.i.q.) since no confusion can arise.

To adapt our main result to the situation in which the social evaluator is uncertain

about the voters’ tops but has a unique prior µ over the profile of the distribution of

tops, denote by µ the average distribution of tops defined by

µ :=
n∑
i=1

1

n
· µi.

Associate with each i an ‘ex-ante subpopulation’ with distribution of tops µi and

relative size 1/n; these combine to a total ex-ante population with distribution of

tops µ and quadratic forms still unknown as in Theorem 1. Independence (Assump-

tion 2b) ensures symmetry within each subpopulation, while Symmetry of Marginals

(Assumption 3) ensures symmetry across subpopulations. Therefore, the argument of

Theorem 1 applies and yields the strict Tukey median with respect to µ as the ex-ante

Condorcet winners; note that, in the following result, Tops Probabilism (Assumption

2a) is indispensable as it is necessary to even define the characterized set T ∗(µ).

Theorem 3. For all profiles µ = (µ1, ..., µn) such that the µi are either finite or

continuously distributed with a common convex support, and for every symmetrically

ignorant quadratic model Π ⊆ Πµ
quad, CW(Π) is non-empty. Moreover,

CW(Π) = T ∗(µ).

Proof. Consider any s.i.q. model Π ⊆ Πµ
quad. Any prior π ∈ Π corresponds to a

unique symmetric prior π ∈ Πµ
quad such that, for all θ ∈ suppµ, πQθ = πQθ . Denote

by Π the set of all such priors π, i.e. Π := {π : π ∈ Π}. As is easily verified, Π

19It might be possible to generalize the result to arbitrary or arbitrary continuous probability
distributions, but this would require additional arguments.
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satisfies Assumptions 1-4 of Section 4 (in particular, Tops Certainty) with respect to

the distribution µ. Moreover, for all distinct x, y ∈ X, we have

mπ(x, y) = n ·mπ(x, y),

hence m−Π(x, y) = n ·m−
Π

(x, y); therefore, the ex-ante majority relations corresponding

to Π and Π coincide and we have CW(Π) = CW(Π). Since Π satisfies the assumptions

required for Theorem 1 in the case of a finite distribution, and for Theorem 1′ in

the case of a continuous distribution with convex support, we can conclude that

CW(Π) = T ∗(µ). Together with the preceding observation we thus obtain, CW(Π) =

CW(Π) = T ∗(µ).

C.2 Different Beliefs

In our context of frugal aggregation under convex preferences, two fundamental re-

quirements on a solution are (i) that it selects the standard median if voters’ tops are

contained in a one-dimensional subspace, and (ii) that it be invariant with respect to

affine transformations. The first condition is justified by the observation that, under

convex preferences, the standard one-dimensional median is the Condorcet winner

for every specification of the underlying (but unknown) complete preferences; the

second requirement is deduced from the fact that convexity of preferences itself is an

invariant property under affine transformations. The (strict) Tukey median clearly

satisfies these two axiomatic requirements, but there are a number of other affinely

invariant generalizations of the standard median to multi-dimensions (Rousseeuw and

Hubert, 2017).20 In fact, the statistical literature seems to be undecided as to which

generalization is the ‘right’ or most natural one.

Here, we have singled out the strict Tukey median as the ex-ante Condorcet win-

ners under symmetrically ignorant and quadratic (s.i.q.) beliefs, and these epistemic

assumptions are clearly crucial to obtain the result. What happens with different

beliefs? Or, in other words, how robust is our justification of the Tukey median?

First note that, unless beliefs have a particular structure, it is unlikely that ex-ante

Condorcet winners exist at all. Thus, under many other specifications of beliefs, one

would have to resort to some Condorcet extension rule (Copeland, Kemeny-Young,

20Observe that, e.g., the minimization of the sum of Lp-distances (p ≥ 1) to the voters’ tops is
not affinely invariant.
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minmax, etc.); such extension rules may be exceedingly difficult to analyze and to

compute, and therefore one may want to adopt the s.i.q. models as ‘false-but-useful’

models.

But beyond this mere appeal to pragmatism, one would like to assess the potential

risk from epistemic model misspecification more precisely. This is what we address

in this section.

C.2.1 Less Informative Beliefs: Hedging Quadraticity

If quadratic preferences or symmetry cannot be taken for granted, it seems sensible

for the social evaluator to hedge the commitment to the s.i.q. model by mixing it

with the plain convex model. Formally, assume that the epistemic state of the social

evaluator is described by a ‘mixture’ of models, as follows.

For β ∈ [0, 1], define the mixture of the models Π and Π′ by

βΠ + (1− β)Π′ := {βπ + (1− β)π′ | π ∈ Π and π′ ∈ Π′} .

Concretely, consider a distribution θ of tops, any s.i.q. model Π ⊆ Πθ
quad and the

mixture βΠ + (1 − β)Πθ
co. With continuously distributed tops, the effect of this

mixing on the outcome selection is clearcut and striking: as long as β > 0, there is

none, i.e. the Tukey median continues to be the normative optimum, as follows.

