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Abstract. The paper investigates how far a particular procedure, called the
‘‘descending demand procedure,’’ can take us in finding equitable allocations
of indivisible goods. Both interpersonal and intrapersonal criteria of equit-
ability are considered. It is shown that the procedure generally fares well on
an interpersonal criterion of ‘‘balancedness’’; specifically, the resulting alloca-
tions are Pareto-optimal and maximize the well-being of the worst-o¤ individ-
ual. As a criterion of intrapersonal equitability, the property of envy-freeness is
considered. To accommodate envy-freeness, a modification of the basic proce-
dure is suggested. With two individuals, the modified procedure is shown to
select the envy-free allocations that are balanced, i.e. the allocations that max-
imize the well-being of the worse-o¤ individual among all envy-free allocations.

1 Introduction

The paper addresses the issue of how to find equitable allocations of indi-
visible goods among n individuals. In contrast to most of the literature on
the subject (see e.g., Thomson 1997 for an overview), we do not consider the
possibility of monetary compensation. Our motivation for studying a frame-
work in which all goods are indivisible is twofold. First, we believe that there
are important cases in which monetary compensation is either not possible, or
usually not considered.1 Secondly, one may view the allocation of the set of
indivisible goods as a prior stage in a more comprehensive procedure of al-
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locating both indivisible and divisible goods. On such a view, the search for a
‘‘most equitable’’ allocation of the indivisible items can be motivated from the
desire to minimize the amount of later compensation payments. In any case, a
focus on the pure indivisible case allows one to work with minimal informa-
tional requirements on the preferences of the individuals involved. Specifi-
cally, the present inquiry uses no information beyond the ordinal preferences
of individuals over the set of bundles of indivisible items to be allocated.
The procedures presented here are di¤erent variants of the following sim-

ple scheme which we refer to as the descending demand procedure. In the first
round, individuals name in some prespecified ordering their most preferred
bundle of items; in the second round, each individual names her second best
bundle, and so on. The procedure stops when for the first time a feasible allo-
cation can be combined from the bundles of items named up to that moment.
In particular, each item goes to exactly one person, and each person receives
one of the bundles she has already named. The purpose of this paper is to
explore how far this method can take us in finding ‘‘equitable’’ allocations.
In doing so, we focus on two di¤erent criteria, one criterion of interpersonal
equitability, and one criterion of intrapersonal equitability. Specifically, we
show that the set of allocations that are obtained by the basic descending de-
mand procedure consists of the Pareto-optimal allocations that maximize the
‘‘well-being’’ of the worst-o¤ individual.2 Thus, the procedure fares well
in terms of an egalitarian criterion of interpersonal equitability. As a criterion
of intrapersonal equitability, we consider the notion of envy-freeness. While
the descending demand procedure may yield envy-free allocations under some
circumstances, more often it fails to find envy-free allocations (even when such
allocations exist).
Motivated by its failure to yield an envy-free allocation, we consider a

modification of the descending demand procedure and show that its solution
is always envy-free, provided that there exists a solution at all. In contrast to
the two-person case, when there are more than two individuals, the modified
procedure may, however, not provide a solution even when envy-free alloca-
tions exist. On the other hand, with two individuals the procedure is shown to
fare well on both criteria. Specifically, we prove that the modified descending
demand procedure finds the envy-free allocation(s) that are most equitable in
the interpersonal sense, i.e. that maximize the well-being of the worse-o¤ in-
dividual among all envy-free allocations. While such allocations may not be
Pareto-optimal, we also discuss ways to find envy-free and Pareto-optimal al-
locations (whenever such allocations exist).
Variants of the descending demand procedure have been considered in

Brams and Kilgour (1999), and Brams and Taylor (1996, 1999); however,
there are also significant di¤erences. Most importantly, the analysis of the so-
called ‘‘fallback bargaining’’ procedure in Brams and Kilgour (1999) applies
to social states rather than bundles of goods; in particular, their framework

2 The terms ‘‘well-being’’ and ‘‘worst-o¤ ’’ are to be understood in an ordinal sense, as
explained in Sect. 2.
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does not allow to address the issue of envy-freeness. Moreover, in contrast
to the descending demand procedure proposed here, fallback bargaining does
not rely on a specific ordering of individuals. The ‘‘strict alternation’’ proce-
dure of Brams and Taylor (1999) shares the sequential nature of the descend-
ing demand procedure; on the other hand, under strict alternation individ-
uals are supposed to name single goods rather than bundles of goods. Most
recently, the problem of fair division of indivisible items between two indi-
viduals has been addressed by Brams and Fishburn (2000). Their analysis is
restricted to a certain class of preferences; specifically, these authors assume
that individual preferences over sets of goods satisfy the axioms of qualitative
probability, in particular an independence condition that rules out comple-
mentarities between goods. Moreover, they assume that the two individuals
rank single items in the same way. None of these restrictions are imposed in
the present paper. Edelman and Fishburn (2000) extend the analysis of Brams
and Fishburn (1999) to more than two individuals; Brams et al. (2000a,b)
suggest di¤erent criteria, and trade-o¤s among them, for evaluating the equi-
tability of allocations.
Just as most procedures considered in the literature, the descending de-

