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Abstract

One central objection to the maximin payoff criterion is that it focuses on the state

that yields the lowest payoffs regardless of how low these are. We allow different states

to have different sets of possible outcomes and show that the original axioms of Milnor

(1954) continue to characterize the maximin payoff criterion, provided that the sets of

payoffs achievable across states overlap. If instead payoffs in some states are always

lower than in all others then ignoring the “bad” states is no longer inconsistent with

these axioms. Similar dependence on overlap of outcome spaces across states holds

for the minimax regret and maximin joy criteria.



1 Introduction

It is difficult to trade-off risks in environments where probabilities are unknown. The

maximin payoff criterion, and similarly the minimax regret criterion, have axiomatic

foundations that may help us in assessing risk trade-offs in these situations. However,

in most of the literature on non-probabilistic decision theory outcome spaces are not

explicitly specified. The departure of our paper is to demonstrate that the respec-

tive axiomatic foundations implicitly assume identical sets of possible payoffs in all

states of nature. For many applications this assumption is not plausible. Outcome

spaces differ naturally across states of nature when states influence outcomes (and

their associated payoffs or utilities) in a systematic way. Consider, for instance, a

firm making decisions when facing either a recession or a boom. In this example it

is conceivable that any payoff in the recession lies below any payoff in the state of

a boom. Here trading-off risks across states becomes particularly problematic since

appropriate points of comparison are missing. The objective of this paper is to explic-

itly add outcome spaces to the description of a decision problem and to investigate

how state dependence of outcome spaces affects the axiomatic foundations of various

decision criteria.

To illustrate the role of outcome spaces, consider the following example. Here

and later payoffs refer to outcomes evaluated in terms of von Neumann Morgenstern

utilities.
s1 s2

A1 0 20

A2 1 10

(1)

The maximin payoff criterion generates a preference ordering over acts that does not

rely on the decision maker specifying probabilities of the occurrence of the two states

s1 and s2. Here, we obtain A2 � A1 since the minimal payoff resulting from act A2 is

higher than the minimal payoff resulting from act A1.

We now consider two possible specifications of the underlying outcome spaces.

Assume first that the possible payoffs are only 0 and 1 in state s1, and only 10, 20

and 25 in state s2. In this environment, any payoff achievable in state s2 is strictly

larger than any payoff achievable in state s1 (payoff ranges do not overlap). There

are no points of comparison as there is no payoff that is achievable in all states.

By consequence, two acts are compared under the maximin payoff criterion solely
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according to their outcomes in state s1. Here the use of the maximin payoff criterion

seems especially problematic since it neglects available information in a particularly

strong way. It implicitly declares some states as in principle irrelevant to the decision

problem.

Now consider an alternative environment where the set of possible payoffs in both

states is equal to {0, 1, 10, 20, 25}. Clearly, the existence of the additional outcomes

in state s1 does not change the fact that act A2 is strictly preferred to act A1 under

the maximin payoff criterion. However, it is no longer true for this environment that

outcomes in state s2 are irrelevant. For some pairs of acts the payoffs in both states

will matter as we illustrate by adding two more acts to the above example:

s1 s2

A1 0 20

A2 1 10

A3 10 25

A4 25 10

(2)

Under the maximin payoff criterion we have A3 ∼ A4, a statement that can only be

inferred by using information on the outcomes attained in both states. The outcomes

in state s2 are obviously not irrelevant for the maximin payoff criterion when there is

overlap in the set of utilities achievable in each state.

When there is no overlap in payoff ranges across different states in decision prob-

lem (1), all axioms commonly used to characterize the maximin payoff criterion are

consistent with ignoring the outcomes of each act in the “good” state s2. In particu-

lar, this holds for the axioms proposed by Milnor (1954). But not only is ignoring the

outcomes in the “good” state consistent with these axioms, ignoring the outcomes in

the “bad” state is consistent as well. Specifically, suppose that the states of nature

can be partitioned into Sb (the bad states) and Sg (the good states) such that all

bad states have identical sets of possible payoffs, all good states have identical sets

of possible payoffs, and all payoffs in any good state are strictly larger than all out-

comes in bad states (say the possible payoffs are {0, 1} in bad states and {10, 20, 25}
in good states, as above). In this situation, consider the following decision criterion.

