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1 Introduction

In view of the celebrated Gibbard-Satterthwaite Impossibility Theorem, non-degenerate
social choice functions can be strategy-proof only on restricted domains, that is: only
when some a priori information on the possible preferences over social states is avail-
able. The classic example in a voting context is the Hotelling-Downs model in which
social states are ordered as in a line, representing, for instance, policy choices that can
be described in terms of a left-to-right scale. If preferences are single-peaked, then the
selection of the Condorcet winner defines a strategy-proof social choice function with
additional attractive properties such as anonymity and neutrality. The entire range
of strategy-proof social choice functions on the domain of single-peaked preferences on
the line was characterized in a path-breaking paper by Moulin (1980) which inspired
a large literature obtaining possibility or impossibility results for particular domains.
However, in spite of the considerable amount of attention that has been devoted to the
topic over more than two decades, the demarcation between possibility and impossi-
bility is still not well understood. The goal of this paper is to describe this boundary
precisely for a large and flexible (though far from universal) class of preference domains
that we shall refer to as “generalized single-peaked.”1 Within this class, we will classify
domains according to the kinds of strategy-proof social choice functions they admit,
using the fundamental properties of non-dicatorship, local non-dictatorship, anonymity
and neutrality as classification criteria. It turns out, for example, that the scope of
anonymous strategy-proof social choice extends far beyond the known examples in the
literature. Moreover, it is shown that in our context anonymity is equivalent to the
absence of local dictators. Likewise, under non-dictatorship, enabling neutrality is
equivalent to enabling neutrality and anonymity together; thus, neutrality turns out
to be substantially more demanding than anonymity.

Establishing the desired classification for arbitrary domains would clearly be an
extremely difficult task for at least two reasons. First, domains as sets of preference
orderings can be very heterogeneous, and their relevant structure may be hard to
describe. Second, the structure of the social choice functions admitted may differ across
domains, and it may not be possible to describe them in a unified way. For example,
while in the great majority of cases, strategy-proof social choice functions depend only
on the voters’ most preferred alternatives, this does not hold for all domains. We thus
concentrate our analysis on a large class of domains whose structure together with the
structure of the possible strategy-proof social choice functions can be characterized in
a unified, tractable way.

The basic idea underlying our approach is to describe the space of alternatives
(“social states”) geometrically in terms of a three-place betweenness relation, and to
take the associated domain of preferences to consist of a sufficiently rich set of orderings
that are single-peaked in the sense that individuals always prefer social states that are
between a given state and their most preferred state, the “peak.”

Following Nehring (1999), we shall conceptualize betweenness more specifically in
terms of the differential possession of relevant properties: a social state y is between
the social states x and z if y shares all relevant properties common to x and z. Single-
peakedness means that a state y is preferred to a state z whenever y is between z and

1Throughout, we will assume that the a priori information about each individual is the same so
that the domain of the social choice function is the n-fold copy of a fixed individual preference domain,
where n is the number of voters.
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the peak x∗, i.e. whenever y shares all properties with the peak x∗ that z shares with
it (and possibly others as well). Throughout, it will be assumed that a property is
relevant if and only if its negation is relevant; a pair consisting of a property and its
negation is referred to as an issue. As further illustrated below and discussed in detail
in the companion paper Nehring and Puppe (2004), henceforth NP, a great variety of
domains of preferences that arise naturally in applications can be described as single-
peaked domains with respect to such betweenness relations. Note, for example, that the
unrestricted domain envisaged by the Gibbard-Satterthwaite Theorem can be viewed
as the set of all “single-peaked” preferences with respect to a vacuous betweenness
relation that declares no social state between any two other states.

On generalized single-peaked domains, strategy-proof social choice can be described
in a unified manner as “voting by committees” (following Barberá, Sonnenschein and
Zhou (1991), Barberá, Massò and Neme (1997), and others, see NP). This structure has
two aspects. First, the social choice depends on individuals’ preferences through their
most preferred alternative only. Second, the social choice is determined by a separate
“vote” on each property: an individual is construed as voting for a property over its
negation if and only if her top-ranked alternative has the property. For example, in the
special case in which voting by committees is anonymous and neutral it takes the form
of “issue-by-issue majority voting;” that is, a chosen state has a particular property if
and only if the majority of agents’ peaks have that property.

Crucially, in order to guarantee that the properties chosen by each committee are
always jointly realizable for any profile of voters’ preferences, the committees (i.e. vot-
ing rules) associated with each property must be consistent with each other. A main
result in NP characterizes such consistency in terms of a simple condition called the
“Intersection Property.” Impossibility results obtain when consistency can be achieved
only in degenerate ways, such as by giving the same agent full control over each prop-
erty, leading to a dictatorial social choice function. The first main result of the present
paper, Theorem 1, derives a combinatorial condition called “total blockedness” that is
both necessary and sufficient for a generalized single-peaked domain to admit only dic-
tatorial strategy-proof social choice functions. The unrestricted domain as well as many
other single-peaked domains are totally blocked; examples are provided in Sections 2
and 4 below.

While this result ensures that if a space is not totally blocked non-dictatorial social
choice functions exist, those choice functions may still be “almost dictatorial” by giving
almost all decision power to a single agent. Thus, the negation of total blockedness
cannot be viewed as securing genuine possibility results. The second main result of
the paper, Theorem 2, therefore characterizes those domains that admit anonymous
strategy-proof social choice functions (“voting by quota”), ensuring that all agents have
equal influence on the chosen outcome. It turns out that within the class of generalized
single-peaked domains, those that admit anonymous social choice rules are exactly
those that admit locally non-dictatorial rules.

As illustrated by an example in Appendix B, the characterizing condition for the
existence of some anonymous rule is necessarily complex. A simple sufficient and al-
most necessary condition is the existence of a median point. Following Nehring (2004),
a median point is a point such that, given any other two points, there is an element
between any pair of the three, their “median.” Spaces that admit at least one median
point are referred to as quasi-median spaces. Graphical examples will follow shortly.
Anonymous rules exist in exceptional cases also outside quasi-median spaces, but they
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require an odd number of voters in such cases. Accordingly, the third main result, The-
orem 3, shows that a domain admits anonymous strategy-proof social choice functions
for any number of voters if and only if the underlying space is a quasi-median space.

While anonymous rules treat agents symmetrically, they typically treat social al-
ternatives asymmetrically, for instance by applying different quotas to different issues.
We therefore finally ask under what circumstances strategy-proofness is compatible
with different notions of neutrality, i.e. symmetric treatment of social states. Our final
main result, Theorem 4, shows first that a generalized single-peaked domain admits
non-dictatorial strategy-proof social choice functions that are neutral across issues if
and only if the underlying space is a quasi-median space. Strikingly, in terms of the
kinds of strategy-proof social choice functions admitted, neutrality across issues thus
requires the same underlying structure as anonymity (for any number of voters). Fur-
thermore, Theorem 4 also shows that the existence of a rule that is neutral within
issues and locally non-dictatorial is as demanding as the existence of a fully neutral
and (globally) non-dictatorial rule, and that either condition requires every point to be
a median point. Spaces in which all points are median points, i.e. in which every triple
of points admits a fourth element in between any two of them, are called median spaces
and are well-known in mathematics (see, e.g., van de Vel (1993)). The important role
of median spaces in the context of strategy-proof social choice is analyzed in greater
detail in NP. In particular, we show there that the structure of median spaces drives
most of the possibility results in the literature.2

Possibility results in a strong sense thus require a median space; weaker possibil-
ity results still presuppose the existence of median points. Thus, while the range of
domains with possibility results is expanded substantially beyond what is known, no
radically different possibilities emerge. On the other hand, Theorem 1 provides the
means of generating impossibility results for many new domains. On the whole, then,
our results confirm the drift of the previous literature that possibility results require
fairly parsimonious and highly structured preference domains.

The remainder of this paper is organized as follows. The following Section 2 offers
a brief overview of the scope of our analysis. In Section 3, we provide the neces-
sary background from NP. In particular, we introduce the notion of generalized single-
peakedness on a property space and review the characterization of strategy-proof social
choice on the associated preference domains. In Section 4, we generalize the Gibbard-
Satterthwaite Theorem by characterizing the class of all single-peaked domains that
only admit dictatorial strategy-proof social choice functions. Roughly, the characteriz-
ing condition (“total blockedness”) says that there are too many families of mutually
incompatible properties. We also investigate the existence of local dictators implied by
an appropriate condition of local blockedness, and we discuss the relation of our anal-
ysis to the recent results of Aswal, Chatterji and Sen (2003). Section 5 and 6 provide
the characterizations of the domains that admit strategy-proof social choice functions
satisfying anonymity and neutrality, respectively. Section 7 concludes, and all proofs
are collected in an appendix.

2See, among others, Moulin (1980), Demange (1982), Border and Jordan (1983), Barberá, Sonnen-
schein and Zhou (1991) and Barberá, Gul and Stacchetti (1993).
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2 Overview and Related Literature

All of the following graphs describe economically meaningful preference domains that
will reappear later in the paper.3 Each graph corresponds to a different set of social
states represented by its nodes. The relevant betweenness relation is the natural one: a
state/node is between two other states/nodes if it lies on some shortest path connecting
them.4 Endowed with this notion of betweenness, the three graphs in the top row are
all median spaces. Indeed, in Fig. 1a the betweenness relation is the standard one with
the middle point as the median of any triple. In Fig. 1b and 1c, for instance, y is the
median of x, z and w.
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3The graph in Fig. 1c describes an instance of a class of location problems analyzed in greater
detail in Nehring and Puppe (2003).

4A shortest path is one with a minimal number of edges; note that such paths are, in general, not
unique.
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Figure 1: Examples of single-peaked domains based on graphs

Thus, by Theorem 4 below and the analysis in NP, the single-peaked domains associated
with the three graphs in the top row of Fig. 1 give rise to possibility results in the
strongest possible sense.

By constrast, none of the remaining graphs in Fig. 1 is a median space: in each
case the indicated triple x, z, w does not admit a median.5 In fact, as we will see, the
three graphs in Fig. 1g, 1h and 1i give rise to strong impossibility results in the sense
that the associated single-peaked domains only admit dictatorial strategy-proof social
choice functions. For the single-peaked domain associated with the graph in Fig. 1g this
follows from the Gibbard-Satterthwaite Theorem: since every point is connected with
any other point by an edge, no point is between two other points; but in this case any
preference is (vacuously) single-peaked, i.e. the associated domain of all single-peaked
preferences is the unrestricted domain.

Examples of intermediate cases are given in Fig. 1d, 1e and 1f. For instance, as a
non-median space the graph in Fig. 1d does not admit issue-by-issue majority voting;
nonetheless, it does admit “qualified majority voting on properties.” In this figure,
the relevant properties are the three 4-cycles and their complements. For example,
the rule according to which the social choice belongs to any of the 4-cycles if and
only if at least one third of the voters’ peaks are in that 4-cycle is consistent and
strategy-proof. By constrast, while Fig. 1f does admit non-dictatorial strategy-proof
social choice functions, none of these is anonymous. Fig. 1e, on the other hand, admits
anonymous social choice functions; all of these are fairly degenerate, however, in that
at least one property must be chosen unanimously. Accordingly, 1d and 1e admit
median points, while 1f does not. Indeed, in Fig. 1d the median points are exactly the
four non-labeled points (all points except x, z and w); similarly, the median points in
Fig. 1e are the two points different from x, z and w. By contrast, in Fig. 1f there are
no median points, since for any given alternative one can find two other alternatives
such that the resulting triple has no median.