mand procedure described here is vulnerable to strategic manipulation. How-
ever, a successful manipulation in our context would require considerable
knowledge of the other persons’ preferences. The practical relevance of the the-
oretical possibilities for strategic manipulation thus seems limited. In any case,
our analysis is not meant to contribute to the problem of implementing equi-
table allocations with sophisticated, strategically-thinking players, but rather
to the combinatorial problem of how to find such allocations in the absence
of strategic behaviour. We further comment on this issue in the conclusion.
The paper is organized as follows. Section 2 introduces the basic descend-

ing demand procedure. It is shown that its solutions are essentially the Pareto-
optimal allocations that are ‘‘balanced’’ in the sense that they give the worst-
o¤ individual the best possible rank in her preference ordering. In Sect. 3, we
consider an iterated procedure and show its solutions to correspond to an
appropriate lexicographic refinement of the notion of balancedness. Section
4 is devoted to the criterion of envy-freeness. While balanced and Pareto-
optimal allocations are not envy-free in general, we present a ‘‘modified’’ pro-
cedure that always yields envy-free solutions. However, when there are three
or more individuals, the modified procedure may not yield a solution at all,
even though envy-free allocations may exist. On the other hand, for two indi-
viduals the procedure yields a very appealing compromise between intra- and
interpersonal equitability, as it always selects the balanced among all envy-
free allocations. Section 5 concludes and discusses some directions for further
research.

2 The descending demand procedure

Consider a set N ¼ f1; . . . ; ng of individuals, indexed by i A N, and a finite set
S ¼ fa; b; c; . . .g of indivisible goods. Each individual i has a preference rela-
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tion �i over the family 2
S of all subsets of S. Throughout, we assume that

each �i is a linear ordering, i.e. a complete, transitive and antisymmetric rela-
tion. The preference ordering �i is called monotone if it satisfies the following
condition.

Monotonicity (MON). For all A;B A 2S,

AKB ) A �i B:

Observe that, since indi¤erences between distinct subsets are ruled out, MON
in particular implies AIB ) A �i B. In many contexts, monotonicity is a
natural requirement as it reflects an assumption of all goods being desirable.
Nevertheless, in some cases one may also wish to include ‘‘bads’’ such as un-
desirable tasks, for instance. With the exception of Proposition 4.1 below, none
of our results hinge on monotonicity. However, for expository convenience
monotonicity is assumed in the examples below.
An allocation A ¼ ðA1; . . . ;AnÞ is a list that assigns a set Ai JS of goods

to each individual. Often, we will refer to a subset of S as a bundle of goods.
An allocation A ¼ ðA1; . . . ;AnÞ is feasible if

Ai XAj ¼ q for all i0 j and 6
n

i¼1
Ai ¼ S:3

The set of Pareto-optimal allocations is denoted by P, i.e. A A P if A is feasi-
ble and there does not exist a feasible A0 that is unanimously (weakly) pre-
ferred to A by all individuals with a strict preference for at least one individ-
ual. For A A 2S, we denote by rkiðAÞ the rank of A in the ordering �i; thus,
rkiðAÞ ¼ 1 means that the set A is ranked top in the preference of individual
i, rkiðAÞ ¼ 2 means that A is second-best, and so on. Given an allocation A ¼
ðA1; . . . ;AnÞ, denote by rðAÞ the maximal rank over all individuals, i.e. rðAÞ :¼
maxi rkðAiÞ. An allocation A is called balanced if it is Pareto-optimal and
there does not exist another Pareto-optimal allocation A0 with rðA0Þ < rðAÞ.
The set of balanced allocations is denoted by BP. Intuitively, balancedness
expresses an egalitarian criterion of interpersonal equitability, in the sense that
balanced allocations minimize the maximal rank in the preference orderings
across individuals. It is straightforward to verify that under our assumptions
on individual preferences both P and BP are non-empty.
The basic descending demand procedure, henceforth DDP, works as fol-

lows.

The Descending Demand Procedure (DDP). A specific ordering of inviduals
is determined; without loss of generality, let 1 be the first individual in the

3 In some contexts, one may want to allow for the possibility of not distributing some
of the goods, thus replacing the feasibility condition in the text by the weaker require-
ment that Ai XAj ¼ q and6n

i¼1 Ai JS. It is easily checked that our analysis remains
valid with minor modifications under this weaker notion of feasibility. The only results
that depend on the stronger notion of feasibility used in the text are Lemma 4.1 as well
as Propositions 4.3 and 4.4 below.
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ordering, 2 the second, and so on. In the first round, each individual i names
her most preferred subset A1i A 2S, where claims are made in the prespecified

ordering. If A1 ¼ ðA11 ; . . . ;A1nÞ is feasible, the procedure stops and A1 is the
solution.
If A1 is not feasible, the individuals go on naming their second best bundle

A2i , again in the same ordering as before. The procedure stops at the moment
when for the first time an individual j names, say in the k-th round, a set
Ak

j such that there exists a feasible allocation B ¼ ðB1; . . . ;BnÞ with Bj ¼ Ak
j ,

Bi A fA1i ; . . . ;A
k
i g for i < j, and Bi A fA1i ; . . . ;A

k
1
i g for i > j. Any allocation

that is Pareto-optimal among the feasible allocations of this form is called a
solution of the DDP.