If there are only bad states, take the usual maximin payoff criterion. However, if

there are good states then rank acts according to their minimal payoff achieved in

the good states only. Clearly, this criterion differs from the usual maximin payoff
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criterion, for instance in the decision problem (1) it entails A1 � A2. But it is readily

verified that this criterion satisfies all of Milnor’s axioms.1 The crucial observation is

that the Symmetry Axiom is the only condition concerned with comparing outcomes

between different states, and that it has no bite here when comparing the outcomes

in good states with those in bad states. For instance, inferring A3 ∼ A4 in (2) using

the Symmetry Axiom presupposes that both payoffs 10 and 25 occur in either state.

In his characterization of the maximin payoff criterion, Milnor (1954) uses the

Symmetry Axiom across two arbitrary states given any pair of payoffs and thus im-

plicitly assumes outcome spaces to be identical across states of nature. The above

example shows that the axioms no longer uniquely characterize the maximin payoff

criterion if the sets of possible payoffs across states do not overlap. On the other

hand, our main result below shows that Milnor’s (1954) axioms together with Gilboa

and Schmeidler’s (1989) C-Independence Axiom continue to characterize the maximin

payoff criterion provided that there is at least some overlap in the payoff ranges across

states. In this case, the C-Independence Axiom allows us to transform all payoffs into

the same range in order to apply Milnor’s original proof, and in particular to invoke

the Symmetry Axiom.2

Decision criteria that are based on the comparison of utility differences within

states, such as the minimax regret criterion (or the maximin joy criterion, see Hayashi,

2006), do not seem to be sensitive to whether or not payoff ranges overlap as only

differences matter. For instance, even when there is no overlap in decision problem

(1), payoffs in state s2 will influence preferences.3 One might thus conjecture that

the existence of points of comparison is less important. However, it turns out for the

scenario described above, with the separation into good and bad states, that either

1These are Ordering (i.e. preferences between acts are transitive and complete), Symmetry (pref-
erences do not depend on the labeling of acts and states), Domination (acts that yield strictly higher
payoffs in each state are strictly preferred), Continuity, Row Adjunction (preferences between ex-
isting acts are not affected by adding new acts, commonly referred to as Independence of Irrelevant
Alternatives), Column Duplication (preferences are unchanged if a new state is added provided that
payoffs are identical to those in an already existing state) and Convexity (randomization between
indifferent acts is preferred).

2Note also that state dependent outcome spaces limit the set of actions that can be added when
invoking the Independence of Irrelevant Alternatives Axiom (Milnor’s “Row Adjunction”).

3We find A1 � A2 with utilities as specified in (1) while A1 ≺ A2 holds if 10 is replaced by 19.5
in the payoff table.
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good states or bad states can be ignored. Again the Symmetry Axiom has no bite.

The characterization of Milnor (1954) relies on an axiom called Column Linearity

to create an act yielding the same payoff in each state. Such an act does not exist if

there is no payoff range overlap. As Column Linearity has little intuitive appeal we

follow Chernoff (1954) and replace it by the standard Independence Axiom, which

is stronger than C-Independence. Otherwise we follow the framework of Milnor and

obtain a characterization of minimax regret with state dependent outcome spaces

provided there is sufficient overlap.

We also consider the maximin joy criterion, a dual criterion to minimax regret

where payoffs are compared to the minimal payoff achievable in each state.4 We

present a characterization of this criterion that relies on the same type of overlap.

To summarize, we show that maximin payoff, minimax regret and maximin joy

are still uniquely characterized when the payoff ranges in each state have a non empty

intersection. However, when payoff ranges do not overlap the same axioms no longer

have the power to uniquely characterize a decision criterion. Thus, we qualify the

common belief that the axioms underlying the maximin payoff criterion necessarily

lead to focus on a state with lowest payoffs. Moreover, we provide the more subtle

insight that the other two criteria based on difference in outcomes within a state

(minimax regret and maximin joy) nevertheless require comparability across states.

The paper is organized as follows. In the following Section 2 we lay down our

basic notation. In Section 3 we list our axioms. The decision criteria are defined in

Section 4, the main characterization result is in Section 5. Section 6 presents some

more examples, and Section 7 discusses the relation to the literature.