While our results show that the possibility of non-degenerate strategy-proof social
choice is best understood geometrically in terms of the existence and structure of me-
dian points, a coarser look in terms of the nature of admitted cycles is also instructive,
especially when the betweenness relation can be described by a graph. We show in
Section 4 that graphs admitting locally non-dictatorial or, equivalently, anonymous
stratgy-proof social choice functions cannot have odd cycles of any length, nor even

5The interpretation of the blank circle in Fig. 1e is that the shortest path connecting x and w
comprises two edges; at the same time, no social state is (strictly) between x and w.
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convex cycles of any length greater than four; a cycle is convex if no shortest path be-
tween any two points leaves the edges of the cycle.6 Thus, all non-dictatorial domains
share a fundamentally similar geometry.

The paper closest to ours is Aswal, Chatterji and Sen (2003). These authors make
no structural assumption on the nature of the domain, and provide a sufficient condition
for dictatorship. Adapted to our framework, their condition requires the existence of
cycles of length three (and somewhat more, see Section 4.3 below). They also provide
a sufficient condition for non-dictatorship, which however is very strong. In Fig. 1,
their results allow to classify the domains 1a and 1f as non-dictatorial, and 1g and
1i as dictatorial. The only other paper in the literature we know of that considers
domains with a variable geometry is Schummer and Vohra (2002), who embed the
underlying spaces as closed sets in a finite-dimensional Euclidean space. Their domains
are, however, not strictly comparable, since their underlying spaces are infinite and
since their preference domains are defined somewhat differently. They find that the
existence of any cycle precludes anonymity. This is consistent with our results, since
all their cycles contain an infinite number of points.

3 Strategy-Proof Social Choice on
Generalized Single-Peaked Domains

In this section, we briefly summarize the basic concepts and results from NP needed
for the later analysis.

Property space A property space is a pair (X,H), where X is a finite universe of
social states or social alternatives, and H is a collection of subsets of X satisfying
H1 H ∈ H ⇒ H 6= ∅,
H2 H ∈ H ⇒ Hc ∈ H,
H3 for all x 6= y there exists H ∈ H such that x ∈ H and y 6∈ H,
where, for any S ⊆ X, Sc := X \ S denotes the complement of S in X. The elements
H ∈ H are referred to as the basic properties (with the understanding that a property
is extensionally identified with the subset of all social states possessing that property).
A pair (H,Hc) is referred to as an issue.

Betweenness A property space (X,H) induces a ternary betweenness relation T ⊆ X3

according to

(x, y, z) ∈ T :⇔ [ for all H ∈ H : {x, z} ⊆ H ⇒ y ∈ H] (3.1)

(cf. Nehring (1999)). Thus, (x, y, z) ∈ T means that y shares all basic properties that
are common to x and z, in which case we say that y is between x and z.

Figure 2 below shows some examples of property spaces. In the case of a line, the
basic properties are of the form “lying to the left (resp. to the right)” of some given
element (see Fig. 2a). The K-dimensional hypercube (cf. Fig.1b) is the set {0, 1}K of
all binary sequences of length K. The basic properties are, for all k = 1, ...,K, the
sets Hk

0 (resp. Hk
1 ) of all elements that have a zero (resp. a one) in coordinate k; the

6For instance, the 6-cycle in Fig. 1h is convex; in Fig. 1i, by contrast, all convex cycles have length
three; finally, in Fig. 1g any three points form a convex cycle. In median spaces, all convex cycles
must have length four.
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3-hypercube is depicted in Fig. 2b. An element y is between x and z if it agrees with x
and z in all coordinates in which these two elements agree; for instance, in Fig. 2b both
y and y′ are between x and z while the entire cube is between x and w. In a product
X =

∏
Xk, the basic properties are of the form Hj ×

∏
k 6=j Xk, where Hj is a basic

property in coordinate j. Thus, e.g., in the product of two lines the basic properties are
of the form H1×X2 and X1×H2, respectively. An element y is between x and z if it
is contained in the rectangle spanned by x and z, i.e. if it is coordinatewise between x
and z (see Fig. 2c). Finally, consider the graph in Fig. 2d, the 6-cycle already discussed
above (cf. Fig. 1h). If one takes the family of basic properties to consist of all sets of
three consecutive elements in the cycle (all “half-cycles”), the betweenness induced via
(3.1) coincides with the graphic betweenness according to which a point is between two
other points if and only if it lies on a shortest path connecting them. For instance, in
Fig. 2d each state xj is between the states xj−1 and xj+1, and all states are between
opposite pairs, such as x1 and x4. The graphic betweenness relation on a l-cycle for
arbitrary l ≥ 3 is obtained from a property space via (3.1) as follows. If l is even, the
basic properties are all sets of l/2 consecutive elements of the cycle; if l is odd, the
basic properties are all sets of (l − 1)/2 and those of (l + 1)/2 consecutive elements of
the cycle.
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Figure 2: Examples of property spaces

Any property space (X,H) canonically induces a graph as follows. Say that two
distinct elements x and y are neighbours if no other element is between them, i.e. if
(x,w, y) ∈ T ⇒ [ w = x or w = y ]. The graph γ on X that connects each pair of
neighbours by an edge will be referred to as the underlying graph of (X,H). A property
space (X,H) is called graphic if the induced betweenness relation T according to (3.1)
coincides with the graphic betweenness induced by γ, i.e. if
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(x, y, z) ∈ T ⇔ y is on some shortest γ-path connecting x and z

Many property spaces that arise naturally in applications are graphic, and evidently,
graphic spaces are particularly simple and useful for the purpose of illustration. But
there is also a large class of non-graphic property spaces. The property spaces un-
derlying the examples shown in Figures 1 and 2 are all graphic with the exception of
the space corresponding to Fig. 1e.7 In Appendix A, we describe the precise relation
between property spaces and graphs in more detail. In particular, we provide a sim-
ple necessary and sufficient condition for a graphic betweenness to be derivable from
a property space via (3.1), and discuss when the betweenness derived from a given
property space can be representd by a graph.

Generalized Single-Peakedness A linear preference ordering � on X is called single-
peaked on (X,H) if there exists x∗ ∈ X (the “peak”) such that for all y 6= z,

(x∗, y, z) ∈ T ⇒ y � z.

A preference ordering is thus single-peaked whenever states between other states and
the peak are preferred. Single-peaked preferences in this sense have been studied,
among others, by Black (1958) and Moulin (1980) in the case of a line, by Barberá,
Sonnenschein and Zhou (1991) in the hypercube (under the name of “separable prefer-
ences”), and by Barberá, Gul and Stacchetti (1993) in the product of lines (under the
name of “multidimensionally single-peaked preferences”).

The unrestricted preference domain is obtained as a generalized single-peaked do-
main by considering the collection of all basic properties of the form H = {x} (“being
equal to x”) and their complements Hc = X \ {x} (“being different from x”). The
corresponding betweenness relation according to (3.1) is vacuous in the sense that no
element x is between two other elements y and z (since y and z share the basic prop-
erty “being different from x,” a property not shared by x). By consequence, any linear
preference ordering is single-peaked with respect to this betweenness relation.

Given a property space (X,H), we denote by S(X,H) the set of all single-peaked
preferences, and by S ⊆ S(X,H) any subset of such preferences that is rich in the sense
of the following two conditions. Note that both conditions are satisfied by the set
S(X,H) itself.
R1 For all neighbours x, y there exists a preference ordering in S that has x as peak

and y as the second best element.
R2 For all x, y, z such that y is not between x and z there exists a preference ordering

in S with peak x that ranks z above y.
Social Choice Function Let N = {1, ..., n} be a set of voters. A social choice function
on a single-peaked domain is a mapping F : Sn → X that assigns to each preference
profile (�1, ...,�n) ∈ Sn a unique social alternative F (�1, ...,�n) ∈ X.

The function F satisfies voter sovereignty if F is onto, i.e. if any x ∈ X is in the
range of F . Furthermore, a social choice function F is strategy-proof on S if for all i
and �i,�′i∈ S,

F (�1, ...,�i, ...,�n) �i F (�1, ...,�′i, ...,�n).
7The property space underlying Fig. 1e is given by the three properties {a, x}, {b, w}, {a, b, z} and

their respective complements. As is easily verified, the associated neighbourhood graph γ is the 5-cycle
with the edges (x, a), (a, z), (z, b), (b, w), and (w, x); in particular, note that x and w are neighbours.
However, the betweenness induced via (3.1) does not coincide with the graphic betweenness induced
by γ since, for instance, both z and b are between a and w in the sense of T , but they are not on a
shortest γ-path.
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Voting by Committees as Voting by Properties A committee is a non-empty
family W of subsets of N satisfying [W ∈ W and W ′ ⊇ W ] ⇒ W ′ ∈ W. The elements
of W are called the winning coalitions. A committee structure on (X,H) is a mapping
W : H 7→ WH that assigns a committee to each basic property H ∈ H satisfying
W ∈ WH ⇔ W c 6∈ WHc ; the latter condition is easily seen to imply

WH = {W ⊆ N : W ∩W ′ 6= ∅ for all W ′ ∈ WHc}. (3.2)

Voting by committees is the mapping fW : Xn → 2X defined as follows. For all ξ ∈ Xn,

x ∈ fW(ξ) :⇔ for all H ∈ H with x ∈ H : {i : ξi ∈ H} ∈ WH .

Thus, x is the outcome of voting by committees if and only if, for any property H
possessed by x, the coalition of those individuals whose peak have property H is winning
for H. The induced mapping FW(�1, ...,�n) := fW(x∗1, ..., x

∗
n), where x∗i is the peak

of �i, is also referred to as voting by committees.

Consistency A committee structureW is called consistent if fW(ξ) 6= ∅ for all ξ ∈ Xn.

If voting by committees is consistent it is single-valued due to condition H3, and we will
identify (with slight abuse of notation) fW and FW with the corresponding functions
to X in that case.

The following two results are proved in NP. The first is an adaptation and general-
ization of a central result in Barberá, Massò and Neme (1997).

Theorem A A social choice function F : Sn → X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by committees
with a consistent committee structure.

Critical Family Say that a family G ⊆ H of basic properties is a critical family in
(X,H) if ∩G = ∅ and for all G ∈ G, ∩(G \ {G}) 6= ∅.

A critical family G = {G1, ..., Gl} thus describes the exclusion of the combination
of the corresponding basic properties in the sense that G1, ..., Gl cannot be jointly
realized. “Criticality” (i.e. minimality) means that this exclusion is not implied by a
more general exclusion in the sense that the basic properties in any proper subset of G
are jointly realizable. Observe that all pairs {H,Hc} of complementary basic properties
are critical; they are referred to as the trivial critical families.

Intersection Property A committee structure satisfies the Intersection Property if
for any critical family G = {G1, ..., Gl}, and any selection Wj ∈ WGj

, ∩l
j=1Wj 6= ∅.

Theorem B A social choice function F : Sn → X satisfies voter sovereignty and is
strategy-proof on a rich single-peaked domain S if and only if it is voting by committees
satisfying the Intersection Property.