Proposition 2.1. Any solution of the DDP is an element of BP.

Proof. As above, let Ak
j be the subset of goods named by the j-th individual

in round k of the DDP. Denote by Ak
j " the set of all feasible allocations

B ¼ ðB1; . . . ;BnÞ satisfying Bj ¼ Ak
j , Bi A fA1i ; . . . ;A

k
i g for i < j, and Bi A

fA1i ; . . . ;A
k
1
i g for i > j. Consider now a solution A ¼ ðA1; . . . ;AnÞ of the

DDP for some ordering of individuals. Without loss of generality, we may
rename individuals and take the ordering to be the standard ordering 1; 2; . . . ;
n. Let Aj be the subset at which the DDP stopped, and suppose that this
happened in round k, so that Aj ¼ Ak

j , i.e. rkjðAjÞ ¼ k. First, we show that
A A P. Suppose, by way of contradiction, there is a feasible allocation B ¼
ðB1; . . . ;BnÞ Pareto-superior to A. By construction, Bj ¼ Aj , since otherwise,
i.e. if Bj �j Aj, the DDP would have stopped earlier. But this implies B A Ak

j ";
in particular, A is not Pareto-optimal in Ak

j ", a contradiction. The fact that A
is balanced, i.e. an element of BP, follows from noting that rðAÞ ¼ k. Hence,
if there were a Pareto-optimal allocation B with rðBÞ < k, the DDP would
have stopped at the latest in round k 
 1. q.e.d.

Given the result of Proposition 2.1, a natural question to ask is whether any

element of BP can be obtained as the solution of the DDP for some order-
ing of the individuals. Perhaps somewhat surprisingly, the answer is positive
for two individuals, but negative for three or more individuals. To see this,
consider N ¼ f1; 2g and an allocation A ¼ ðA1;A2Þ A BP. Suppose first that
rk1ðA1Þ ¼ rk2ðA2Þ; in this case, A is in fact the unique element of BP, and it is
easily verified that it is the solution of the DDP for both orderings of the two
individuals. Hence, suppose that rk1ðA1Þ di¤ers from rk2ðA2Þ, say rk1ðA1Þ >
rk2ðA2Þ. Then, A will be the solution of the DDP for the ordering in which
individual 1 starts. Note that with two individuals, BP always consists of at
most two elements. By the preceding observation, if there are two balanced
allocations, each will be the solution of the DDP for one of the two orderings
of the individuals.
With three or more individuals, there may exist elements of BP that are

never solutions to the DDP. Essentially, the reason is that, for a given alloca-
tion A ¼ ðA1; . . . ;AnÞ, there may be several individuals i such that rkiðAiÞ ¼
rðAÞ. Specifically, consider the following example.
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Example 1. Let N ¼ f1; 2; 3g and S ¼ fa; b; c; d; e; f g. Suppose that all in-
dividuals prefer a greater number of goods to a smaller number of goods, so
that each individual prefers each five-element subset of S to any four-element
subset of S, and each four-element subset to all three-element subsets, and
so on. In particular, this implies that individual preferences are monotone.
The four top-ranked sets among the two-element subsets of S are given as
follows.

1 2 3

..

. ..
. ..

.

fa; bg fa; cg fa; cg
fa; eg fa; dg fa; f g
fc; dg fa; bg fb; f g
fa; dg fc; dg fe; f g

..

. ..
. ..

.

It is easily verified that in this example, BP consists of the following three
allocations: A ¼ ðfa; bg; fc; dg; fe; f gÞ, B ¼ ðfa; eg; fc; dg; fb; f gÞ and B 0 ¼
ðfc; dg; fa; bg; fe; f gÞ. Denote by l the common maximal rank in these alloca-
tions, i.e. l ¼ rðAÞ ¼ rðBÞ ¼ rðB 0Þ. In allocation A both individuals 2 and 3 get
the same (maximal) rank: rk2ðA2Þ ¼ rk3ðA3Þ ¼ l. By contrast, in B and B 0 the
maximal rank is uniquely attained by individuals 2 and 3, respectively. This
observation immediately implies that the DDP will never yield A as solution.
Indeed, the solution will be B whenever individual 2 is ahead of individual 3 in
the ordering, and the solution will be B 0 for all other orderings.

The example motivates the following refinement of BP. For any feasible
allocation A ¼ ðA1; . . . ;AnÞ, denote by JA the set of individuals j for which
rkjðAjÞ ¼ rðAÞ, i.e. the set of individuals who are assigned the maximal rank.
Denote by BP� the set of all balanced allocations A such that for no balanced
allocation A0, JA 0 H JA. Clearly, BP� JBP, and BP� is always non-empty;
moreover, it has already been noted that BP� ¼ BP whenever there are only
two individuals.

