Social Choice Theory
- Typ: Vorlesung (V)
- Semester: SS 2022
-
Zeit:
Di 19.04.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 26.04.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 03.05.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 10.05.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 17.05.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 24.05.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 31.05.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 14.06.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 21.06.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 28.06.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 05.07.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 12.07.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 19.07.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
Di 26.07.2022
14:00 - 15:30, wöchentlich
30.28 Seminarraum 2 (R120)
30.28 Lernzentrum 2012 (OG 1)
-
Dozent:
Claudio Kretz - SWS: 2
- LVNr.: <a target="lvn" href="https://campus.studium.kit.edu/events/0xC2B7C459A4334DB5BF5DB1F9C9ABA153">2520537</a>
- Hinweis: Präsenz
Links
Inhalt | How should (political) candidates be elected? What are good ways of merging individual judgments into collective judgments? Social Choice Theory is the systematic study and comparison of how groups and societies can come to collective decisions. The course offers a rigorous and comprehensive treatment of judgment and preference aggregation as well as voting theory. It is divided into two parts. The first part deals with (general binary) aggregation theory and builds towards a general impossibility result that has the famous Arrow theorem as a corollary. The second part treats voting theory. Among other things, it includes prooving the Gibbard-Satterthwaite theorem. |
Vortragssprache | Englisch |
Literaturhinweise | Main texts:
Secondary texts:
|