In Theorems A and B, the notions of a rich single-peaked domain of preferences, of a
consistent committee structure as well as the Intersection Property characterizing the
latter are all understood relative to a given property space (X,H). It is possible that a
given preference domain S is “rich single-peaked” relative to more than one property
space (X,H). However, since Theorems A and B apply to any such property space,
this multiplicity presents no special problems; the particular property space used for
the analysis can be chosen for convenience.8

8The multiplicity of property spaces is tightly constrained, however: in NP, we show that all such
property spaces must induce the same betweenness relation.
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Taking a property space as a primitive is in line with much of the literature es-
tablishing possibility results which also describes preferences assuming a given (lin-
ear, multi-dimensional, etc.) structure of alternatives. Alternatively, one could take
an unstructured preference domain as given, and ask whether its set of linear orders
constitutes a rich single-peaked domain relative to an appropriate property space. A
representation theorem to this purpose is provided in the companion paper NP, which
also describes a constructive procedure of obtaining a suitable property space if it
exists.

A social choice function F is anonymous if it is invariant with respect to permuta-
tions of voters’ preferences. Voting by committees is anonymous if it takes the form of
voting by quota: for all H, there exists qH ∈ [0, 1] such that WH = {W : #W > qH ·n}
if qH < 1 and WH = {N} if qH = 1. Note that the quotas qH are not uniquely deter-
mined. Also observe that the quotas can be chosen such that qHc = 1 − qH . In the
anonymous case of voting by quota the Intersection Property simplifies to a system of
linear inequalities, as follows. If, for any critical family G,∑

H∈G
qH ≥ #G − 1, (3.3)

then voting by quotas qH for H ∈ H is consistent. Conversely, if anonymous voting by
committees is consistent, then it can be represented by quotas satisfying (3.3).

4 Non-Dictatorship

In Subsection 4.1, we characterize the class of generalized single-peaked domains that
only admit dictatorial rules. In Subsection 4.2, we investigate the existence of “local”
dictators, and in Subsection 4.3 we provide conditions under which global dictatorship
can be inferred from the existence of a local dictator.

4.1 Generalizing the Gibbard-Satterthwaite Theorem

By the Intersection Property, what strategy-proof social choice functions a particular
property space admits is determined by its critical families. Clearly, the “more” critical
families there are, the tighter the set of strategy-proof social choice functions is circum-
scribed. It turns out that, for the purpose of determining whether there exists at least
one strategy-proof social choice function with particular well-behavedness properties
such as non-dictatorship, anonymity or neutrality, all relevant information is summa-
rized by the transitive closure of the following conditional entailment relation. For
all basic properties H,G ∈ H,

H ≥0 G :⇔ [H 6= Gc and there exists a critical family G with G ⊇ {H,Gc}]

Intuitively, H ≥0 G means that, given some combination of other basic properties, the
basic property H “entails” the basic property G. More precisely, let H ≥0 G, i.e. let
{H,Gc, G1, ..., Gl} be a critical family; then with A = ∩l

j=1Gj one has both A∩H 6= ∅
(“property H is compatible with the combination A of properties”) and A ∩ Gc 6= ∅
(“property Gc is compatible with A as well”) but A∩ H ∩Gc = ∅ (“properties H and
Gc are jointly incompatible with A”).

The central role of conditional entailment derives from the following observation,
where ≥ denotes the transitive closure of ≥0.
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Fact 4.1 Consider any committee structure W satisfying the Intersection Property.
Then, for any pair of basic properties, H ≥ G ⇒WH ⊆ WG.

To verify this, it suffices by transitivity to show that H ≥0 G ⇒ WH ⊆ WG. Thus,
suppose that {H,Gc} ⊆ G for some critical family G. By the Intersection Property,
W ∩W ′ 6= ∅ for any W ∈ WH and any W ′ ∈ WGc . By (3.2), this implies WH ⊆ WG.

By Fact 4.1, conditional entailment forces a strong relationship between the cor-
responding committees: if H ≥ G, then any coalition that is winning for H (over its
complement) must also be winning for G (over its complement).

As an illustration, consider again the 6-cycle and the seven-point graph of Fig. 1d
above. For the present purpose, it is convenient to picture these graphs as embedded
in a hypercube (see Figure 3 below). Denote by Hk

0 the basic property corresponding
to a zero in coordinate k, and by Hk

1 the basic property corresponding to a one in
coordinate k (in Fig. 3, the origin (0, 0, 0) is the left-bottom-front point). Thus, for
instance in Fig. 3a, the set H1

1 (the right face of the cube) consists of the three points
x1, x2 and x6; similarly, for the set H2

0 (the bottom face) one has H2
0 = {x1, x5, x6}. In

Fig. 3b, on the other hand, one has H1
1 = {x1, x2, x6, x7} and again H2

0 = {x1, x5, x6}.
Viewed as a subspace of the three-dimensional hypercube, the seven-point subset

in Fig. 3b is characterized by the following, single non-trivial critical family: G0 :=
{H1

0 ,H2
0 ,H3

0}. Indeed, one has ∩G0 = ∅ corresponding to the fact that no element is
simultaneously in the left, bottom and front faces of the cube. On the other hand, any
two basic properties in G0 have a non-empty intersection, e.g. H1

0∩H2
0 = {x5}. In terms

of conditional entailment, criticality of G0 implies that Hk
0 ≥0 Hk′

1 for k 6= k′. Since
there are no other non-trivial critical families, these are the only non-trivial instances
of conditional entailment in Fig. 3b.

c - 1
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�����1
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sx3 sx2

s
x1

c
sx5

sx4

sx6
���

���
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3a: The 6-cycle
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sx5
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sx6
���

���
���

3b: The seven-point graph

Figure 3: Two graphs embedded in the three-dimensional hypercube

By contrast, consider the 6-cycle in Fig. 3a, which is characterized by the two critical
families G0 = {H1

0 ,H2
0 ,H3

0} (no element is simultaneously in the left, bottom and front
faces) and G1 := {H1

1 ,H2
1 ,H3

1} (no element is simultaneously in the right, top and back
faces). Here, one has Hk

0 ≥0 Hk′

1 for all k 6= k′, and symmetrically, Hk
1 ≥0 Hk′

0 for all
k 6= k′. This implies at once that for the 6-cycle, one has H ≥ G for all basic properties
H and G. Thus, the relation ≥ is as large as it could possibly be; spaces with that
property will be called “totally blocked.” Specifically, denoting by ≡ the symmetric
part of ≥, i.e. H ≡ G :⇔ [H ≥ G and G ≥ H], say that a property space (X,H) is
totally blocked if H ≡ G for all H,G ∈ H.

It follows at once from Fact 4.1 that consistent voting by committees on a to-
tally blocked space must be neutral in the sense that all committees associated with
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the various basic properties are identical. While neutrality by itself is already quite
restrictive as shown in Section 6 below, the stronger condition of total blockedness
precludes all social choice functions but the dictatorial ones. Specifically, say that a
social choice function is dictatorial if the chosen state always coincides with the peak
of one fixed voter i, the dictator. Note that voting by committees is dictatorial with
agent i as dictator if and only if {i} ∈ WH for all H (i.e. i alone is winning for any
basic property).

We will call a property space (X,H) “dictatorial” if all strategy-proof and onto
social choice functions F : S → X on some rich domain (or, equivalently, all rich do-
mains) of single-peaked preferences S are dictatorial. More generally, we will say that
(X,H) “has property P” if it forces all strategy-proof and onto social choice functions
F : S → X to have property P. In case P is a desirable property, we say that (X,H) “is
P” if it admits at least one strategy-proof and onto social choice function F : S → X
with property P.

Theorem 1 A property space is dictatorial if and only if it is totally blocked.

To use Theorem 1 to show that a given domain is dictatorial is typically fairly straight-
forward, as it involves coming up with sufficiently many instances of conditional en-
tailment; in particular, it is not necessary to determine the set of critical families
exhaustively. By contrast, in order to show that a domain is non-dictatorial, in prin-
ciple one needs to determine the transitive hull of the entire conditional entailment
relation; this may be difficult. However, an easily verifiable and frequently applicable
sufficient condition is that there be at least one basic property not contained in any
non-trivial critical family.9

Theorem 1 has the following corollary.

Corollary (The Gibbard-Satterthwaite Theorem) If X contains three or more
elements, then all onto strategy-proof social choice functions defined on an unrestricted
domain of preferences are dictatorial.

To see how the Gibbard-Satterthwaite Theorem follows from Theorem 1, consider the
set X = {x1, ..., xm} with the basic properties Hj = {xj} (“being equal to xj”) and
Hc

j = X \ {xj} (“being different from xj”), for all j = 1, ...,m. Recall that any
preference is single-peaked with respect to the induced betweenness. The (non-trivial)
critical families are {Hc

1 , ...,Hc
m} and, for any j 6= k, {Hj ,Hk}. If m ≥ 3, this implies

at once that (X,H) is totally blocked, hence the conclusion by Theorem 1.
We conclude this subsection by providing further examples of dictatorial domains.

Example (Ranking Sets of Applicants) Consider the K-dimensional hypercube
and the subset X(K;k,k′) ⊆ {0, 1}K of all binary sequences with at least k and at most
k′ coordinates having the entry 1, where 0 ≤ k ≤ k′ ≤ K. A possible interpretation is
that there are K applicants for a number vacant positions of which at least k have to be
filled, and at most k′ can be filled. A binary sequence in X(K;k,k′) then simply specifies
which applicants are admitted (those having entry 1). By considering preferences that
are single-peaked on X(K;k,k′), we are implicitly assuming that the ideal points are in
X(K;k,k′) as well, i.e. that all voters’ most preferred state is one where at least k and
at most k′ positions are filled. This is clearly restrictive when X(K;k,k′) is viewed as a
set of feasible alternatives in the hypercube.

9Indeed, if H is only contained in the trivial critical family {H, Hc}, one has H 6≥0 G for all G,
and therefore H 6≥ Hc, which implies that the underlying property space is not totally blocked.
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If k = 0 and k′ = K, we obtain the full hypercube which is clearly not totally
blocked. Thus, assume k > 0. If k′ = K, the non-trivial critical families of the
resulting space are exactly the subsets of {H1

0 ,H2
0 , ...,HK

0 } with K − k + 1 elements.
The interpretation of such a critical family is that, if already K − k applicants have
been rejected, then all of the remaining applicants must be admitted. Also in this case
one obtains a possibility result; for instance, by (3.3) above, the voting rule according
to which an applicant is admitted as soon as at least a fraction of 1/(K−k +1) voters’
vote for her is consistent. Note that the seven-point graph in Fig. 3b corresponds to
the space X(3;1,3).

Let now 0 < k ≤ k′ < K. Then, in addition to all subsets of {H1
0 ,H2

0 , ...,HK
0 }

with K − k + 1 elements also any subset of {H1
1 ,H2

1 , ...,HK
1 } with k′ + 1 elements

forms a critical family. It is easily verified that the corresponding spaces are totally
blocked whenever K ≥ 3. By Theorem 1, any onto strategy-proof social choice function
F : Sn → X(K;k,k′) is dictatorial. Special cases are the 6-cycle corresponding to X(3;1,2),
and the unrestricted domain on K alternatives which corresponds to X(K;1,1).

Another type of dictatorial domains are the l-cycles for l 6= 4, as shown by the
following result.

Proposition 4.1 An l-cycle is totally blocked if and only if l 6= 4.

The fact that 4-cycles play a fundamentally different role can be explained by their
isomorphism to the two-dimensional hypercube representing two independent issues.