Proposition 2.2. Any element of BP� can be obtained as a solution of the DDP

for some ordering of the individuals.

Proof. Let A A BP� with k ¼ rðAÞ; consider any ordering where the individ-
uals in JA are first to name their preferred bundles. Thus, suppose without loss
of generality that JA ¼ f1; . . . ; jg with j a n. Clearly, the DDP cannot stop
before round k, since by Proposition 2.1 this would imply the existence of a
Pareto-optimal allocation B with rðBÞ < k. In round k, the DDP cannot stop
before individual j has named Ak

j , since otherwise there would have been a
balanced allocation B with JBH JA. Hence, the DDP stops at Ak

j yielding A
as one solution. q.e.d.
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3 An iterated procedure

When there are many individuals and many goods, the DDP described so far
has two inherent weaknesses: first, it does not provide an explicit method for
determining whether there are feasible allocations in Ak

j " once individual j has
named Ak

j ; secondly, given that there are such allocations, it does not provide
an explicit method for finding Pareto-optimal allocations among these. We do
not further address the first problem here.4 However, we propose a solution
for the second problem; specifically, in this section, we analyze the following
iterated descending demand procedure.

The Iterated Descending Demand Procedure (IDDP). Let nb 3. A specific
ordering of individuals is determined. The standard DDP is applied until for
the first time an individual, say individual j, names in round k a set Ak

j such
that there exist feasible allocations in Ak

j ". Individual j parts with the set Ak
j ;

the DDP is restarted with the remaining individuals N nf jg (in the same order-
ing as before) to determine an allocation of the remaining set of goods SnAk

j .
In doing so, the individuals still name their preferred bundles from the original

set S, i.e. they should ignore the fact that the items in Ak
j are no longer avail-

able. Feasibility of an allocation ðA1; . . . ;Aj
1;Ajþ1; . . . ;AnÞ at this stage, how-
ever, requires 6

i0j
Ai ¼ SnAk

j . The DDP is applied until for the first time an

individual, say individual h, names a bundle that is part of a feasible alloca-
tion; individual h parts with that set, and the DDP is restarted with the remain-
ing individuals. This is repeated until there are only two individuals left. Any
solution of the DDP applied to the remaining two individuals, together with
the bundles already taken by the individuals that parted, is called a solution of
the IDDP.

It is easily verified that any solution of the IDDP is a balanced allocation, i.e.
an element of BP. What properties do the solutions of the IDDP have in
addition, and which balanced allocations can be obtained as solutions of the
IDDP? In addressing these questions, we focus for simplicity on the first round
of iteration only; the extension to the general case of n 
 2 iterations then fol-
lows in a straightforward way.
For an allocation A ¼ ðA1; . . . ;AnÞ, denote by r
ðAÞ the second highest

rank for some individual, i.e. r
ðAÞ :¼ maxifrkiðAiÞ : rkiðAiÞ < rðAÞg.5 De-
note by BP
 the set of balanced allocations A such that either: (i)aJAb 2,
or (ii) aJA ¼ 1 and, for no balanced allocation A0, [JA 0 ¼ JA and r
ðA0Þ <
r
ðAÞ]. The set BP
 may thus be viewed as an appropriate lexicographic re-
finement of BP. To illustrate, consider allocations represented by the rank
that the bundles of goods have in the individual preference orderings; thus,

4 Note that with only two persons, determining the set of feasible allocations in Ak
j " is

trivial, no matter how many goods there are. With more than two individuals, the
complexity of the problem of determining the feasible allocations in Ak

j " crucially
depends on the number of goods. In particular, the problem becomes serious only
when there are many individuals and a large number of goods.
5 If all individuals enjoy the same rank in A, we set r
ðAÞ equal to zero.
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e.g. the vector ð4; 4; 1Þ represents an allocation that gives both the first and
second individual a bundle ranked at the fourth place in their preference
ordering, while individual 3 gets the top ranked subset. By definition, if a
balanced allocation A gives rise to the rankings ð4; 4; 1Þ, the allocation is an
element of BP
 since aJA ¼ 2. On the other hand, suppose that two bal-
anced allocations B and B 0 give rise to the rankings ð4; 1; 3Þ and ð4; 2; 2Þ, re-
spectively; then, B 0 is an element of BP
, but B is not.

Proposition 3.1. Suppose the DDP is iterated once, i.e. after the first individ-

ual has parted, the standard DDP is applied once to the remaining individuals.

Then, any solution of the procedure is an element of BP
.

Proof. Clearly, any solution is balanced. To verify the statement, we only have
to show that, if A and A0 are balanced allocations such that JA ¼ JA 0 ¼ f jg for
some individual j, and r
ðA0Þ < r
ðAÞ, then A cannot be a solution for any
ordering of individuals. Thus, suppose in the first application of the DDP
some individual parted with a bundle of goods. If this individual is di¤erent
from j, the solution will be di¤erent from A. Hence, suppose the parting in-
dividual was j. Then, the DDP applied to the remaining individuals will stop
at the latest in round r
ðA0Þ, hence A is again not the solution. q.e.d.