Proposition 8. Suppose that θ is continuously distributed with convex support, and

let Π ⊆ Πθ
quad be any symmetrically ignorant quadratic model. Then, for all β > 0,

CW(βΠ + (1− β)Πθ
co) = T ∗(θ) = T (θ).

To see this, consider two distinct alternatives x and y. The tops of voters who

prefer x to y with probability one under the plain convex model are all located on the

line through x and y and therefore have mass zero under a continuous distribution;

in other words m−
Πθco

(x, y) = 0. Thus,

m−
βΠ+(1−β)Πθco

(x, y) = β ·m−Π(x, y) + (1− β) ·m−
Πθco

(x, y)

= β ·m−Π(x, y). (C.1)

By (C.1), the mixed model βΠ+(1−β)Πθ
co induces the same ex-ante majority relation
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as the s.i.q model Π, hence also the same ex-ante Condorcet winner, for all β > 0.

Finally, the identity of the Tukey median and the strict Tukey median follows from

Theorem 1′.

In the finite case, an approximate version of Proposition 8 remains valid for tops

in general position: Again, for any given x and y, the tops of those voters who prefer

x to y with probability one under the convex model are located on the line through

x and y. But if tops are in general position, there can be at most two such voters.

Thus, under the mixed model, the relative majority margins can change by at most

(1−β)· 2
n

as compared to any s.i.q. model. In particular, one needs to add only a small

fraction of voters (with appropriate preferences) to a given profile in order to make

the Tukey median an ex-ante Condorcet winner in the mixed model. Thus, the Tukey

median remains an almost ex-ante Condorcet winner. We will further elaborate on

this ‘Condorcet gap’ criterion in Subsection 5.3 below.

C.2.2 Knowledge of Marginals

Consider now the polar opposite of the Complete Ignorance of Marginals condition

above, namely certain knowledge of the individual quadratic forms Qi which, by Sym-

metry of Marginals, must then coincide with some common quadratic form Q. This is

a limiting case of our frugal aggregation framework in which the top reveals the entire

preference ordering; in fact, the quest for a frugal optimum boils down to a question

of standard ordinal aggregation of complete preferences on a restricted domain. If

Q is the unit matrix, we are in the classical spatial model in which preferences are

assumed to be Euclidean. (Note that the aggregation problems for general Q can

be reduced to a Euclidean aggregation problem by a change of coordinates via an

appropriate affine transformation of the space of alternatives).

In the case of a known common quadratic form Q, welfare optima are naturally

obtained as the maxima of the program

arg max
x∈X

n∑
i=1

f(ui(x)), (C.2)

where f is a common transformation and the ui(·) are given as in (4.1) with the com-

mon quadratic form Q. The common transform f is pinned down by the Condorcet

principle adopted here: While it is well-known that Condorcet winners do not exist
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generically in this setting (McKelvey, 1979), they do exist if all tops are collinear in

which case the Condorcet winner coincides with the standard median on a line. This

forces f to be the square root function. In the case of Euclidean preferences, this

means that the welfare optima minimize the sum of the Euclidean distances to the

tops. In general, the utilitarian welfare optimum (C.2) is given by the ‘geometric

median’ with respect to the quadratic form Q. Concretely, for all profiles θ and all

quadratic forms Q, let

MedQ(θ) := arg max
x∈X

n∑
i=1

−
√

(x− θi)T · Q · (x− θi). (C.3)

which we refer to as the geometric Q-median. The geometric median is another classic

multi-dimensional median; see, e.g., Vardi and Zhang (2000) for its basic properties.21

The literature has approached the spatial model as an instance of general-purpose

ordinal aggregation rules applied to a specific domain of profiles, focusing on differ-

ent standard Condorcet extension rules. Most prominent among them is the min-

max (‘Simpson-Kramer’) solution, see Kramer (1977); Demange (1982); Caplin and

Nalebuff (1988). Remarkably, the minmax solution under Euclidean preferences co-

incides with the Tukey median, and this equality generalizes to all uniform profiles of

quadratic preferences. By consequence, the minmax rule ignores the available non-top

preference information entirely (even though it is available) and thus fails to exploit

the metric structure of Euclidean resp. uniformly quadratic preference profiles. This

neglect of sub-top information arguably reveals a normative deficit of the minmax

criterion. At the same time, the agreement of the Tukey median with the minmax

criterion in the Euclidean preference case underlines the robustness of the Tukey

median as ex-ante solution, in that even with maximally sharpened beliefs (maintain-

ing symmetry), the chosen alternative(s) are still ‘respectable’ from the conventional

perspective if not fully optimal.