4.2 Local Dictators

Non-dictatorial social choice functions on spaces that are not totally blocked can still
be rather degenerate since they may possess “local” dictators, i.e. dictators on subdo-
mains of preferences. Specifically, a voter i is called a local dictator if there exists a
subdomain D ⊆ S containing at least two preferences with different peaks such that
for all (�1, ...,�n) ∈ Dn, F (�1, ...,�n) = x∗i , where x∗i is the peak of �i.

Fact 4.2 Voting by committees possesses a local dictator if and only if {i} ∈ WH and
{i} ∈ WHc for some H ∈ H and some voter i.

Theorem 1 has immediate implications for the existence of local dictators. To
state these, we need some additional notation. Say that a subset Y ⊆ X is convex if it
corresponds to some combination of basic properties, i.e. if Y = ∩HY for an appropriate
subfamily HY ⊆ H. For instance, the segment [x, z] := {y ∈ X : (x, y, z) ∈ T} of all
elements between x and z is a convex set, by (3.1) above. The use of the term “convex”
is justified by the observation that any convex subset contains with any two elements
x and z the entire segment [x, z] between them; furthermore, the converse holds in any
graphic space.10 For any subset S ⊆ X, denote by coS the convex hull of S, i.e. the
smallest convex subset containing S.

For any convex subset Y ⊆ X, denote by (Y,H|Y ) the induced property space on
Y , where H|Y := {H ∩ Y : H ∈ H, H ∩ Y 6= ∅ and Hc ∩ Y 6= ∅}. Say that (X,H) is
locally blocked if it contains a totally blocked subspace.

Proposition 4.2 Any locally blocked property space is locally dictatorial.
10See the discussion in Appendix A; in general, an additional regularity condition is needed to ensure

that a set is convex whenever it contains with any two elements the entire segment between them.
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In view of Proposition 4.1 above, this result yields a powerful local criterion for dic-
tatorship when the underlying property space is graphic, namely the existence of a
convex l-cycle with l 6= 4. In Fig. 1 above, for instance, convex 3-cycles occur in exam-
ples 1f, 1g and 1i. Note that while the 6-cycle in Fig. 1h is convex, also the graph in
Fig. 1d contains a 6-cycle, the six “outer” points, but these do not form a convex set.
In Section 5 below, we show that the graph in Fig. 1d admits a variety of anonymous
rules, thus the existence of (non-convex) cycles of even length does not preclude gen-
uine possibility results. However, the existence of odd cycles in a graphic space does,
as shown by the following result.

Proposition 4.3 If (X,H) is graphic and locally non-dictatorial, then its graph con-
tains no odd cycles.

Graphs without odd cycles are called bi-partite, and are well-studied in graph theory.
Note that the absence of convex cycles of length 6= 4 and the absence of odd cycles
are necessary but not sufficient conditions for genuine possibility. For instance, both
conditions are satisfied by the space X(4;1,3) (“4 applicants of which at least one must,
but at most three can be admitted”) which is totally blocked as already noted.

Example (Ranking Sets of Applicants cont.) Consider again the K-dimensional
hypercube, and a non-empty subset J ⊆ {1, ...,K} representing a subgroup of appli-
cants. Suppose that at least one applicant has to be admitted, but at most m out of
the subgroup J , where 1 ≤ m ≤ #J . Denote the correspoding subspace by X(K;m,J).
If #J < K, none of the spaces X(K;m,J) is totally blocked.11 On the other hand, if
#J > 2, these spaces are locally blocked, since by the analysis of the preceding subsec-
tion, the convex subspace corresponding to the coordinates in J is totally blocked. If
#J = 2 the corresponding spaces are not locally blocked, and in fact admit anonymous
strategy-proof social choice rules. As an example, consider Fig. 1e above interpreted
as follows. There are three applicants, one of them has to be admitted; however, ap-
plicants 1 and 2 are relatives and therefore at most one of them can be admitted.
Concretely, applicant 1 is admitted in exactly the states a and x, applicant 2 is ad-
mitted in states b and w, and applicant 3 is admitted in states a, b and z. While
the decision on hiring each of the relatives may be made by majority voting, in any
anonymous strategy-proof rule, the non-relative must be hired whenever at least one
agent wants to hire her.12

4.3 From Local Dictatorship to Dictatorship

Local dictatorships are often easy to recognize. For instance, any triple of pairwise
neighbours forces local dictatorship. Local dictators typically tend to “spread,” often
over the entire space. This observation is the basis of Aswal, Chatterji and Sen’s

11Indeed, for all k 6∈ J , the property “applicant k is admitted” is not an element of any non-trivial
critical family. Thus, by the remark after Theorem 1 above, the space is not totally blocked.

12To verify this, let H1
1 = {a, x}, H1

0 = {b, w, z}, H2
1 = {b, w}, H2

0 = {a, x, z}, H3
1 = {a, b, z} and

H3
0 = {x, w}. Then, the non-trivial critical families are {H1

0 , H2
0 , H3

0} (“at least one applicant has to
be admitted”) and {H1

1 , H2
1} (“at most one of applicants 1 and 2 can be admitted”). Using (3.3) it is

easily seen that the class of all anonymous rules is given by the set of quotas satisfying q1 + q2 ≥ 1
and q1 + q2 + q3 ≤ 1, where qi is the quota needed for admission of applicant i. Note that consistency
thus necessarily implies q3 = 0, i.e. applicant 3 is rejected only if this is unanimously agreed upon, as
claimed.
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(2003) recent generalization of the Gibbard-Satterthwaite theorem. In our framework,
the logic of the spreading is summarized by the following proposition.

Proposition 4.4 If (Y,H|Y ) is totally blocked, and if x 6∈ Y has at least two neighours
in Y , then (Z,H|Z) is totally blocked where Z = co(Y ∪ {x}).

Following and adapting Aswal, Chatterji and Sen (2003), say that (X,H) is linked
if the betweenness is graphic, if its graph contains a 3-cycle, and if for every convex
proper subset Y ⊂ X with #Y ≥ 2, there exists x 6∈ Y with at least two neighbours in
Y . The following is an immediate corollary of Proposition 4.4.

Corollary 4.1 (Aswal, Chatterji and Sen (2003)) Any linked property space is
totally blocked.13

While frequently useful, the methodology underlying Proposition 4.4 has also clear
limitations, since total blockedness is in general not a local phenomenon. For instance,
all spaces X(K;1,K−1) are totally blocked, but none of them is linked; in fact, none of
their convex subsets is totally blocked.

In the following class of examples, the above results allow one to classify all strategy-
proof social choice functions on the associated single-peaked domain.
Example (Hotelling Model with Incomparabilities) Suppose that candidates
for political office can be broadly ordered on a left-to-right spectrum; however, certain
subgroups of candidates may not be unambiguously ordered in this way. For example,
in a U.S. context, a Republican (rep), a Democrat (dem), a Socialist (soc), and a
Green (grn) might run for president. While both the Socialist and the Green may be
unambiguously to the left of the Democrat (i.e. everyone putting either of the two on
top would prefer the Democrat over the Republican), there may be no unambiguous
left-right ordering with respect to the Socialist and the Green, as partisans of both may
prefer the Democrat over the other. This is illustrated in Figure 4a; in the symmetri-
cally enlarged Figure 4b, there are two additional mutually non-comparable candidates
on the right, say a Libertarian (lib) and a religious Fundamentalist (fun).
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soc

rep

4a: locally dictatorial

r r
�

�r @
@
r

�
�

r
@

@r
grn

soc

lib

fun

dem rep

4b: globally dictatorial

Figure 4: Hotelling model with incomparabilities

Formally, denote by ≥ a partial order (transitive and antisymmetric binary relation)
on X, and consider the property space induced by all basic properties of the form
H≥x := {z ∈ X : z ≥ x} and H≤x := {z ∈ X : z ≤ x}, and their respective
complements. The corresponding betwenness according to (3.1) is given by (x, y, z) ∈
T ⇔ [ x ≥ y ≥ z or z ≥ y ≥ x ]. In Figure 4, one has x > y if and only if x is
strictly to the right of y; moreover, in these examples the betweenness happens to be

13Aswal, Chatterji and Sen’s (2003) original result is in fact more general than the stated corollary
since it applies not only to generalized single-peaked preferences.
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graphic (with the graphs as displayed). Note, however, that for general partial orders
the derived betweenness need not be graphic.

Except for the case of a line, when ≥ is a linear order or when #X ≤ 2, all these
spaces are locally dictatorial by Proposition 4.3 above, since any two mutually non-
comparable elements are part of a 3-cycle. In fact, these spaces are globally dictatorial
(as in Fig. 4b), unless there is a unique minimal and unique second-to-minimal element,
or a unique maximal and second-to-maximal element (as in Fig. 4a).14

5 Genuine Possibility: Anonymity and the Absence
of Local Dictators

By the results of the preceding section, the absence of a totally blocked convex subspace
is necessary for local non-dictatorship. It seems natural to conjecture that local non-
blockedness is also sufficient for local non-dictatorship; this, however, turns out to be
false. To formulate the appropriate characterizing condition, we need some additional
notation. Say that a basic property H ∈ H is blocked if H ≡ Hc; otherwise, if H 6≡ Hc,
H is called unblocked. For each G ∈ H, let H≡G := {H ∈ H : H ≡ G}, and say
that a property space is quasi-unblocked if for any G ∈ H and any critical family
G, #(H≡G ∩ G) ≤ 2, whenever G is blocked. The following result entails that quasi-
unblockedness implies the absence of a totally blocked subspace. In Appendix B,
we show by means of an example that the converse does not hold and that quasi-
unblockedness is indeed stronger than local non-blockedness.

Theorem 2 Let (X,H) be a property space. The following conditions are equivalent.
(i) (X,H) is anonymous.
(ii) (X,H) is locally non-dictatorial.
(iii) (X,H) is quasi-unblocked.

On generalized single-peaked domains, the existence of a rule without local dictators
is thus in fact equivalent to the existence of an anonymous rule, and either condition

14To verify these claims, consider any two incomparable elements, such as grn and soc in Fig. 4a.
If #X ≥ 3, each of these, say grn, either has an immediate predecessor, an immediate successor (dem
in Fig. 4a), or there exists a third element that is not comparable to grn. In each case, one easily
verifies the existence of 3-cycle containing grn and soc. Suppose there is a unique minimal and unique
second-to-minimal element, or a unique maximal and second-to-maximal element, such as rep and
dem in Fig. 4a. Then, the following type of rules is strategy-proof and non-dictatorial. Fix any voter
i and a committee W0 such that {i} 6∈ W0, but i ∈ W for any winning coalition W ∈ W0. Set the
chosen state to be rep whenever the voters with peak rep form a winning coalition in W0; otherwise,
the outcome is i’s most preferred alternative among all elements in X \ {rep}. Evidently, i is a local
but not a global dictator, since i alone cannot force the outcome rep.

Now suppose that there exists both a 3-cycle containing at least one minimal element, say grn, and
a 3-cycle containing at least one maximal element, say fun as in Fig. 4b. By Proposition 4.3, there is a
local dictator, say voter i, on any issue of the form (Hy , (Hy)c) := ({y}, X \{y}) where y is a minimal
element of (X,≥), and a local dictator, say voter j, on any issue (Hw, (Hw)c) = ({w}, X \ {w})
where w is a maximal element of (X,≥). However, since {Hgrn, Hfun} forms a critical family, the
Intersection Property immediately implies j = i. Moreover, any basic property H either contains a
minimal or a maximal element, hence {i} is winning for any basic property, again by the Intersection
Property, i.e. i is a dictator.