To answer the converse question, of which balanced allocations can be ob-
tained as solutions to the DDP iterated once, consider the following lexico-
graphic refinement of BP �. For an allocation A ¼ ðA1; . . . ;AnÞ, let J


A denote
the (possibly empty) set of individuals that are assigned the second highest
rank, i.e. J


A :¼ fi : rkiðAiÞ ¼ r
ðAÞg. Denote by ðBP �Þ
 the set of balanced
allocations A such that for no balanced allocation A0, [JA 0 H JA or (JA 0 ¼ JA
and J


A 0 H J

A )].

Proposition 3.2. Any allocation in ðBP�Þ
 can be obtained as a solution of the

DDP iterated once for some ordering of individuals.

Proof. Let A A ðBP�Þ
, and consider an ordering in which the individuals in
JA are first to name their preferred bundles, followed by the individuals in J


A .
Without loss of generality, let JA ¼ f1; . . . ; jg and J


A ¼ f j þ 1; . . . ; hg. First,
consider the case j > 1, i.e.aJAb 2. In this case, j is the individual to part
with Ak

j after the first application of the DDP, where k ¼ rðAÞ. By the argu-
ment in the proof of Proposition 2.2, the first iteration of the DDP (among
the individuals Nnf jg) then stops again in round k when individual j 
 1 has
named Ak

j
1. Hence, A is among the solutions.

Consider now the case j ¼ 1. In this case, individual 1 parts in round k of
the first application of DDP. Again by the argument of Proposition 2.2, the
first iteration of the DDP among the remaining individuals stops when indi-
vidual h has named Ak 0

h where k 0 ¼ r
ðAÞ. Again, A must therefore be among
the solutions of the DDP iterated once. q.e.d.

From the above analysis of the first round of iteration of the DDP it is clear
that the general IDDP yields as solutions allocations in an appropriate further
lexicographic refinement of BP. Conversely, any allocation in an appropriate
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further lexicographic refinement of BP� can be obtained as a solution to the
IDDP. For the sake of notational simplicity, we do not describe the details
here.

4 Envy-freeness

In this section, we turn to the question of how the DDP fares in terms of in-
trapersonal equitability. Specifically, we consider the criterion of envy-freeness.
Formally, say that an allocation A ¼ ðA1; . . . ;AnÞ is envy-free if it is feasible
and, for all i, Ai �i Aj for all j ¼ 1; . . . ; n. Denote by E the set of envy-free al-
locations. Furthermore, say that an allocation is fair if it is both Pareto-optimal
and envy-free, and denote the set of fair allocations byF. Note that both E and
F may be empty.6 For instance, when preferences are monotone, a necessary
condition for F0q is that there are at least as many goods as there are in-
dividuals.
Consider now the descending demand procedure. First observe that by

Pareto-optimality of the solution, a necessary condition for the DDP to yield
an envy-free allocation is that F is non-empty. Are the allocations in F
among the solutions of the DDP in that case? As we shall see, this is not gen-
erally the case. In fact, a positive answer is obtained only under very special
circumstances. One simple example is when there are just as many goods as
individuals, i.e. whenaS ¼ n, and when each individual has monotone pref-
erences. In this case, the only possibility for F to be non-empty is when each
individual gets exactly one good which must be the good most preferred by
her among all single goods. In particular, this implies that for each single good
there has to be exactly one individual who prefers that good to all other single
goods; clearly, this considerably restricts the set of admissible preference pro-
files. Nevertheless, assume that preferences are such that the allocation A ¼
ðfa1g; fa2g; . . . ; fangÞ A F, where S ¼ fa1; . . . ; ang. This allocation is then
balanced; in fact, it is necessarily the unique balanced allocation. To see this,
suppose that B ¼ ðB1; . . . ;BnÞ is some other Pareto-optimal allocation; in par-
ticular, this implies that Bi �i faig for some individual i. Since faig �i fajg
for all j 0 i, the only possibility to make i better o¤ is by giving her at least
two goods, i.e.aBi b 2. But this implies that Bj ¼ q for some individual j,
and therefore rðBÞ > rðAÞ. Hence, since A is the unique balanced allocation, it
is also the unique solution of the DDP by Proposition 2.1.
When there are two individuals, the argument just given can be somewhat

generalized; specifically, one has the following result.

Proposition 4.1. Suppose that there are two individuals, both having monotone

preferences; furthermore, assume that aS a 3. Then, the set of solutions of the

DDP coincides with F whenever the latter set is non-empty.