2 Notation

Consider the following choice setting consisting of states, outcomes for each state and

acts. By S = {s1, .., sm} we denote the finite set of states. For each j ∈ {1, ...,m},
there is a finite set Xj of possible outcomes in state sj. We refer to Xj as the outcome

space of state sj. X = ∪Xj denotes the set of all possible outcomes. By L (Xj) we

denote the set of all (finite) lotteries over outcomes in Xj. A (pure) act Ai is a vector

Ai = (Ai1, .., Aim) assigning a lottery over outcomes to each state, so Aij ∈ L (Xj)

4In (1) we find A1 ∼ A2 as each act obtains the column minimum in some state.
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for all j ∈ {1, ...,m}. The state-wise convex combination of two acts Ai and Ak is

denoted by αAi + (1− α) Ak, i.e. (αAi + (1− α) Ak)j = αAij + (1− α) Akj. A mixed

act σ is a probability distribution over the set of acts. By σj we denote the lottery

induced in state sj by choosing the mixed act σ, thus in particular, σj ∈ L (Xj).

A finite collection of acts is called a menu and is denoted by A. A menu A

can either be viewed as the vector A = (A1, ..., An)T of n acts, or alternatively as the

matrix A = (Aij)
j=1,...,m
i=1,...,n of (lotteries of) outcomes. By Aj = (A1j, ..., Anj)

T we denote

the (column) vector of the (lotteries of) outcomes attained by each act in state sj.

Denote by Ln,m the set of all menus with n acts and m states. The element-

wise convex combination of two menus A, B ∈ Ln,m is denoted by αA + (1− α) B,

i.e. (αA + (1− α) B)ij = αAij + (1− α) Bij.

By (A, Am+1) ∈ Ln,m+1 we denote the menu in which state sm+1 is added and in

which the outcome of act i in state sm+1 given by Am+1
i . Finally, A⊕An+1 ∈ Ln+1,m

denotes the menu in which act An+1 is added to menu A ∈ Ln,m. Thus, e.g. A =

(A1, .., Am) = A1 ⊕ ...⊕ An.

3 Axioms

Consider a preference relation %s on L (X ). Throughout, we will assume that %s is

complete, transitive and satisfies continuity and (probabilistic) independence. These

conditions imply the existence of a von-Neumann-Morgenstern utility function u :

X → R such that for all p, q ∈ L (X ),

p %s q ⇔ Eu(p) ≥ Eu(q),

where Eu(p) is the expected utility induced by the lottery p.

In the following, we are interested in determining how to compare different acts

within a given menu of acts and for given associated outcome spaces. Specifically,

given menu A let %A denote a preference relation over the mixed acts in the menu

A. We will consider the following conditions on %s and the family {%A}A.

3.1 Outcome Spaces

The following condition only pertains to the structure of the outcome spaces.
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1. Payoff Range Overlap: there exist x, y ∈ X such that for every j there exists

xj, yj ∈ Xj such that xj -s x ≺s y -s yj.

Payoff Range Overlap commonly arises in settings that include state independent

outside options or the possibility of insurance across all states. Notice that we do not

require that the possible outcomes of each state intersect but that there is intersection

when evaluating outcomes in terms of preferences, hence the use of the term “payoff

range” instead of “outcome space”. An alternative way of stating our condition is

that for any two states si and sj, the most preferred outcome in state sj is strictly

preferred to the least preferred outcome in state si. In particular, it is important for

our results that this preference is strict (see Section 6 below).

3.2 Intra-Menu Axioms

The following conditions refer to preferences among acts Ai within a given menu

A ∈ Ln,m.

2. Ordering : %A is complete and transitive.

3. Symmetry : %A is invariant to the labeling of acts and states as long as the

relabeling of states does not violate the restrictions imposed by the respective

outcome spaces. Specifically, label j of state sj can be replaced with label k if

for any i there exists xi ∈ Xk such that Aij ∼s xi.

4. Domination: If Aij �s Akj for all j then Ai �A Ak.

5. Convexity : Ai ∼A Ak implies 1
2
Ai + 1

2
Ak %A Ai.

We add some comments. Symmetry will play a central role. The Symmetry Axiom

of Milnor (1954) postulates that preferences are independent of the labeling of acts

and states. Here we adjust the definition to allow for different states to have different

outcome spaces.