Finally, note that neither of the property spaces underlying the graphs in Fig. 4 is linked. While
Aswal, Chatterji and Sen (2003) provide a sufficient condition that allows one to classify the domain
in Fig. 4a as non-dictatorial, their results are silent on the domain corresponding to Fig. 4b.
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is equivalent to quasi-unblockedness. However, the latter condition is complex and not
easy to verify. Therefore, we now provide a simple geometric condition that is “almost”
equivalent to quasi-unblockedness; it is based on the notion of a “median point,” as
follows.

An element m = m(x, y, z) is called the median of x, y, z if m is between any pair of
the triple, i.e. if m ∈ [x, y]∩ [x, z]∩ [y, z]. An element x̂ ∈ X is called a median point
if, for any y, z, the triple x̂, y, z admits a median; the set of median points is denoted
by M(X). A property space (X,H) is called a quasi-median space if M(X) 6= ∅,
and it is called a median space if every element is a median point, i.e. if M(X) = X.
Median spaces are well-studied in the literature on abstract convexity theory (see, e.g.,
van de Vel (1993); the weaker concept of quasi-median space has been introduced in
Nehring (2004).

Quasi-median spaces are always quasi-unblocked; conversely, there are spaces that
are quasi-unblocked but still admit no median points. However, the latter phenomenon
is not robust. The simplest example of a quasi-unblocked space without median points
is 5-dimensional and is presented in Appendix B. Moreover, while spaces without me-
dian points may admit anonymous rules with an odd number of voters, they do not
admit such rules for an even number of voters, as stated in Theorem 3 below.

By contrast, the existence of a median point guarantees the existence of anonymous
strategy-proof social choice rules for any number of voters via “unanimity rules.” A
social choice function F : Sn → X is a unanimity rule if there exists x̂ ∈ X such that

F (�1, ...,�n) = x̂ whenever x̂ ∈ {x∗1, ..., x∗n}, (5.1)

where x∗i denotes the peak of �i. Clearly, a state x̂ satisfying (5.1) is uniquely deter-
mined and is referred to as the status quo. Thus, a unanimity rule prescribes the choice
of the status quo as soon as at least one voter endorses that outcome. In general, a
unanimity rule is not fully determined by (5.1) since it does not specify a social choice
if none of the peaks coincides with the status quo. However, among all unanimity
rules with a given status quo x̂ there is only one that has the structure of voting by
committees. Denote by Fx̂ voting by committees with WH = 2N \ {∅} for all H 3 x̂
and WH = {N} for all H 63 x̂.

Fact 5.1 Voting by committees is a unanimity rule if and only if it is of the form Fx̂

for some x̂ ∈ X.

Proposition 5.1 Fx̂ is consistent if and only if x̂ ∈ M(X). If Fx̂ is consistent,
Fx̂(�1, ...,�n) is the unique element in the convex hull Co{x∗1, ..., x∗n} of the voters’
peaks that is between x̂ and any peak x∗i .

To see that consistency of Fx̂ requires the status quo x̂ to be a median point, consider
two alternatives y, z and two voters with peaks at y and z, respectively. Since any
property common to y and z gets unanimous support, the outcome under Fx̂ must lie
between the two peaks, i.e. Fx̂(�1,�2) ∈ [y, z]. Moreover Fx̂(�1,�2) ∈ [x̂, y] since
any basic property jointly possessed by x̂ and y gets the support of at least one voter,
and by the same argument, Fx̂(�1,�2) ∈ [x̂, z]. In other words, the triple x̂, y, z must
admit a median, namely Fx̂(�1,�2).

As an illustration, consider again the two subsets of the hypercube in Figure 3
above. As is easily verified, the 6-cycle in Fig. 3a has no median points. By comparison,
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the seven-point subset in Fig. 3b has the four median points x2, x4, x6 and x7. By
Proposition 5.1, it therefore admits four different strategy-proof unanimity rules, each
corresponding to one of the four median points as the status quo. Note that, while the
space is a quasi-median space, it is not a median space since the triple x1, x3, x5 does
not admit a median.

Theorem 3 Let (X,H) be a property space. The following conditions are equivalent.
(i) (X,H) admits an anonymous strategy-proof scf F : Sn → X for some even n.
(ii) (X,H) admits anonymous strategy-proof scfs F : Sn → X for any n ≥ 2.
(iii) (X,H) admits locally non-dictatorial strategy-proof scfs F : Sn → X for any n ≥ 2.
(iv) (X,H) admits some strategy-proof unanimity rule.
(v) All H ∈ H are unblocked.
(vi) (X,H) is a quasi-median space.

The equivalence of (v) and (vi) has been proved in Nehring (2004); for the sake of
self-containedness, we reproduce the proof in the appendix below.

In the case of two voters, unanimity rules exhaust the class of all anonymous (or,
equivalently, locally non-dictatorial) strategy-proof social choice functions F : S2 → X.
By the above results, all such rules can be described as follows: choose any median
point x̂ ∈ M(X) and set F (�1,�2) = m(x̂, x∗1, x

∗
2), where x∗i is the peak of �i. Thus,

the final outcome is the median of x̂ and the two voters’ peaks; following Moulin (1980),
the “status quo” x̂ can also be interpreted as the peak of a “phantom voter.”15

Example (Ranking Sets of Applicants cont.) Consider yet again the K-dimen-
sional hypercube with each coordinate corresponding to an applicant, and suppose that
m of these are women. Moreover, assume that a regulation requires that at least as
many women be hired as men, so that not all points of the cube represent feasible
states. Evidently, the state in which all women and no men are admitted is a median
point, so that the underlying space is a quasi-median space. There may be other
median points, but in general the space is not a median space; for instance, the seven-
point graph in Fig. 3b results by taking m = 2 and K = 3. Using the Intersection
Property, one easily verifies that the class of all anonymous rules that treat all women
and all men symmetrically is a 1-dimensional family with the extreme points (1, 1

m )
and ( m

m+1 , 1
m+1 ), where the first entry is the quota for hiring a man, and the second the

quota for hiring a woman. Note the extent to which the regulation biases the hiring in
favour of women under strategy-proofness.

6 Neutrality

Anonymous rules treat voters symmetrically. In this section, we are interested in social
choice functions that treat alternatives symmetrically. Under voting by committees,
a natural requirement is that all committees be identical, i.e. that WH = WH′ for all
basic properties H,H ′. Committee structures satisfying this condition will be called
neutral. Neutrality can be decomposed into two conceptually distinct requirements:
neutrality within issues and neutrality across issues. Formally, a committee structure

15A related result in the two voter case has been obtained by Bogomolnaia (1999).
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is neutral within issues if, for all basic properties H ∈ H, WH = WHc , and it is
neutral across issues if, for all H,H ′ ∈ H, WH′ = WH or WH′ = WHc .16

An example of a social choice rule that is neutral within but not across issues is
weighted issue-by-issue majority voting in the hypercube where the weights differ across
issues. Specifically, for all k and i, let wk

i ≥ 0 be the weight of voter i in dimension k,
and assume that

∑
i wk

i = 1 for all k. Weighted issue-by-issue majority voting is defined
by taking a coalition W as winning in dimension k if and only if

∑
i∈W wk

i > 1/2. A
difference in weights across issues may be the natural result of voters having different
stakes and/or different expertise in different dimensions. By contrast, a natural class of
examples of rules that are neutral across but not within issues are the unanimity rules,
or more generally, supermajority rules with a uniform quota > 1/2 for each issue.

In NP, we have shown that, unless the social choice function is dictatorial, full
neutrality presupposes an underlying median space, i.e. that every triple of elements
admits a median. The following result shows that this conclusion remains true when
neutrality is weakened to neutrality within issues while no-dictatorship is strengthened
to the absence of local dictators; on the other hand, neutrality across issues can be
realized under more general circumstances.

Theorem 4 a) A property space (X,H) admits a strategy-proof social choice function
F : Sn → X that is non-dictatorial and neutral across issues if and only if (X,H) is a
quasi-median space.
b) A property space (X,H) admits a strategy-proof social choice function F : Sn → X
that is locally non-dictatorial and neutral within issues if and only if (X,H) is a median
space.
c) A property space (X,H) admits a strategy-proof social choice function F : Sn → X
that is non-dictatorial and (fully) neutral if and only if (X,H) is a median space.

Note that, by part b), non-dictatorial rules that are neutral within issues may exist
also outside the class of median spaces. However, if the underlying space is “inde-
composable” then neutrality within issues is just as demanding as full neutrality, since
consistency forces committee structures that are neutral within issues also to be neu-
tral across issues. Specifically, say that (X,H) is decomposable if H can be partitioned
into (at least) two non-empty subfamilies H1 and H2 such that no critical family meets
both H1 and H2; otherwise, (X,H) is called indecomposable. One can easily show that
a property space is decomposable if and only if it can be represented as the Cartesian
product of (at least) two property spaces; for instance, among the property spaces
illustrated in Fig. 1 above, only the hypercube (Fig. 1b) is decomposable.

Proposition 6.1 Suppose that (X,H) is indecomposable. If F : Sn → X is strategy-
proof and neutral within issues, then F is neutral across issues, hence fully neutral.

By the above results, neutrality across issues is a substantially weaker requirement
than neutrality within issues, since under no-dictatorship it only requires the existence
of at least one median point while the latter essentially requires that all elements are
median points. However, neutrality within issues seems to be the more natural and
conceptually more fundamental condition. Strong possibility results can therefore only
emerge on sufficiently homogeneous spaces, i.e. when the key geometric condition (“me-
dianicity”) is not only satisfied locally but throughout the entire space of alternatives.

16These neutrality conditions can be derived from corresponding conditions defined for general social
functions F : Sn → X; for the derivation of full neutrality, see NP.
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Basic examples of median spaces are lines, trees, the hypercube and products of these
(see Figures 1a, 1b and 2a-c); further examples are appropriate subsets of median spaces
(see, e.g., Fig. 1c). A more detailed analysis of median spaces is provided in NP. In
Nehring and Puppe (2003), we show that efficiency requires a weak form of neutrality
and, except under “almost-dictatorship,” indeed an underyling median space.

As a final class of examples illustrating the spectrum from strong possibility on me-
dian spaces to impossibility on totally blocked spaces, consider the domain of additive
preferences over public goods, as follows.

Example (Additive Preferences over Public Goods) There are K + 1 public
goods, which can be supplied in non-negative discrete quantities. Denote by xk ∈ N0

the quantity of good k = 0, 1, ...,K, and suppose that feasibility requires
∑

k xk ≤ M
for some fixed amount M . Furthermore, suppose that preferences can be represented
by additive utility functions of the form

∑
k uk(xk), where each uk is increasing and

concave. By the resulting monotonicity of preferences, the choice will always lie on
the budget line

∑
k xk = M . We can therefore eliminate the coordinate corresponding

to good 0, and consider the set X = {x ∈ NK
0 :

∑K
k=1 xk ≤ M} as the universe of

alternatives. The utility functions on X can be written as follows,

u(x1, ..., xK) =
K∑

k=1

uk(xk) + u0(M −
K∑

k=1

xk). (6.1)

Case 1 Suppose that preferences are quasi-linear with good 0 as the numeraire so that
u0(x0) = x0. Then, preferences can be represented by utility functions of the form
ũ(x) =

∑
k(uk(xk)−xk). Since each summand uk(xk)−xk is concave, any such utility

function represents a single-peaked preference with respect to the standard betweenness
on X induced by the product NK

0 of K lines. For all K, the resulting property space
(X,H) is a quasi-median space with all points on the coordinate axes as median points.
The following figure shows the cases K = 2 and K = 3. For K = 2 all elements are in
fact median points, but not for K ≥ 3 (see Fig. 5b in which the triple x, z, w has no
median; all other states are median points).
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5b: Quasi-median space for K = 3

Figure 5: Possibility under quasi-linearity

It is easily verified that, for all K, the set of all quasi-linear utility functions gives rise to
a rich single-peaked domain on the quasi-median space (X,H). Hence, by Theorem 3,
there exist anonymous and strategy-proof social choice functions for any K. Examples
are the unanimity rules corresponding to each of the median points on the coordinate
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axes. As is easily verified, another example is the rule that requires, for any fixed
x0 ∈ X and all k, a quota of at least (K − 1)/K for any increase beyond xk

0 and
majority voting below xk

0 .