Proof. We have already argued above that a necessary condition for F0q

6 If one allows for the possibility of not distributing goods, the set E is always non-
empty; indeed, the allocation in which nobody gets any good is clearly envy-free.
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isaS b 2. Furthermore, we have shown the statement to be valid ifaS ¼ 2.
Hence, it remains to consider the case S ¼ fa1; a2; a3g. Suppose thatF is non-
empty. By monotonicity, each individual must receive at least one good.
Without loss of generality, by suitably renaming goods and individuals, sup-
pose that A ¼ ðfa1; a2g; fa3gÞ A F. Using monotonicity of preferences and
envy-freeness of A, one easily verifies that rk1ðfa1; a2gÞa 4 and rk2ðfa3gÞ ¼ 4.
This implies that A is the unique balanced allocation. Indeed, any feasible
allocation that would result in a lower rank for individual 2 would involve
a rankb 5 for individual 1. Given that A is the unique balanced allocation,
it follows from Proposition 2.1 that it is also the unique solution of the
DDP. q.e.d.

The conclusion of Proposition 4.1 fails when there are more than three goods,
as shown by the following example.

Example 2. Let S ¼ fa; b; c; dg and suppose that both individuals prefer a
greater number of goods to a smaller number of goods, so that their prefer-
ences are in particular monotone. The four top-ranked sets among all two-
element subsets of S are given as follows.

1 2

..

. ..
.

fc; dg fb; dg
fa; bg fc; dg
fa; cg fa; cg
fb; dg fa; bg

..

. ..
.

In this example, the allocation ðfa; cg; fb; dgÞ is the unique fair allocation.
However, it is not balanced since the Pareto-optimal allocation ðfa; bg; fc; dgÞ
gives a lower rank to the worse-o¤ individual. In fact, ðfa; bg; fc; dgÞ is the
unique balanced allocation, and thus the unique solution to the DDP. How-
ever, individual 1 envies individual 2 at that allocation.
The failure of the DDP to yield envy-free allocations when such alloca-

tions exist is not very surprising, since, by its very construction, the DDP is
primarily concerned with interpersonal equitability while the concept of envy-
freeness refers to intrapersonal equitability. Nevertheless, we now show that
the DDP can be modified so that any solution is envy-free, provided the pro-
cedure gives a solution at all.

The Modified Descending Demand Procedure (MDDP). An ordering of indi-
viduals is determined; without loss of generality, let 1 be the first individual
in the ordering, 2 the second, and so on. In the first round, each individual i

names her most preferred bundle A1i , where claims are made in the prespeci-
fied ordering. If this results in a feasible allocation, that allocation is the so-
lution, and the procedure stops. If not, some bundles named in the first round
may have to be ‘‘marked.’’ Specifically, at a moment when individual i claims
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a bundle A1i that was already named by another individual j < i, both bun-
dles, A1j and A1i , are marked. The procedure goes to the second round in which

individuals name their second best bundle.
In general, suppose that the procedure has come to round k and individual

j has named Ak
j , where rkjðAk

j Þ ¼ k. At that moment, each individual ia j

has named the list ðA1i ; . . . ;Ak
i Þ of her most preferred bundles; similarly, each

individual i > j has named ðA1i ; . . . ;Ak
1
i Þ. There are now two cases to con-

sider.

Case 1. Suppose that Ak
j already occurred in the list of some other individual.

In this case, all occurrences of this bundle aremarked (including the occurrence
in j ’s list). Denote by ðAk

j "Þ
ef the set of feasible allocations A¼ ðA1; . . . ;AnÞ

in Ak
j " such that, for all i0 j, (i) Ai is unmarked, and (ii) Ai �i Ak

j . If ðAk
j "Þ

ef

is non-empty, any allocation in ðAk
j "Þ

ef that is Pareto-optimal in that set is
a solution, and the procedure stops. If ðAk

j "Þ
ef is empty, the procedure con-

tinues with the next individual naming her next preferred bundle.

Case 2. Suppose that no other individual has named Ak
j so far. If there exists

a feasible allocation in Ak
j " that consists of unmarked bundles only, any allo-

cation that is Pareto-optimal among these is a solution, and the procedure
stops. If not, the procedure continues with the next individual naming her next
preferred bundle.

Proposition 4.2. Any solution of the MDDP is envy-free.

Proof. By construction, any solution of the MDDP is feasible. We show
that any solution is envy-free. Suppose, by way of contradiction, that A ¼
ðA1; . . . ;AnÞ is a solution that is not envy-free, say Aj �i Ai for some individ-
uals i and j. Then, the bundle Aj is contained in both individual i ’s and indi-
vidual j ’s list at the moment when the MDDP stopped. However, in that case
both occurrences of Aj are marked, and by the construction of the MDDP, A
cannot be a solution. q.e.d.

Despite Proposition 4.2, the MDDP is not particularly attractive when there
are more than two individuals. Indeed, in that case, the MDDP may not yield
a solution at all even though E is non-empty. To illustrate this, consider the
following example.

Example 3. Suppose N ¼ f1; 2; 3g and S ¼ fa; b; c; d; e; f g. All individuals
prefer a greater number of goods to a smaller number of goods. The three top-
ranked two-element subsets are given as follows.

1 2 3

..

. ..
. ..

.

fa; cg fa; bg fc; dg
fa; dg fc; dg fa; bg
fe; f g fe; f g fe; f g

..