The Convexity Axiom is sometimes referred to as “ambiguity aversion” in some

intuitive sense; however, lacking a formal definition of that concept we avoid this term

here.
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3.3 Inter-Menu Axioms

The following conditions refer to consistency of preferences across different menus.

6. Continuity : If A(t) → A as t →∞ and Ai %A(t) Ak for all t then Ai %A Ak.

7. Column Duplication: Ai %A Ak if and only if Ai %(A,Aj) Ak for all j ≤ m where

Xm+1 = Xj.

8. Independence to Menu Enlargement: We present three alternative conditions

on a menu A ∈ Ln,m and an additional act An+1 that can be postulated in order

to be able to infer that, for all i, k ≤ n,

Ai %A Ak ⇔ Ai %A⊕An+1 Ak, (3)

i.e. to ensure that the ranking between acts is not affected by the availability of

additional acts.

(a) Independence of Never-Uniquely-Best Alternatives (INUBA): (3) holds when-

ever for each j there is some i such that An+1,j -s Ai,j.

(b) Independence of Never-Uniquely-Worst Alternatives (INUWA): (3) holds

whenever for each j there is some i such that An+1,j %s Ai,j.

(c) Independence of Irrelevant Alternatives (IIA): (3) always holds.

9. Independence to Inevitable Risk: Two alternative conditions on menus A and

B will be considered in order to be able to infer that, for all α ∈ (0, 1),5

Ai %A Ak ⇔ αAi + (1− α) Bi %αA+(1−α)B αAk + (1− α) Bk. (4)

(a) C-Independence: (4) holds whenever Bij ∼s Bkl for all i, j, k, l.

(b) Independence: (4) holds whenever Bi is independent of i.

We add some comments.

Column Duplication implies that preferences should not change if states are de-

scribed in greater detail but without changing any of the outcomes.

5It is sufficient to require (4) only for α = 1
2 .
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Many different terminologies exist for what we refer to as INUBA, none completely

satisfying. As INUBA is consistent with adding an act that is a best alternative in

each state, the alternative terminology “Independence of Never-Best Alternatives”

would indicate a weaker requirement.

In (4), menu B can be interpreted following Chernoff (1954) as inevitable risk

while A captures the part of the risk that can influenced by the choice itself. Under

C-Independence (“certainty independence”) this inevitable risk is assumed to be state

independent while for Independence it measures the inevitable risk within each state.

Alternatively one can interpret the independence axioms as time consistency. Let α

be the probability of the event that the decision maker is asked (or allowed) to choose

an act in menu A. The axiom specifies that preferences do not depend on whether

or not choice is before or after this event. B describes what happens when A is not

faced. Intuitively, under Independence some state within S occurs, so rows in B are

assumed to be identical. Under C-Independence a single state sm+1 /∈ S, so columns

in B are assumed to be identical, too.

4 Decision Criteria

Formally, a decision criterion is a family of binary relations {%A}A for all possible

menus A. We will consider the following specific decision criteria.

The maximin payoff criterion (Wald, 1950) is given by

σ %A σ′ ⇔ min
j

Eu (σj) ≥ min
j

Eu
(
σ′j

)
,

for all menus A and all mixed acts σ, σ′. The minimax regret criterion (Savage, 1951)

is given by

σ %A σ′ ⇔ max
j

{
max

l
{Eu (Alj)} − Eu (σj)

}
≤ max

j

{
max

l
{Eu (Alj)} − Eu

(
σ′j

)}
,

and similarly, the less studied maximin joy criterion (Hayashi, 2006) is given by

σ %A σ′ ⇔ min
j

{
Eu (σj)−min

l
{Eu (Alj)}

}
≥ min

j

{
Eu

(
σ′j

)
−min

l
{Eu (Alj)}

}
,

for all menus A and all mixed acts σ, σ′.
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5 Characterizations

We show how Milnor’s (1954) axiomatizations of maximin payoff and minimax regret

can be extended to allow for state dependent outcomes spaces provided there is Payoff

Range Overlap. We make the following adjustments. For the maximin payoff criterion

we add C-Independence. For the minimax regret criterion we follow Chernoff (1954)

and replace the Column Linearity axiom of Milnor (1954) by the Independence Axiom.