Case 2 Consider now the general case without the quasi-linearity assumption. Then,
the preferences represented by (6.1) are not necessarily single-peaked with respect to
the product betweenness on NK

0 . They are, however, single-peaked with respect to the
following betweenness relation:

(x, y, z) ∈ T̂ :⇔

{
yk ∈ [xk, zk] for all k, and

∑
k

yk ∈

[∑
k

xk,
∑

k

zk

]}
.

For instance, for K = 2 this is the graphic betweenness corresponding to the graph in
Figure 6 below (cf. Fig.1i). It is easily verified that the underlying property space is
totally blocked, and that the domain of all additive preferences of the form (6.1) is a
rich single-peaked domain on that space. By Theorem 1, all strategy-proof and onto
social choice functions are dictatorial on that domain.
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Figure 6: Impossibility without quasi-linearity

7 Conclusion

Based on the general characterization of strategy-proof social choice as voting by com-
mittees satisfying the Intersection Property, we have classified all generalized single-
peaked domains in terms of the extent to which they enable well-behaved strategy-proof
social choice rules. Specifically, we have characterized the domains that admit non-
dictatorial, locally non-dictatorial, anonymous and neutral strategy-proof social choice
functions, respectively. The class of domains that enable anonymous rules (“voting by
quota”) is only slightly larger than the class of domains admitting unanimity rules,
according to which a departure from some “status quo” point requires unanimous con-
sent. The spaces that admit such rules have a simple unifying geometric structure as
quasi-median spaces. Specifically, a state can serve as status quo if and only if it is
a “median point,” i.e. if and only if it admits a median with any other pair of states.
The requirement of symmetric treatment of alternatives turns out to be remarkably
restrictive since, under no-dictatorship, strategy-proof social choice functions that are
neutral require an underlying median spaces, i.e. that every state is a median point. For
locally non-dictatorial rules, this holds even when neutrality is weakened to neutrality
within issues.
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From a technical point of view, due to the canonical representation of strategy-proof
social choice functions in terms of voting by properties afforded by Theorems A and B,
all the results of this paper are really results about voting by properties in general, and
as such applicable to contexts quite different from strategy-proofness. For example,
in Nehring (2003) a weak form of Arrow’s celebrated Impossibility Theorem is derived
as a consequence of our Theorem 1. More importantly, in Nehring and Puppe (2005)
we show that the results of the present paper have broad applicability to the recent
and rapidly growing literature on “judgement aggregation” and can be used to obtain
interesting new results in that context.

Appendix A: Property Spaces Represented by Graphs

Any given property space (X,H) can be embedded in a hypercube of dimension K =
#H/2 such that each issue (H,Hc) corresponds to one coordinate. In particular,
any betweenness T derived from a property space via (3.1) can be represented by
a “graph with missing points,” i.e. there exists a graph on a superset Y ⊇ X such
that the corresponding graphic betweenness relativized to X coincides with T (for an
illustration, see Fig. 1e above in which the blank circle represents a “missing point.”)
A property space is graphic if and only if the representation is possible without missing
points. For a well-known sufficient condition for this, the so-called “triangle property,”
see van de Vel (1993, p.97); a characterization is not known.

When is, conversely, a given graphic betweenness derivable from a property space
via (3.1)? In NP, we derive the following necessary and sufficient condition. Let γ be
a connected graph on X, and denote by Tγ the induced graphic betweenness according
to which (x, y, z) ∈ Tγ if and only if y in some shortest γ-path connecting x and z. Say
that a set A ⊆ X is Tγ-convex if for all x, y, z,

[{x, z} ⊆ A and (x, y, z) ∈ Tγ ] ⇒ y ∈ A.

Thus, a set is Tγ-convex if it contains with any two elements all elements that are on a
shortest γ-path connecting them. Furthermore, say that a subset H ⊆ X is a half-space
if both H and its complement Hc are non-empty and Tγ-convex. The collection of all
such half-spaces is denoted by HTγ

. The following condition states that points that are
not Tγ-between two other points can be separated from them by a half-space.

T5 (Separation) If (x, y, z) 6∈ Tγ , then there exists a half-space H such that

H ⊇ {x, z} and y 6∈ H.

Fact Let γ be a connected graph. Then, there exists a property space H such that Tγ

coincides with the betweenness derived from H via (3.1) if and only if Tγ satisfies T5.

In this case, HTγ
is in fact the largest such property space, and the convex sets coincide

with the Tγ-convex sets. Thus, in graphic property spaces the convex sets can be
assumed to coincide with the Tγ-convex sets, a property that otherwise holds only
under an additional regularity condition.
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Appendix B: Anonymity outside Quasi-Median Spaces

Consider the subspace X ⊆ {0, 1}5 shown in Figure 7 below. The two cubes to the
right correspond to a “1” in coordinate 4 (i.e. to the basic property H4

1 ), similarly, the
two top cubes correspond to a “1” in coordinate 5 (i.e. to H5

1 ). Missing points of the
5-hypercube are indicated by blank circles. For the purpose of better illustration, the
edges connecting different points across the four subcubes have been omitted in the
figure.
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Figure 7: Anonymity and strategy-proofness without median points

This space is characterized by the following critical families: G1 = {H1
1 ,H3

0 ,H4
1},

G2 = {H1
1 ,H3

1 ,H5
1}, G3 = {H1

0 ,H2
0 ,H4

1}, G4 = {H1
0 ,H2

1 ,H5
1}, G5 = {H2

0 ,H3
0 ,H4

1},
G6 = {H2

1 ,H3
1 ,H5

1} and G7 = {H4
1 ,H5

1}. For instance, the criticality of {H4
1 ,H5

1} = G7

reflects the fact that the top-right cube contains no element of X, and is a maximal
subcube with this property. As is easily verified, one has Hk

0 ≡ Hk
1 for k = 1, 2, 3,

i.e. the first three coordinates are blocked; in particular, by Theorem 3, the underlying
space admits no median points. Nevertheless, denoting by qk

1 the quota corresponding
to Hk

1 , the following anonymous choice rule is easily seen to be consistent if the number
of voters is odd: The final outcome lies in the top left cube if and only if all voters
have their peak in that cube (q5

1 = 1); similarly, the choice is in the bottom right cube
if and only if all voters have their peak there (q4

1 = 1). In all other cases, the outcome
lies in the bottom left cube (q5

0 = q4
0 = 0). In addition, the location of the outcome

within any of the three admissible subcubes is decided by majority vote in each of the
first three coordinates (q1

1 = q2
1 = q3

1 = 1
2 ). Using (3.3), it is easily verified that this

rule is in fact the only anonymous strategy-proof social choice function in the present
example. Note in particular that in accordance with Theorem 3, there is no anonymous
rule for an even number of voters.
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Clearly, the space shown in Fig. 7 is quasi-unblocked, hence by Theorem 2 also
locally non-blocked. The following modification shows that quasi-unblockedness is in-
deed strictly stronger than local non-blockedness, hence that local non-blockedness
does not guarantee the existence of an anonymous strategy-proof social choice func-
tion. Specifically, consider the subspace (X,H) of the 6-dimensional hypercube char-
acterized by the following critical families: G′1 = {H1

1 ,H3
0 ,H4

1}, G′2 = {H1
1 ,H3

1 ,H5
1},

G′3 = {H1
0 ,H2

0 ,H4
1 ,H6

1}, G′4 = {H1
0 ,H2

1 ,H5
1 ,H6

0}, G′5 = {H2
0 ,H3

0 ,H4
1 ,H6

1}, G′6 =
{H2

1 ,H3
1 ,H5

1 ,H6
0} and G′7 = {H4

1 ,H5
1}. As is easily verified, one now has Hk

0 ≡ Hk
1

for k = 1, 2, 3 and k = 6, i.e. in addition to the first three coordinates also the sixth
coordinate is blocked. Moreover, one has H1

1 ≡ H2
1 ≡ H3

1 ≡ H6
1 , by consequence the

underlying space is no longer quasi-unblocked. Nevertheless, it is locally unblocked. To
see this, note that neither H4

0 nor H5
0 occur in any critical family. Since H4

1 ∩H5
1 = ∅,

this implies that, for any convex subset Y ⊆ X, either H4
0 ∩ Y 6= ∅ and H4

1 ∩ Y 6= ∅, or
H5

0 ∩Y and H5
1 ∩Y 6= ∅; that is, either H4

0 ∩Y or H5
0 ∩Y is a basic property of (Y,H|Y ).

Moreover, since the critical families of (Y,H|Y ) are obtained as relativizations of the
critical families of (X,H), either H4

0 ∩ Y or H5
0 ∩ Y is not contained in any critical

family of (Y,H|Y ). As noted in the main text, this implies that (Y,H|Y ) is not totally
blocked, hence (X,H) is not locally blocked.

Appendix C: Proofs

In the following proofs we will sometimes refer to the fact that the conditional entail-
ment relation ≥ is complementation adapted in the sense that H ≥ G ⇔ Gc ≥ Hc.
Also note that H ⊆ G ⇒ H ≥ G, since H ⊆ G implies that {H,Gc} is a critical family.

The following lemma plays a key role in the proofs of the theorems below.

Lemma 1 Suppose that {G1, G2, G3} ⊆ G for a critical family G. If WGc
1
⊆ WG2 ,

then {i} ∈ WGc
3

for some i ∈ N .

Proof of Lemma 1 Let W̃1 be a minimal element of WG1 , and let i ∈ W̃1. By
definition of a committee structure and by minimality of W̃1, one has (W̃ c

1∪{i}) ∈ WGc
1
.

By assumption, WGc
1
⊆ WG2 , hence (W̃ c

1 ∪ {i}) ∈ WG2 . Now consider any W3 ∈ WG3 .
By the Intersection Property, ∩3

j=1Wj 6= ∅ for any selection Wj ∈ WGj . In particular,
W̃1 ∩ (W̃ c

1 ∪ {i}) ∩W3 6= ∅. Since W̃1 ∩ (W̃ c
1 ∪ {i}) = {i}, this means i ∈ W3 for all

W3 ∈ WG3 . By (3.2), this implies {i} ∈ WGc
3
.

Proof of Theorem 1 Suppose that (X,H) is totally blocked. By Fact 4.1, WH = W0

for some W0 and all H. Moreover, it is easily verified that any totally blocked space
admits at least one critical family G with at least three elements, say G ⊇ {G1, G2, G3}.
By Lemma 1, {i} ∈ WGc

3
= W0; but then voter i is a dictator.

Suppose then that (X,H) is not totally blocked. To construct a non-dictatorial
strategy-proof social choice function partition H as follows.