. ..
. ..

.
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If the rankings between the other two-element subsets are completed in an
appropriate way, and if, for instance, the rankings between all m-element sub-
sets are identical for all m0 2, then ðfe; f g; fa; bg; fc; dgÞ may be the unique
envy-free allocation. However, the MDDP will not yield this allocation as a
solution. The reason is that once individual 1 names fe; f g, the bundle fa; bg in
individual 2’s list is alrady marked since it has also been named by individual
3 before the procedure reached fe; f g in individual 1’s list.

The example shows that the MDDP is of limited applicability when there
are three or more individuals. However, for the case of two individuals the
MDDP has very appealing features; specifically, it selects the balanced and
Pareto-optimal allocations among the allocations in E, whenever the latter set
is non-empty. For the remainder of this section, we will focus on the case of
two individuals.
Denote by BE the set of balanced envy-free allocations, i.e. A A BE if and

only if A is envy-free and for no envy-free allocation A0, rðA0Þ < rðAÞ. Observe
that BE is non-empty whenever E is non-empty. With two individuals, any
allocation in BE is automatically Pareto-optimal in E; for future reference, we
record this simple fact in the following lemma.

Lemma 4.1. Suppose N ¼ f1; 2g. Then, any allocation in BE is Pareto-optimal

among all envy-free allocations.

Proof. Let A A BE. By feasibility, A is of the form A ¼ ðA;AcÞ for some
A A 2S, where Ac :¼ SnA denotes the complement of A in S. We will show
that A is Pareto-optimal in E. Suppose, by way of contradiction, there exists
an envy-free allocation B ¼ ðB;BcÞ that is Pareto-superior to A. Then neces-
sarily B0A, hence by our assumptions on individual preferences, B �1 A and
Bc �2 Ac. In particular, this implies rðBÞ < rðAÞ, contradicting the assumed
balancedness of A in E. q.e.d.

The following is the main result of this section.

Proposition 4.3. Suppose N ¼ f1; 2g. Then the MDDP yields a solution if and

only if E is non-empty. In that case, any solution of the MDDP is in BE. Con-

versely, any allocation in BE is a solution of the MDDP for one of the two

orderings of individuals.

Proof. By Proposition 4.2, any solution of the MDDP is envy-free. Suppose
that E0q, and let A ¼ ðA1;A2Þ be an element of BE. We distinguish the
following three cases.

Case 1. rk1ðA1Þ ¼ rk2ðA2Þ ¼ rðAÞ, say rðAÞ ¼ k. We will show that for both
orderings of the individuals, the MDDP will yield A as the unique solution.
First, observe that the MDDP cannot have stopped before both individuals 1
and 2 have named A1 and A2, respectively. Indeed, suppose, by way of con-
tradiction, it had stopped before, yielding A0 as solution. By Proposition 4.2,
A0 is envy-free; moreover, A0 would be Pareto-superior to A which is not pos-
sible by Lemma 4.1. Thus it remains to show that for both orderings of indi-

426 D. Herreiner, C. Puppe



viduals the MDDP stops at A. Since A is envy-free, both bundles A1 and A2
are unmarked in round k; hence by Pareto-optimality of A in E, A must be the
solution of the MDDP.

Case 2. rk1ðA1Þ > rk2ðA2Þ, say rk1ðA1Þ ¼ rðAÞ ¼ k. Consider the ordering in
which individual 1 is first to name her most preferred bundles. By the same
argument as in the first case, the MDDP cannot have stopped before individ-
ual 1 named A1 in round k. In round k, A2 cannot be marked since, by envy-
freeness, A1 �1 A2; hence by Pareto-optimality of A among the elements of E,
A is the solution. Next, consider the ordering in which individual 2 is the first
to name her most preferred bundles. Again, the MDDP cannot stop before
round k, since this would imply the existence of an envy-free allocation A0

with rðA0Þ < rðAÞ. Thus, suppose in round k individual 2 names Ak
2 (note that

Ak
2 0A2). If the procedure stops at this moment, the resulting solution is by
construction of the MDDP an allocation in BE. If the procedure does not stop
after individual 2 has named Ak

2 , it will stop when individual 1 names Ak
1 ¼ A1

yielding A as solution, since A2 is still unmarked then.

Case 3. rk1ðA1Þ < rk2ðA2Þ; this case is completely symmetric to Case 2.

We have thus shown that the MDDP yields an allocation in BE, whenever
E (and hence BE) is non-empty. Since there are at most two such allocations,
the argument also entails that any of them can be obtained as the solution for
one of the orderings of the two individuals. q.e.d.

By Proposition 4.3, the MDDP yields a very appealing compromise between
the intrapersonal criterion of envy-freeness and the interpersonal criterion of
balancedness. Unfortunately, although Pareto-optimal among the allocations
in E, allocations in BE may still fail to be globally Pareto-optimal. By conse-
quence, the MDDP as described so far cannot be expected to yield a fair al-
location even when such allocations exist. To see this, consider the following
example.