In addition we provide an axiomatization of the maximin joy criterion (see Hayashi

(2006)) for this setting that emerges from the minimax regret criterion by shifting

focus in each state from the best to the worst outcome.

Proposition 1 Assume Payoff Range Overlap, and consider the class of all deci-

sion criteria satisfying Ordering, Symmetry, Domination, Convexity, Continuity and

Column Duplication.

1. The maximin payoff criterion is the only criterion satisfying Independence of

Irrelevant Alternatives and C-Independence.

2. The minimax regret criterion is the only criterion satisfying Independence of

Never-Uniquely-Best Alternatives and Independence.

3. The maximin joy criterion is the only criterion satisfying Independence of Never-

Uniquely-Worst Alternatives and Independence.

Proof. Let x and y be outcomes that satisfy the axiom of Payoff Range Overlap.

Following continuity there exists D ∈ L (X ) such that x ≺s D ≺s y and for each j

there exists Dj ∈ L (Xj) such that and Dj ∼s D. Consider a menu A.

Part 1. Let B be the menu with Bij = Dj for all j. By C-Independence, we

may investigate without loss of generality preferences among acts in αA + (1− α) B

instead of those in A. By continuity, we may consider α > 0 small enough so that

x ≺s αAij + (1− α) Dj ≺s y holds for all i, j.

Thus, after compressing lotteries, all elements of the menu under consideration are

better than x and worse than y. Now replace outcomes and lotteries over outcomes by

utilities, normalizing u (x) = 0 and u (y) = 1. This is possible since we have assumed

an expected utility representation of -s on L (X ). Thus we end up with a menu that

only contains elements in [0, 1] and we can act as if there is common outcome space
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as [0, 1] ⊆ {u (p) : p ∈ L (Xj)} . From here on we continue as in the proof of Milnor

(1954).

Specifically, the steps in Milnor’s proof are: (i) Add rows and use Symmetry and

Independence of Irrelevant Alternatives to show that only the set of elements in a

row, not their order, matters for preferences. (ii) Then use Domination, Column

Duplication and Symmetry to show that only the maximal and minimal elements in

a row matter. (iii) Finally, use Convexity to show that it is in fact only the minimal

element in a row that matters.

Part 2. As in Part 1 first compress the lotteries and then replace lotteries by utilities

so that we only consider menus with elements in [0, 1] .

The next step is to use the trick of Chernoff (1954) to transform the menu into an

isomorphic one that has the same maximal element in each column. Let zj = maxi Aij.

Then there exist α ∈
[

1
2
, 1

]
and bj ∈ [0, 1] for each j such that minj zj + 1−α

α
= 1

and zj + 1−α
α

bj = 1. Let B be such that Bij = bj and consider αA + (1− α) B. Then

maxi (αA + (1− α) B)ij = αzj + (1− α) bj = α for all j. Thus the maximal element

of each column of αA + (1− α) B is equal to α. Independence implies that %A and

%αA+(1−α)B are isomorphic.

The remaining proof is identical to that of Milnor (1954) who used an alternative

axiom called Column Linearity to perform the above step.

Part 3. The proof is analogous to that of Part 2. Let wj = mini Aij then there

exist α ∈
[

1
2
, 1

]
and b′j ∈ [0, 1] for each j such that minj wj + 1−α

α
= maxj wj and

wj + 1−α
α

b′j = maxj wj. Given B′
ij = b′j we obtain mini (αA + (1− α) B′)ij = αwj +

(1− α) bj = α maxj wj. Consequently, each column of (αA + (1− α) B′) has the same

minimal element. The next step is to add a constant row with elements α maxj wj and

then to continue as the proof of Milnor (1954) for the maximin payoff criterion. This

is because the proof of Milnor (1954) for the maximin payoff criterion, when applied

to matrices with a constant row consisting of the minimal element of the matrix, only

utilizes Independence of Never-Uniquely-Worst Alternatives and does not build on

the stronger Independence of Irrelevant Alternatives axiom.
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6 Further Examples

Payoff Range Overlap requires that intersection of the ranges has a nonempty interior.

We illustrate why this is necessary for obtaining our results in the following example:

s1 s2

A1 0 20

A2 1 1

Assume that no other payoffs are possible in either state. Then both A1 �A A2 and

A2 �A A1 is consistent will all of our axioms, the reason being that the Symmetry

Axiom is vacuous.