H0 := {H ∈ H : H ≡ Hc},
H+

1 := {H ∈ H : H > Hc},
H−1 := {H ∈ H : Hc > H},
H2 := {H ∈ H : neither H ≥ Hc nor Hc ≥ H}.
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For future reference we note the following facts about this partition of H. Part c) of
the following lemma will only be used in the proof of Theorem 2 below.

Lemma 2 a) For any critical family G, if G ∈ G ∩H−1 , then G \ {G} ⊆ H+
1 .

b) For any critical family G, if G ∩ H0 6= ∅, then G ⊆ H0 ∪H+
1 .

c) Take any H̃ ∈ H2. Then there exists a partition of H2 into H−2 and H+
2 with

H̃ ∈ H−2 such that G ∈ H−2 ⇔ Gc ∈ H+
2 , and for no G ∈ H−2 and H ∈ H+

2 , G ≥ H.

Proof of Lemma 2 a) Suppose G ∈ G ∩H−1 , i.e. Gc > G. Consider any other H ∈ G.
We have H ≥ Gc > G ≥ Hc, hence H > Hc, i.e. H ∈ H+

1 .
b) Suppose G ∈ G∩H0 and let H ∈ G be different from G. We have H ≥ Gc ≡ G ≥ Hc,
hence H ≥ Hc. But this means H ∈ H0 ∪H+

1 .
c) The desired partition into H−2 = {G1, ..., Gl} and H+

2 = {Gc
1, ..., G

c
l } will be con-

structed inductively. Set G1 = H̃, and suppose that {G1, ..., Gr}, with r < l, is deter-
mined such that Gj 6≥ Gc

k for all j, k ∈ {1, ..., r}. Take any H ∈ H2\{G1, G
c
1, ..., Gr, G

c
r}

and set

Gr+1 :=
{

H if for no j ∈ {1, ..., r} : Gj ≥ Hc

Hc if for some j ∈ {1, ..., r} : Gj ≥ Hc

First note that Gr+1 6≥ Gc
r+1 since H ∈ H2. Thus, the proof is completed by showing

that for no k ∈ {1, ..., r}, Gk ≥ Gc
r+1 (and hence, by complementation adaptedness,

also not Gr+1 ≥ Gc
k). To verify this, suppose first that Gr+1 = H; then, the claim is

true by construction. Thus, suppose Gr+1 = Hc; by construction, there exists j ≤ r
with Gj ≥ Hc, hence by complementation adaptedness also H ≥ Gc

j . Assume, by way
of contradiction, that Gk ≥ Gc

r+1, i.e. Gk ≥ H. This would imply Gk ≥ H ≥ Gc
j , in

contradiction to the induction hypothesis.

Proof of Theorem 1 (cont.) If H+
1 ∪ H−1 is non-empty, set WH = 2N \ {∅} for

all H ∈ H−1 and WH = {N} for all H ∈ H+
1 ; moreover, choose a voter i ∈ N and

set WG = {W ⊆ N : i ∈ W} for all other G ∈ H. Clearly, the corresponding voting
by committees is non-dictatorial. We show that it is consistent. By the Intersection
Property, the only problematic case is when a critical family G contains elements of
H−1 . However, by Lemma 2a), if G ∈ G ∩ H−1 , we have G \ {G} ⊆ H+

1 , in which case
the Intersection Property is clearly satisfied.

Next, suppose that H+
1 ∪H

−
1 is empty, and consider first the case in which both H0

and H2 are non-empty. By Lemma 2b), no critical family G can meet both H0 and H2.
Hence, we can specifiy two different dictators on H0 and H2, respectively, by setting
WH = {W : i ∈ W} for all H ∈ H0 and WG = {W : j ∈ W} for all G ∈ H2 with i 6= j.
Clearly, the Intersection Property is satisfied in this case.

Now suppose thatH2 is also empty, i.e.H = H0. Since (X,H) is not totally blocked,
H is partitioned in at least two equivalence classes with respect to the equivalence
relation ≡. Since, obviously, no critical family can meet two different equivalence
classes, we can specify different dictators on different equivalence classes while satisfying
the Intersection Property.

Finally, if H0 is empty, (X,H) is a quasi-median space by the equivalence of (v) and
(vi) in Theorem 3, hence the existence of non-dictatorial strategy-proof social choice
functions follows as in the proof of Proposition 5.1 below.

Proof of Proposition 4.1 For l = 4, the l-cycle is isomorphic to the 2-dimensional
hypercube which is clearly not totally blocked. Thus, assume first that l is even and
l ≥ 6. For all j, denote by Hj := {xj , xj+1, ..., xj−1+l/2}, where indices are understood
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modulo l throughout. The family {Hj ,Hj−1+l/2,Hj−2} is a critical family. This implies
Hj ≥0 Hj−1 for all j, since Hj−1 = (Hj−1+l/2)c. From this, the total blockedness is
immediate.

Now consider l odd with l ≥ 5 (the 3-cycle corresponds to the unrestricted domain
over three alternatives which has already been shown to be totally blocked). For all j,
denote by H−

j = {xj , xj+1, ..., xj−1+(l−1)/2} and by H+
j = {xj , xj+1, ..., xj−1+(l+1)/2}.

Criticality of of the pair {H−
j ,H−

j+(l−1)/2} implies H−
j ≥0 H+

j−1 for all j. Furthermore,
criticality of the family {H+

j ,H+
j−1+(l+1)/2,H

−
j+1+(l+1)/2} implies both H+

j ≥0 H+
j+1

and H+
j ≥0 H−

j for all j. From this, the total blockedness is again immediate.

Proof of Fact 4.2 Suppose that voting by committees possesses the local dictator i.
Let x and y be two distinct potential preference peaks in the corresponding subdomain,
and consider a separating basic property H with x ∈ H and y ∈ Hc. Since i can force
the outcome to lie in H even when all other voters have their peak at y, one has
{i} ∈ WH ; symmetrically, one also obtains {i} ∈ WHc .

Conversely, if {i} ∈ WH and {i} ∈ WHc for some H and some i, choose x ∈ H,
y ∈ Hc, and a subdomain D consisting of two single-peaked preferences with peak at
x and y, respectively. Evidently, i is a local dictator.

Proof of Proposition 4.2 Let F : Sn → X be onto and strategy-proof where S is a
rich single-peaked domain on (X,H). Also, let Y ⊆ X be convex such that (Y,H|Y )
is totally blocked. Denote by SY the set of all preferences in S that have their peak
in Y , and by SY the set of the restrictions to Y of the preferences in SY . Define
FY : [SY ]n → Y as follows. For all �i∈ SY ,

FY (�1, ...,�n) := F (�′1, ...,�′n),

where, for each i, �′i is any extension of �i to X such that �′i∈ SY , i.e. such that
�′i is single-peaked on X with the same peak as �i. Since F satisfies peaks only,
the definition of FY does not depend on the choice of the extension. Clearly, FY is
strategy-proof on SY and its range is Y ; furthermore, SY is a rich single-peaked domain
on (Y,H|Y ). By assumption, (Y,H|Y ) is totally blocked, hence FY is dictatorial, by
Theorem 1. But this implies that F possesses a local dictator, since the restriction of
F to the subdomain SY coincides with FY .

For the proofs of Propositions 4.3 and 4.4, the following lemma is useful.

Lemma 3 Suppose that two neighbours x and y are separated by two distinct issues,
i.e. x ∈ H ∩ H ′ and y ∈ Hc ∩ (H ′)c for two distinct basic properties H,H ′. Then,
H ≡ H ′.

Proof of Lemma 3 By symmetry, it suffices to show that H ≥0 H ′. Clearly, this
holds if H ∩ (H ′)c = ∅. Thus, assume that H ∩ (H ′)c = {z1, ..., zk}. Since no zj is
between x and y, there exist Gj (not necessarily distinct) such that, for all j, zj ∈ Gj

and Gc
j ⊇ {x, y}. By construction, we have H ∩ (H ′)c ∩ Gc

1 ∩ ... ∩ Gc
k = ∅, hence

{H, (H ′)c, Gc
1, ..., G

c
k} contains a critical family G. Since H ∩Gc

1 ∩ ...∩Gc
k and (H ′)c ∩

Gc
1 ∩ ...∩Gc

k are both non-empty (containing x and y, respectively), G must contain H
and (H ′)c, hence H ≥0 H ′.

Proof of Proposition 4.3 Let γ be the underlying graph, and assume, by way of
contradiction, that there exists an odd cycle in γ, i.e. a closed path with 2n + 1 nodes.
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Denote by S = {x1, ..., x2n+1} the elements corresponding to these nodes. By the
oddness of the cycle and the assumption that the property space is graphic, all basic
properties (relativized to CoS) either contain n or n + 1 consecutive cycle elements.
Moreover, any two neighbours x and y are separated by at least two distinct issues
(H,Hc) and (H̃, H̃c). By Lemma 3, H ≡ H̃. Denoting by Hj any basic property that
contains n consecutive cycle elements with xj as their middle point, we therefore have
Hj ≡ (Hj+n)c, where indices are understood modulo 2n + 1. By the oddness of the
cycle, we thus obtain H ≡ H ′ for all basic properties, which immediately implies the
total blockedness of CoS.

For the proof of Proposition 4.4, we need the following additional lemma.

Lemma 4 Consider a subspace (Y,H|Y ) of (X,H) and H,G such that H ∩Y, G∩Y ∈
H|Y . If H ∩ Y ≥Y G ∩ Y , then H ≥ G, where ≥Y denotes the conditional entailment
relation of (Y,H|Y ).

Proof of Lemma 4 It suffices to show that if there exists a critical family in H|Y that
contains H∩Y and Gc∩Y , then there exists a critical family in H that contains H and
Gc. Thus, suppose that G := {H∩Y, Gc∩Y, G1∩Y, ..., Gl∩Y } is critical in (Y,H|Y ). If
H ∩Gc∩G1∩ ...∩Gl = ∅, then evidently {H,Gc, G1, ..., Gl} is critical in (X,H). Thus,
assume that H∩Gc∩G1∩...∩Gl 6= ∅. Since Y is convex, Y = H1∩...∩Hk for appropriate
Hj . One has H∩Gc∩G1∩...∩Gl∩H1∩...∩Hk = ∅, hence {H,Gc, G1, ..., Gl,H1, ...,Hk}
contains a critical family G′, and by the assumed criticality of G, G′ must contain both
H and Gc.

Proof of Proposition 4.4 Take any two basic properties H,H ′ of (Z,H|Z). If both
H ∩ Y and H ′ ∩ Y are elements of H|Y , then by the total blockedness of (Y,H|Y ) and
Lemma 4, H ≡ H ′ (in (Z,H|Z)).

Now suppose that H ⊆ Z \ Y while H ′ ∩ Y ∈ H|Y . Since Z = Co(Y ∪ {x}), one
has x ∈ H. Let y and z be two neighbours of x in Y . Since z is not between x and y,
there exists G with G ⊇ {x, y} and z 6∈ G. Thus, (H,Hc) and (G, Gc) are two distinct
issues separating the neighbours x and z, hence by Lemma 3, H ≡ G. Furthermore,
since G∩Y ∈ H|Y , G ≡ Gc by Lemma 4 and the total blockedness of (Y,H|Y ). Hence,
by transitivity and complementation adaptedness, also H ≡ Hc. Moreover, since both
G ∩ Y and H ′ ∩ Y are in H|Y , one has G ≡ H ′, which shows that H ≡ H ′.