Example 4. Suppose that S ¼ fa; b; c; dg; again suppose that both individuals
always prefer having a greater number of goods. Among the two-element sub-
sets, preferences are given as follows.

1 2

..

. ..
.

fb; dg fa; dg
fa; dg fa; bg
fb; cg fc; dg
fc; dg fb; cg
fa; cg fa; cg
fa; bg fb; dg

..

. ..
.
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The unique fair allocation is A ¼ ðfb; dg; fa; cgÞ. However, the unique alloca-
tion inBE is B ¼ ðfc; dg; fa; bgÞ which is Pareto-dominated by ðfb; cg; fa; dgÞ.
By Proposition 4.3, the MDDP selects B.

There is a simple su‰cient condition under which the solutions of the MDDP
applied to two individuals will be fair, wheneverF0q. Specifically, consider
the following condition on individual preferences.

Limited Complementarity (LC). For all A;B A 2S,

A � B , Bc � Ac:

As our terminology suggests, condition LC limits the extent of comple-
mentarity between goods. To illustrate, consider the following three goods:
an antique secretaire (a), the chair (b) belonging to it, and a chinese vase (c).
The following preferences do not seem implausible: fa; bg � fa; cg � fb; cg �
fcg � fag � fbg. Given the set S ¼ fa; b; cg, these preferences violate LC since
fa; bg � fa; cg, but at the same time, fcg � fbg. Intuitively, LC thus rules out
the complementarity between a and b. On the other hand, it is easily verified
that LC does not necessarily rule out the stated preferences in a larger domain
of goods, hence the name limited complementarity. The following result relies
on Brams and Fishburn (2000, Theorem 4.4).

Proposition 4.4. Suppose that N ¼ f1; 2g and that the preferences of both in-

dividuals satisfy LC. Then the MDDP yields a solution if and only if E is non-

empty. Moreover, in that case any solution of the MDDP is fair.

Proof. By Proposition 4.3, any solution of the MDDP is an element of BE
(whenever E0q). By Lemma 4.1, any solution is thus Pareto-optimal among
the allocations in E. By Theorem 4.4 in Brams and Fishburn (2000), condition
LC implies that any allocation that is Pareto-optimal in E is in fact globally
Pareto-optimal, hence fair. q.e.d.

While Proposition 4.4 provides a simple condition under which a solution of
the modified descending demand procedure will be fair, there is also a more
general strategy to find such allocations without additional assumptions on
individual preferences. Indeed, one may simply apply the MDDP without
stopping rule, until both individuals have arrived at their least preferred sub-
set. In doing so, one separately records at any round the envy-free allocations
(if such exist). In this manner, any envy-free allocation will be recorded. In
particular, any fair allocation will be recorded.

5 Conclusion

In this paper we have investigated a particular method, the descending demand
procedure, for finding equitable allocations of indivisible goods among n in-
dividuals. We have found that the procedure fares well on both interpersonal
and intrapersonal criteria of equitability when there are two individuals. In
terms of interpersonal equitability, the procedure is also appropriate for more
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than two people, but it is less attractive in terms of intrapersonal equitability
in that case. The search for a better algorithm for determining equitable allo-
cations with three or more individuals seems to be a worthwhile subject for
future work. An important fact that one will have to consider in this context is
that di¤erent criteria for ‘‘equitability’’ can easily be in conflict with each other.
Indeed, even the two basic criteria of balanced Pareto-optimality and envy-
freeness considered in this paper can be mutually incompatible. To illustrate,
consider the following example.

Example 5. Suppose that N ¼ f1; 2g and S ¼ fa; b; c; dg; assume that both
individuals always prefer having a greater number of goods. Among the two-
element subsets, preferences are given as follows.

1 2

..

. ..
.

fa; dg fa; dg
fb; cg fa; bg
fc; dg fc; dg
fa; cg fb; cg
fa; bg fa; cg
fb; dg fb; dg

..

. ..
.

The unique envy-free allocation is A ¼ ðfc; dg; fa; bgÞ. However, A is Pareto-
dominated by B ¼ ðfb; cg; fa; dgÞ which is the unique allocation in BP. On
the other hand, B is not envy-free, since individual 1 would rather have indi-
vidual 2’s bundle. By Proposition 2.1, the unmodified DDP selects B, whereas
by Proposition 4.3, the MDDP selects the envy-free but Pareto-inferior allo-
cation A.

In such examples, it is not obvious which criterion should have priority. With
many individuals the conflict between di¤erent appealing criteria for equita-
bility is likely to become even sharper; compromises of one or the other sort
thus seem to be unavoidable.
Another open problem concerns strategic manipulability. Theoretically,

the procedures presented here are vulnerable to strategic manipulation as are
most of the procedures suggested in the literature (cf. Brams and Taylor 1996,
1999, or Brams and Fishburn 2000). In the purely indivisible case, very little
work has been done to identify conditions under which strategy-proof mech-
anisms exist that implement equitable (in particular: envy-free) allocations.
This, we believe, is an important area for future research.
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