C.2.3 Informative Beliefs

Finally, we ask what happens if we relax the Complete Ignorance of Marginals (As-

sumption 4) only partly but not completely by assuming full knowledge as in the

previous subsection. Concretely, in this subsection we consider sets of priors Π such

21For three tops in general position, the geometric median coincides with the so-called Fermat-
Toricelli point (Krarup and Vajda, 1997).
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that the induced set of marginals over quadratic forms is strictly contained in ∆(Q).

In the extreme case, the prior could even be precise, i.e. Π could be a singleton.

Let Π be a set of priors and x ∈ X any alternative. The (ex-ante) Condorcet

gap of x at Π is the minimum fraction of voters that need to be added with a

suitably extended Π′ (associated with suitable known tops) such that x becomes an

ex-ante Condorcet winner. The Condorcet gap is a natural measure to assess the

risk of misspecification of beliefs from the present Condorcetian perspective. Note

that by Theorem 1, the Tukey medians have a Condorcet gap of zero under any

symmetrically ignorant quadratic model. Note that in determining the Condorcet

gap of an alternative, one can in effect restrict attention to adding voters with top

x; the details of the evaluator’s beliefs about their preferences do not matter. This

observation immediately implies the following result.

Fact C.1. For all Π satisfying Tops Certainty (Assumption 2) and all x ∈ X, the

ex-ante Condorcet gap of x at Π is given by

max

{
0, sup

y∈X
[m−Π(y, x)−m−Π(x, y)]

}
.

An immediate consequence of Fact C.1 is that, if the complete preference profile is

known, the Condorcet gap of any x is simply given by the maximal opposition against

x. Thus, the standard minmax solution minimizes the Condorcet gap in this case.

Since the Tukey median coincides with the minmax solution on all uniform profiles of

quadratic preferences, the Tukey median also minimizes the Condorcet gap in these

cases. More generally, we have the following result which holds for general probability

measures θ, discrete or continuous. Note that, due to the involved normalization, all

magnitudes have then to be interpreted as fractional magnitudes; for instance, d(x; θ)

is the minimal fractional mass of all half-spaces containing x, etc. For convenience,

and since no confusion can arise, we do not distinguish this interpretation notationally.

Proposition 9. For any probability measure θ, and all Π satisfying Assumptions 1

– 3 of Section 4, the Condorcet gap of a Tukey median is at most

1− 2 · d∗(θ).

Proof. Consider any symmetric prior π of profiles of quadratic preferences. By sym-

metry, we can express the prior as a product measure µQ × µθ. Consider a Tukey
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median x and any other alternative y. Using Lemma B.2 and the fact that x max-

imizes the Tukey depth, for any quadratic form Q, the support of x against y is at

least d∗(θ), thus the maximal opposition against x is 1−d∗(θ) if Qi = Q for all voters

i. This shows that the Condorcet gap of x is at most 1 − 2d∗(θ) whenever Qi = Q
for all voters i. Now let

µ′θ := (1− 2d∗(θ)) · δx + µθ,

where δx is the Dirac measure putting all mass on the alternative x, as well as µ′ :=

µQ×µ′θ. For any Q in the support of µQ, x is a (weak) Condorcet winner at δQ×µ′θ,
hence by reinforcement x is a weak Condorcet winner at µ′. Since this holds for all

symmetric priors π ∈ Π, the Condorcet gap of x at Π is also bounded by 1−2d∗(θ).

By Proposition 9, the Tukey median remains an approximate optimum also with-

out the Complete Ignorance assumption in the sense that often only a ‘few’ voters

(with appropriate preferences) have to be added to a profile in order to make the

Tukey median an ex-ante Condorcet winner. In general, the value of d∗(θ) is bounded

below by 1/(L + 1) (Donoho and Gasko, 1992), hence the for symmetric priors of

quadratic preferences the Condorcet gap is always at most 1− 2
L+1

. However, many

multi-variate distributions used in applications have additional structure that im-

proves this bound considerably. In particular, as observed by Caplin and Nalebuff

(1988), the maximal Tukey depth of the large class of log-concave distributions is

bounded below by 1/e. Thus, if voters’ tops are sufficiently ‘bunched together’ in the

sense that θ is log-concave, then the Condorcet gap of a Tukey median at any set of

symmetric priors of quadratic preferences is at most 1− 2/e ≈ 0.264.

The Tukey median is also robust in the sense of the Condorcet gap criterion if

one adds a little ‘precision’ to the evaluators beliefs: for any s.i.q. model Π and

every precise prior π the Condorcet gap of the Tukey median at the mixed model

αΠ + (1− α)π is at most (1− α)(1− 2d∗(θ)).

While the Tukey median is thus remarkably robust against misspecification of

beliefs, we finally note that this does not generally hold for other choice rules. For

instance, the Condorcet gap of the plurality winner at a s.i.q. model Π can be arbi-

trarily close to one (as can be verified by looking at situations of sort considered in

Example 1). It is thus not the ex-ante Condorcet approach as such that delivers the

robustness, but the ex-ante Condorcet approach in combination with a specific belief

model.
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