Finally, if both H ⊆ Z \ Y and H ′ ⊆ Z \ Y , we obtain H ≡ H ′ by the above
arguments using transitivity since there exists at least one G such that G ∩ Y ∈ H|Y .
Combining the three cases, we obtain the total blockedness of (Z,H|Z), as desired.

Proof of Theorem 2 Obviously, (i) implies (ii). Thus, it suffices to show that (ii)
implies (iii), and that (iii) implies (i).
“(ii) ⇒ (iii)” We prove the claim by contraposition. Assume that (X,H) is not quasi-
unblocked. This means that there exists G ∈ H with G ≡ Gc and some critical family
G such that (H≡G ∩ G) ⊇ {H,H ′,H ′′} for three distinct H,H ′,H ′′. By Theorem
A, any strategy-proof F : Sn → X takes the form of voting by committees. By
Fact 4.1, WH = WG for all H ∈ H≡G. By Lemma 1, applied to the critical family
G ⊇ {H,H ′,H ′′}, there exists i, such that {i} ∈ WH for all H ∈ H≡G. Hence, i is a
dictator on H≡G, which proves the claim.
“(iii) ⇒ (i)” We will construct a consistent voting by quota rule, provided that (X,H)
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is quasi-unblocked. Partition H as above, i.e.

H0 := {H ∈ H : H ≡ Hc},
H+

1 := {H ∈ H : H > Hc},
H−1 := {H ∈ H : Hc > H},
H2 := {H ∈ H : neither H ≥ Hc nor Hc ≥ H}.

Furthermore, partition H2 according to Lemma 2c) into H−2 and H+
2 . Let n be odd,

and define a voting by quota rule by setting

WH = {W : #W > 1/2 · n} if H ∈ H0,
WH = 2N \ {∅} if H ∈ H−1 ∪H

−
2 ,

WH = {N} if H ∈ H+
1 ∪H

+
2 .

Thus, the quotas correspond to qH = 1
2 for H ∈ H0 and qH = 1 for H ∈ H+

1 ∪ H
+
2 .

Using the Intersection Property, we will show that this rule is consistent. Consider any
critical family G; we distinguish three cases.
Case 1: G ∩ (H−1 ∪ H−2 ) 6= ∅. If G ∈ G ∩ H−1 , then by Lemma 2a), G \ {G} ⊆ H+

1 ,
and the Intersection Property is clearly satisfied. Thus, suppose that there exists
H ∈ G∩H−2 . By Lemma 2b), we must have G∩H0 = ∅, and by Lemma 2a), G∩H−1 = ∅.
Hence, if there exists H ′ ∈ G \ {H} with WH′ 6= {N}, we must have H ′ ∈ H−2 . But
then H ≥ (H ′)c contradicts the construction of H−2 and H+

2 in Lemma 2c). Thus, if
H ∈ G ∩ H−2 , one has WH′ = {N} for any other element H ′ ∈ G, in which case the
Intersection Property is satisfied.
Case 2: G∩H0 6= ∅. First, observe that G1 ≡ G2 whenever {G1, G2} ⊆ G∩H0. Indeed,
G1 ≡ G2 follows at once from G1 ≥ Gc

2, G2 ≥ Gc
1, G1 ≡ Gc

1 and G2 ≡ Gc
2. Thus, by

quasi-unblockedness, G can contain at most two elements of H0. By Lemma 2b), for
any H ∈ G \H0 one has WH = {N}. Hence, the Intersection Property is also satisfied
in Case 2.
Case 3: If G does not meet H0, H−1 and H−2 , then G ⊆ (H+

1 ∪ H
+
2 ), in which case the

Intersection Property is trivially satisfied. This completes the proof of Theorem 2.

Proof of Fact 5.1 It is clear that Fx̂ defines a unanimity rule. Conversely, under
voting by committees, (5.1) implies WH = {N} for any property H with H 63 x̂; by
(3.2), this implies WH = 2N \ {∅} for all H 3 x̂.

For the proofs of Proposition 5.1 and Theorem 3, we need the following lemma from
Nehring (2004); for the sake of self-containedness, we reproduce its proof here. For any
x ∈ X, denote by Hx := {H ∈ H : x ∈ H}.

Lemma 5 x̂ ∈ M(X) if and only if for any critical family G, #(Hx̂ ∩ G) ≤ 1.

Proof of Lemma 5 Let x ∈ M(X); we verify #(Hx ∩G) ≤ 1 by contradiction. Thus,
assume that, for some critical family G, Hx ∩ G ⊇ {H1,H2}. Since x ∈ H1 ∩ H2,
there exits a G ∈ G different from H1 and H2. By criticality, one can choose y ∈
∩(G \ {H1}) and z ∈ ∩(G \ {H2}). By construction, [x, y] ⊆ H2, [x, z] ⊆ H1 and
[y, z] ⊆ ∩(G \ {H1,H2}). But then [x, y] ∩ [x, z] ∩ [y, z] ⊆ ∩G = ∅, contradicting the
fact that x ∈ M(X).

Conversely, suppose that x 6∈ M(X), i.e. [x, y] ∩ [x, z] ∩ [y, z] = ∅ for some y, z.
Define Hxy := {H ∈ H : {x, y} ⊆ H}, Hxz := {H ∈ H : {x, z} ⊆ H} and Hyz :=
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{H ∈ H : {y, z} ⊆ H}. By assumption, one has (∩Hxy) ∩ (∩Hxz) ∩ (∩Hyz) = ∅,
hence Hxy ∪ Hxz ∪ Hyz contains a critical family G. Any such critical family must
contain H with H ∩ {x, y, z} = {x, y}, H ′ with H ′ ∩ {x, y, z} = {x, z} and H ′′ with
H ′′ ∩ {x, y, z} = {y, z}. But this implies #(Hx ∩ G) ≥ 2 since x ∈ H ∩H ′.

Proof of Proposition 5.1 Let Fx̂ be consistent and consider Hx̂, the family of all
properties possessed by x̂. Since WH = 2N \ {∅} for all H ∈ Hx̂, the Intersection
Property implies that #(Hx̂ ∩ G) ≤ 1 for any critical family G (otherwise, if H,H ′ ∈
Hx̂ ∩ G with H 6= H ′, one could choose W ∈ WH and W ′ ∈ WH′ with W ∩W ′ = ∅,
contradicting the assumed consistency). By Lemma 5, x̂ ∈ M(X).

Conversely, Lemma 5 implies that for any median point x̂ ∈ M(X), the unanimity
rule Fx̂ satisfies the Intersection Property.

To prove the last statement in Proposition 5.1, observe first that the outcome under
voting by committees always lies in the convex hull of the voters’ peaks since any basic
property containing all voters’ peaks gets unanimous support. The claim then follows
at once from the fact that {i} ∈ WH whenever H ⊇ {x̂, x∗i }.
Proof of Theorem 3 We first show the implication “(v) ⇒ (vi).” Thus, suppose that
for all H ∈ H, H 6≡ Hc. Partition H into H−1 , H+

1 , H−2 and H+
2 as above, where H−2

and H+
2 are determined according to Lemma 2c). Then, any critical family G can meet

H−1 ∪ H
−
2 at most once. Indeed, by Lemma 2a), H ∈ G ∩ H−1 implies G \ {H} ⊆ H+

1 .
Furthermore, if {H,H ′} ⊆ G ∩ H−2 , one would obtain H ′ ≥ Hc which contradicts the
construction of H−2 . But this implies that ∩(H−1 ∪ H−2 ) is non-empty (otherwise it
would contain a critical family), and by H3, it consists of a single element, say x. By
Lemma 5, x ∈ M(X).

Conversely, to verify “(vi) ⇒ (v),” let x ∈ M(X), and consider any H ∈ Hx. Then,
H ≥0 G implies G ∈ Hx. Indeed, by definition, H ≥0 G means that {H,Gc} ⊆ G for
some critical family G. By Lemma 5, G contains at most one element of Hx, hence
Gc 6∈ Hx, which implies G ∈ Hx. This observation immediately implies H 6≡ Hc.

The equivalence of (vi) and (iv) follows at once from Fact 5.1 and Proposition 5.1.
The equivalence of (iii) and (iv) then follows from the observation that for n = 2
unanimity rules exhaust the class of locally non-dictatorial and strategy-proof social
choice rules. The implications “(iv)⇒ (ii)” and “(ii)⇒ (i)” are evident. Thus, the proof
is completed by verifying the implication “(i) ⇒ (v).” This is done by contraposition.
Thus, assume that H is blocked, i.e. H ≡ Hc. By Fact 4.1 this implies WH = WHc

for any consistent committee structure. Under anonymity, this implies qH = qHc = 1
2 ,

which is compatible with (3.2) only if the number of voters is odd.

Proof of Theorem 4 a) By Theorem 3, any quasi-median space admits at least
one strategy-proof unanimity rule, and any such rule is neutral across issues and non-
dictatorial.

Conversely, let F : Sn → X be strategy-proof and neutral across issues. By Theo-
rem B, F must be voting by committees satisfying the Intersection Property. We show
by contraposition that if F is non-dictatorial, then (X,H) must be a quasi-median
space. Thus, suppose that (X,H) is not a quasi-median space. By Theorem 3, there
exists a basic property H that is blocked, i.e. H ≡ Hc. By Fact 4.1, this implies
WH = WHc , hence F is fully neutral, i.e. WH = W0 for all H and some fixed com-
mittee W0. Since (X,H) is not a median space, there exists by NP, Proposition 4.1,
a critical family G with at least three elements, say G ⊇ {G1, G2, G3}. By Lemma 1
above, {i} ∈ WGc

3
= W0, i.e. voter i is a dictator.
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b) By NP, Proposition 4.1, median spaces are characterized by the property that all
critical families have cardinality two. By (3.3) this implies that, e.g., issue-by-issue ma-
jority voting is consistent on any median space, and evidently, issue-by-issue majority
voting is neutral, in particular neutral within issues.

Conversely, let F : Sn → X be strategy-proof and neutral within issues. By
Theorem B, F must be voting by committees satisfying the Intersection Property. We
show by contraposition that if F is locally non-dictatorial, then (X,H) must be a
median space. Thus, suppose that (X,H) is not a median space. Then there exists a
critical family G with at least three elements, say G ⊇ {G1, G2, G3}, in particular, Gj ≥
Gc

k for distinct j, k ∈ {1, 2, 3}. By Fact 4.1, WGj ⊆ WGc
k

for distinct j, k ∈ {1, 2, 3}.
Under neutrality within issues this implies at once that W assigns identical committees
to G1, G2, G3 and their respective complements. By Lemma 1 above, {i} ∈ WGc

3
,

i.e. voter i is a local dictator.
c) As in part b), an underyling median space guarantees the existence of a fully neutral
rule. The converse follows from part b) together with the observation that, under full
neutrality, a local dictator must even be a global dictator.

Proof of Proposition 6.1 Suppose that (X,H) is indecomposable. Then, for any
H,H ′ ∈ H, at least one of the following holds, H ′ ≥ H, H ′ ≥ Hc, (H ′)c ≥ H, or
(H ′)c ≥ Hc. Indeed, otherwise the subfamilies H1 := {G ∈ H : G ≥ H,G ≥ Hc, Gc ≥
H, or Gc ≥ Hc} andH2 := H\H1 form a decomposition, as is easily verified. The claim
follows immediately from this observation using the complementation adaptedness of
≥ and Fact 4.1.
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