Finally we present an economic application where payoff ranges naturally are

different but where there is sufficient overlap. Consider a firm who is competing in

prices a la Bertrand with a second firm. Instead of adapting an equilibrium approach

we assume that the price charged by the other firm is unknown. In the framework

of this paper, each possible price charged by the other firm is associated to a state.

To obtain a finite state space, assume that prices are set within a grid {0, 1, 2, 3, 4} .

Assume that the firm is risk neutral, has no fixed cost and marginal cost is equal to 1

and that there is a single consumer with unit demand and a willingness-to-pay equal

to 4. Then we obtain the following matrix indicating for each pair of prices the profit

of the firm charging the price specified in the row:

0 1 2 3 4

0 −1/2 −1 −1 −1 −1

1 0 0 0 0 0

2 0 0 1/2 1 1

3 0 0 0 1 2

4 0 0 0 0 3/2

Payoff Range Overlap holds as e.g. −0.1 is in the interior of the utility range of each

state. In the following we select among pure acts. Prices in {1, 2, 3, 4} are most

preferred both under maximin payoff criterion and under the maximin joy criterion

while only price 3 is most preferred under the minimax regret criterion.
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7 Related Literature and Conclusion

We pay a tribute to Milnor (1954) due to its clear presentation with proofs in which

the role of each axiom is clearly highlighted in each of the steps.

In accordance to Milnor (1954) we find it natural to separate uncertainty within

and across states belonging to S. Uncertainty within a state is considered objective

with common preferences %s over the set of all possible outcomes across all states

admitting an expected utility representation. Thus we focus on how to deal with

“complete” uncertainty across states.

All axioms apart from C-Independence and Independence are taken directly from

Milnor (1954). As outcomes are the primitive of our model we cannot use Column

Linearity of Milnor (1954) and instead follow Chernoff (1954) (see also Luce and

Raiffa, 1957, and Stoye, 2007) by requiring Independence. Terminology is changed

whenever we strongly believe that original terms are inappropriate. Proofs follow

those of Milnor (1954) as close as possible.

Gilboa and Schmeidler (1989) introduced the C-Independence Axiom as a key

condition in their characterization of maximin expected utility with respect to some

set of priors. The Independence of Irrelevant Alternatives condition is implicit in

their framework.

In a recent paper, Stoye (2007) expands on the set of axioms of Gilboa and Schmei-

dler (1989) to develop a unifying framework for comparing a number of different

criteria including Bayes, maximin payoff and minimax regret, providing novel charac-

terizations for the latter two. Compared to Milnor (1954) several axioms are slightly

changed in the work of Stoye (2007). The Continuity Axiom is replaced by the

stronger version of Mixture Continuity, and Domination is replaced by “Weak Dom-

ination”. While Column Duplication is missing, some of its features are included in

Stoye’s symmetry condition which allows to collect states with the same outcomes.

C-Independence is used in the characterization of Stoye (2007). Remember that this

axiom does not enter the axioms of Milnor (1954), and we only use this axiom to be

able to deal with state dependent outcome spaces. Our insights on the connection

between Payoff Range Overlap and Symmetry also extend to the framework of Stoye

(2007): (i) neither maximin payoff nor minimax regret are uniquely characterized

when some outcome space is disjoint from all others, and (ii) the characterizations of

maximin payoff and minimax regret extend to state dependent outcome spaces when
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there is Payoff Range Overlap.

The minimax regret criterion has recently been considered by Hayashi (2006) in a

different light. Hayashi (2006) axiomatizes a choice rule that minimizes the expected

regret with respect to a not necessarily unique prior. If no prior is excluded, this choice

rule reduces to the classical minimax regret criterion; on the other hand, if the prior is

unique, the choice rule reduces to the (subjective) expected utility criterion. Since the

framework of Hayashi (2006) is quite different from ours, the relevant conditions are

not directly comparable. Interestingly however, the Independence of Never-Uniquely-

Best Action Axiom (i.e. Milnor’s (1954) “Special Row Adjunction”) appears also in

Hayashi’s characterization (as “Irrelevance of Dominated Acts”).

The idea to consider state dependent outcome spaces and to investigate the im-

plications seems to be novel.
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